
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Midterm Solutions

1. Parts (a), (b), and (c) were worth 3 points, and each item in (d) was worth 1 point.

(a) Since i = eiπ/2 the fourth roots of i are eiπ/8+2kiπ/4 = eiπ/8, e5iπ/8, e9iπ/8, e13iπ/8 .

(b) Since 9i = 9eiπ/2 we have log(9i) = ln 9 + iπ/2 + 2kπi for integers k.

(c) We have (9i)i = ei log(9i) = ei[ln 9+iπ/2+2kπi] = e−π/2−2kπ(cos ln 9 + i sin ln 9) for integers k.

(d) False , True , True , False , False : R is not closed since it does not contain its boundary, R is
bounded since it is contained in |z| < 10, R is connected since a path can be drawn in R from any point
to any other, R is not simply connected as (e.g.,) the circle |z| = 5 is not homotopic to the trivial path,
and the principal logarithm is discontinuous on the positive real axis (part of which is in R).

2. Each part was worth 6 points.

(a) As f(z) = −iz+ z2z2 we see ∂f/∂z = 2z2z which is nonzero except at z = 0, so the derivative f ′ cannot
exist anywhere except at z = 0. To compute f ′(0) we use the limit de�nition of the derivative to see

f ′(0) = limh→0
f(h)− f(0)

h− 0
= limh→0

−ih+ h2h
2

h
= limh→0(−i+hh

2
) = −i. (Note that we cannot just

compute ∂f/∂z because ∂f/∂z = f ′ only when f is holomorphic on a region.)

(b) For f(x + iy) = u(x, y) + iv(x, y) we have f∗(x + iy) = u(x,−y) − iv(x,−y), so ∂f∗

∂z (x + iy) =
1
2

[
∂f∗

∂x + i∂f
∗

∂y

]
(x + iy) = 1

2 [ux(x,−y) − ivx(x,−y) + i(−uy(x,−y) + ivy(x,−y))] = 1
2 [fx(x,−y) −

ify(x,−y)] = ∂f
∂z (x− iy). So for x + iy ∈ R we see that f∗ is holomorphic at x − iy, so since f is

holomorphic on R, f∗ is holomorphic on R.
Alternatively, letting g(z) = z, we see f∗(z) = g(f(g(z))) so ∂f∗

∂z (z0) =
∂g
∂z (f(g(z0)) ·

∂f
∂z (g(z0)) ·

∂g
∂z (z0) =

∂f
∂z (z0) so for z0 ∈ R this evaluates to zero since f is holomorphic at z0 ∈ R.
Alternatively, since holomorphic functions are analytic, we can write f(z) =

∑∞
n=0 an(z−z0)n with a pos-

itive radius of convergence, for any z0 in R. Then f
∗(z) = f(z) =

∑∞
n=0 an(z − z0)n =

∑∞
n=0 an(z−z0)n

which has the same radius of convergence as the original series since lim supn→∞ |an|
1/n

= lim supn→∞ |an|
1/n

.
In particular, the new series is di�erentiable at z = z0, so f

∗ is holomorphic on R.

3. Parts (a) and (b) were worth 3 points, part (c) was worth 4 points, and part (d) was worth 2 points.

(a) We have limn→∞ |an|1/n = limn→∞ n1/n(n + 1)1/n/21/n = 1 so the radius is 1/1 = 1 and the disc is

|z| < 1 .

(b) We can integrate term by term to see F (z) = C +
∑∞
n=0

n

2
zn+1, and setting z = 0 gives C = 2025, so

F (z) = 2025 +
∑∞
n=0

n

2
zn+1 = 2025 +

1

2
z2 + z3 +

3

2
z4 + · · · .

(c) Since f(z) = z(1 + 3z + 6z2 + 10z3) we see 1/f(z) = z−1(1 + 3z + 6z2 + 10z3)−1 so we need the
second term out to z2. If 1 + 3z + 6z2 + 10z3 + · · · has inverse b0 + b1z + b2z

2 + · · · , multiplying out
(1+3z+6z2+ · · · )(b0+b1z+b2z2+ · · · ) = b0+(3b0+b1)+(6b0+3b1+b2)+ · · · and solving yields b0 = 1,
3b0+b1 = 0 so b1 = −3, 6b0+3b1+b2 = 0 so b2 = −6b0−3b1 = 3. Then f(z) = z−1(1−3z+3z2+ · · · ) =
z−1 − 3 + 3z + · · · . (In fact, one can show 1/f(z) = z−1 − 3 + 3z − z2 exactly.)

(d) Since f(z) is holomorphic inside its disc of convergence, which is a simply connected region, by Cauchy's

integral theorem or our results on integrating power series we see that
´
γ
f(z) dz = 0 for any such γ.
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4. Each part was worth 4 points.

(a) For f(z) = |z|2 we see f(3eit) =
∣∣3eit∣∣2 = 9 and γ′(t) = 3ieit, so we get

´ π
0
9 ·3ieit dt = 27eit|πt=0 = −54 .

(b) We have a parametrization γ(t) = i+ t(3−5i) = 3t+(1−5t)i for 0 ≤ t ≤ 1. Then f(z) = [Re(z)]2 we see

f(γ(t)) = (3t)2 and γ′(t) = 3− 5i, so we get
´ 1
0
(3t)2(3− 5i) dt = 3t3(3− 5i)|1t=0 = 3(3− 5i) = 9− 15i .

(c) Since f(z) = 3z2 is holomorphic and has an antiderivative F (z) = z3, the start point is γ(0) = 0 and
the end point is γ(1) = e, by the fundamental theorem of calculus / independence of path we see that´
γ
f(z) dz = F (e)− F (0) = e3 .

5. Each part was worth 4 points.

(a) Since e2z =
∑∞
n=0

(2z)n

n!
=
∑∞
n=0

2n

n!
zn we see

e2z

z4
=

∞∑
n=0

2n

n!
zn−4 = z−4 + 2z−3 + 2z−2 +

4

3
z−1 +

2

3
+ · · · .

(b) Since the radius of convergence for the power series is ∞, and the contour winds once counterclockwise
around the origin, by our results on integrating Laurent series we see that

´
γ
f(z) dz = 2πiWγ(0)a−1 =

2πi · 1 · 43 = 8πi
3 .

6. Parts (a) and (c) were each worth 3 points, part (b) was worth 2 points, and part (d) was worth 4 points.

(a) By decomposing the contour into simple pieces, or by drawing a ray from the given point out to∞ in any

direction, the winding number around 0 is 0 , the winding number around i is +2 , and the winding

number around 3i is −1 .

(b) By the de�nition of winding number, we see
´
γ

1

z
dz = 2πiWγ(0) = 0 .

(c) By Cauchy's integral formula with f(z) = ez and z0 = i,
´
γ

ez

z − i
dz = 2πiWγ(i)f(i) = 2πi·2·ei = 4πiei .

(d) We have the partial fraction decomposition
1

z2 + 1
=

i/2

z + i
− i/2

z − i
. Then by the de�nition of winding

number (twice) we see
´
γ

1

z2 + 1
dz =

i

2
· 2πiWγ(−i)−

i

2
· 2πiWγ(i) = 2πWγ(i)− 2πWγ(−i) = 2π .

7. Part (a) was worth 6 points and part (b) was worth 4 points.

(a) First we show that the series has radius of convergence ∞. This follows either by the ratio test, since

|an+1/an| = 1
(3n+3)(3n+2)(3n+1) → 0 as n→∞, or directly by noting limn→∞ |an|1/n ≤ limn→∞

1
(3n!)1/n

=

limn→∞
1

(n/e)
√
2πn

1/n = 0 via Stirling's approximation. Then by our results on power series, f(z) is

holomorphic inside its radius of convergence, hence on all of C. For the second part we can di�erentiate

f(z) = 1+
z3

3!
+
z6

6!
+
z9

9!
+· · · term by term to see f ′(z) =

z2

2!
+
z5

5!
+
z8

8!
+· · · and f ′′(z) = z+

z4

4!
+
z7

7!
+· · · :

then f ′′(z) + f ′(z) + f(z) = 1 + z +
z2

2!
+
z3

3!
+ · · · =

∑∞
n=0

zn

n!
= ez.

(b) The di�erentiation-via-integration formula says that for a holomorphic function g on a simply-connected

region R with counterclockwise boundary γ, we have g(n)(z0) =
n!

2πi

´
γ

g(z)

(z − z0)n+1
dz. Applying the

formula with g = f and n = 1 shows that
´
γ

f(z)

(z − z0)2
dz = 2πif ′(z0), and applying the formula with

g = f ′ and n = 0 shows that
´
γ

f ′(z)

z − z0
dz = 2πif ′(z0) (alternatively this follows from Cauchy's integral

formula applied to f ′): thus, the expressions are equal.
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