1. Find the following:

(a)
$$(1+i)/(3-2i)$$
.

(e) All solutions to $z^2 + iz + 6 = 0$.

(i) All values of $\log(1+i)$.

(b)
$$Re[(1+i)^{800}].$$

(f) All solutions to $z^4 = 2025$.

(j) All values of $\log(-1)$.

(c)
$$|2e^{i\pi/2} + 3e^{i\pi}|$$
.

(g) All solutions to $e^{4z} = 4$.

(k) All values of i^i .

(d) All solutions to $z^3 = -8i$.

(h) All solutions to $\sin z = -4i/3$.

(l) All values of $(1+i)^{-2i}$.

2. Suppose |z| = 1. Show that $\overline{e^z} = e^{1/z}$.

3. For the regions $R_1 = \{z : 1 < |z| < 2\}$ and $R_2 = \{z : 1 \le \text{Re}(z) \le 2, 0 \le \text{Im}(z)\}$, identify whether they are (i) open, (ii) closed, (iii) bounded, (iv) connected, (v) simply connected.

4. For each complex function, calculate its partial derivatives $\partial f/\partial z$ and $\partial f/\partial \overline{z}$, and determine whether the complex derivative f' exists on any open region R.

(a)
$$f(z) = z^3 + i\overline{z}$$
. (b) $f(z) = e^{\text{Re}(z)}$. (c) $f(z) = e^{z \log(z)}$.

5. For $f(z) = |z|^2$ show that the complex derivative f'(z) exists only at z = 0, and that f'(0) = 0.

6. Verify that the function $f(x+iy) = e^{-2xy}\cos(x^2-y^2) + ie^{-2xy}\sin(x^2-y^2)$ is holomorphic.

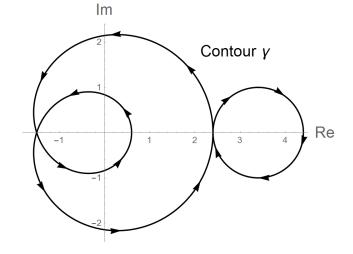
7. Find the following things relating to power series and Laurent series:

- (a) The radius and disc of convergence of $\sum_{n=0}^{\infty} 3^n z^n$.
- (b) The radius and disc of convergence of $\sum_{n=0}^{\infty} \frac{1}{2^n} (z-i)^n$.
- (c) A power series expansion for $\frac{1}{1-2z}$ centered at z=0.
- (d) A power series expansion for $\frac{1}{1-2z}$ centered at z=1.
- (e) A Laurent series expansion for $\frac{\cos(2z)}{z^3}$ centered at z = 0.
- (f) A power series centered at z = 0 for $1/(1+z+2z^2+2z^3+2z^4)$ up to order 3.
- (g) A Laurent series centered at z=0 for $1/(z^3+z^4+z^5)$ up to the constant term.

8. Suppose that $f(z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n$. Show that f'(z) = 1/(1-z) for |z| < 1.

9. For real x, y, show that $\left|\cos(x+iy)\right|^2 = \frac{1}{2}(\cos 2x + \cosh 2y)$.

- 10. Calculate the following complex line integrals:
 - (a) $\int_{\gamma} \operatorname{Re}(z) dz$ where $\gamma(t) = t^2 + t^3 i$ for $0 \le t \le 1$.
 - (b) $\int_{\gamma} z^2 dz$ where $\gamma(t) = 3t^3 + 6t^8i$ for $0 \le t \le 1$.
 - (c) $\int_{\gamma} z^2 dz$ where γ is the counterclockwise boundary of the square with vertices $\pm 7, \pm 7i$.
 - (d) $\int_{\gamma} (4z^3 + 2/z) dz$ where γ is the line segment from 1 to 1 + i.
 - (e) $\int_{\gamma} \frac{1}{z} dz$ where $\gamma(t) = 3e^{it}$ for $0 \le t \le \pi/2$.
 - (f) $\int_{\gamma} \frac{1}{z} dz$ where $\gamma(t) = 3e^{it}$ for $0 \le t \le 2\pi$.
 - (g) $\int_{\gamma} \frac{1}{z-5} dz$ where $\gamma(t) = 3e^{it}$ for $0 \le t \le 2\pi$.
 - (h) $\int_{\gamma} \frac{e^z}{z} dz$ where γ is the counterclockwise circle |z 1| = 5.
 - (i) $\int_{\gamma} \frac{z^2}{z-1} dz$ where γ is the counterclockwise circle |z-1|=1.
 - (j) $\int_{\gamma} \frac{e^z}{z-1} dz$ where γ is the counterclockwise circle |z-1|=1.
 - (k) $\int_{\gamma} \frac{e^z + \sin(2z)}{z 1} dz$ where γ is the counterclockwise boundary of the square with vertices $\pm 2 \pm 2i$.
 - (l) $\int_{\gamma} \frac{\cos z}{z^5} dz$ where γ is the counterclockwise unit circle |z|=1.
 - (m) $\int_{\gamma} \frac{\cos z}{z^5} dz$ where γ is the counterclockwise boundary of the square with vertices $\pm 2 \pm 2i$.
 - (n) $\int_{\gamma} \frac{e^z}{z-5} dz$ where γ is the counterclockwise circle |z|=2.
 - (o) $\int_{\gamma} \frac{1}{z^2 + 4} dz$ where γ is the counterclockwise circle |z 3i| = 2.
 - (p) $\int_{\gamma} \frac{1}{z^2 5z} dz$ where γ is the counterclockwise boundary of the square with vertices ± 2 , $\pm 2i$.
 - (q) $\int_{\gamma} \frac{1}{z^2 5z} dz$ where γ is the counterclockwise circle |z| = 10.
- 11. Let γ be the contour shown below.



- (a) Find the winding numbers of γ around 0, 1, 2, 3, 4, i, 1 + i, 2 + 2i.
- (b) Find $\int_{\gamma} \frac{1}{z} dz$.
- (c) Find $\int_{\gamma} \frac{1}{z-3} dz$.
- (d) Find $\int_{\gamma} \frac{e^z}{z-2} dz$.
- (e) Find $\int_{\gamma} \frac{e^z}{z-4} dz$.
- (f) Find $\int_{\gamma} \frac{e^z}{z^2 6z + 8} dz$.
- (g) Find $\int_{\gamma} \frac{\cos z}{z^3} dz$.
- 12. Suppose that f(z) is holomorphic on all of \mathbb{C} and for any counterclockwise circle γ of radius 1 centered at z_0 it is true that $\int_{\gamma} \frac{f(z)}{(z-z_0)^2} dz = 0$. Show that f(z) is constant.