- 1. (a) (1+5i)/13.
 - (b) 2^{400} .
 - (c) $\sqrt{13}$.
 - (d) $z = 2i, \sqrt{3} i, -\sqrt{3} i.$
 - (e) z = 2i, -3i.
 - (f) $z = \pm \sqrt{45}, \pm \sqrt{45}i$.
 - (g) $z = \frac{1}{4}(\ln 4 + 2\pi i k), k \text{ integral.}$
 - (h) $e^{iz} = 3, -1/3$ so $z = -i \ln 3 + 2\pi k$ or $z = i \ln 3 + \pi + 2\pi k$, k integral.
 - (i) $\ln(2)/2 + i\pi/4 + 2\pi i k$, k integral.
 - (j) $i\pi + 2\pi i k$, k integral.
 - (k) $e^{-\pi/2-2\pi k}$, k integral.
 - (1) $e^{-i\ln 2 + \pi/2 + 4\pi k} = e^{\pi/2 + 4\pi k} (\cos \ln 2 i \sin \ln 2)$, k integral.
- 2. Using the series definition of e^z gives $\overline{e^z} = \overline{\sum_{n=0}^{\infty} z^n/n!} = \sum_{n=0}^{\infty} \overline{z}^n/n! = e^{\overline{z}} = e^{1/z}$ since $\overline{z} = 1/z$ for |z| = 1.
- 3. R_1 is open, not closed, bounded, connected, not simply connected. R_2 is not open, closed, not bounded, connected, simply connected.
- 4. (a) $\partial f/\partial z = 3z^2$, $\partial f/\partial \overline{z} = i$, f is not holomorphic on any region.
 - (b) $f = e^{(z+\overline{z})/2}$ so $\partial f/\partial z = \partial f/\partial \overline{z} = \frac{1}{2}e^{(z+\overline{z})/2}$, f is not holomorphic on any region.
 - (c) $\partial f/\partial z = e^{z \operatorname{Log}(z)}(\operatorname{Log}(z) + 1), \ \partial f/\partial \overline{z} = 0, f$ is holomorphic on $\mathbb{C}\setminus[0,\infty)$ because of the branch cut for $\operatorname{Log}(z)$.
- 5. $f(z) = z\overline{z}$ so $\partial f/\partial \overline{z} = z$ which is zero only at z = 0. At z = 0 we have $f'(0) = \lim_{h\to 0} \frac{f(h)-f(0)}{h-0} = \lim_{h\to 0} \frac{h\overline{h}}{h} = \lim_{h\to 0} \overline{h} = 0$ so the derivative exists and is zero.
- 6. For $u=e^{-2xy}\cos(x^2-y^2)$, $v=e^{-2xy}\sin(x^2-y^2)$ we have $\partial u/\partial x=-2ye^{-2xy}\cos(x^2-y^2)-2xe^{-2xy}\sin(x^2-y^2)=\partial v/\partial y$ and $\partial u/\partial y=-2xe^{-2xy}\cos(x^2-y^2)+2ye^{-2xy}\sin(x^2-y^2)=-\partial v/\partial x$. So f satisfies the Cauchy-Riemann equations hence is holomorphic. Alternatively, observe $f(z)=e^{iz^2}$ which is holomorphic with derivative $f'(z)=2ize^{iz^2}$.
- 7. (a) $\lim_{n\to\infty} |3^n|^{1/n} = 3$ so radius is 1/3, disc is |z| < 1/3.
 - (b) $\lim_{n\to\infty} |1/2^n|^{1/n} = 1/2$ so radius is 2, disc is |z-i| < 2.
 - (c) $\sum_{n=0}^{\infty} 2^n z^n.$
 - (d) $\sum_{n=0}^{\infty} (-1)^{n+1} 2^n (z-1)^n$.
 - (e) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{(2n)!} z^{2n-3}$.
 - (f) $1-z-z^2+z^3+\cdots$
 - (g) $z^{-3} z^{-2} + 1 + \cdots$

- 8. We have $\lim_{n\to\infty} |1/n|^{1/n}=1$ so f has radius of convergence 1. Inside the radius we can differentiate term by term, yielding $f'(z)=\sum_{n=1}^{\infty}z^{n-1}=1+z+z^2+\cdots=1/(1-z)$, which holds for |z|<1 as claimed.
- 9. For z = x + iy using $\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$ we see that $\cos z = \frac{1}{2}(e^{iz} + e^{-iz}) = \frac{1}{2}(e^{-y+ix} + e^{y-ix})$ and therefore $|\cos z|^2 = (\cos z)(\overline{\cos z}) = \frac{1}{4}(e^{-y+ix} + e^{y-ix})(e^{-y-ix} + e^{y+ix}) = \frac{1}{4}(e^{-2y} + e^{-2ix} + e^{2ix} + e^{2y}) = \frac{1}{2}(\cosh 2y + \cos 2x)$.
- 10. Note that for line integrals of a non-holomorphic function, our only option is to set them up with a parametrization. For line integrals of a holomorphic function on a non-closed contour, we usually want to use the fundamental theorem of calculus. For line integrals on closed contours, we usually use a power series expansion or Cauchy's integral formula.
 - (a) $I = \int_0^1 t^2 (2t + 3t^2 i) dt = 1/2 + 3/5i$.
 - (b) Antiderivative is $F(z) = z^3/3$ so $I = F(\gamma(1)) F(\gamma(0)) = (3 + 6i)^3/3$.
 - (c) Function is holomorphic on the interior of the closed contour so I=0 by Cauchy's theorem/formula.
 - (d) Antiderivative is $F(z) = z^4 + 2\text{Log}(z)$ so $I = F(1+i) F(1) = (1+i)^4 + 2\text{Log}(1+i) 1 = -5 + \ln 2 + i\pi/2$.
 - (e) $I = \int_0^{\pi/2} \frac{1}{3e^{it}} (3ie^{it}) dt = i\pi/2.$
 - (f) $I = \int_0^{2\pi} \frac{1}{3e^{it}} (3ie^{it}) dt = 2\pi i$, or $2\pi i$ directly by Cauchy's integral formula.
 - (g) I = 0 by deforming the contour to a point.
 - (h) For $f(z) = e^z$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(0) f(0) = 2\pi i$.
 - (i) For $f(z) = e^z$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(1) f(1) = 2\pi e i$
 - (j) For $f(z) = z^2$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(1) f(1) = 2\pi i$.
 - (k) For $f(z) = e^z + \sin(2z)$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(1) f(1) = 2\pi i (e + \sin 2)$.
 - (l) As $\cos z/z^5 = z^{-5} \frac{1}{2}z^{-3} + \frac{1}{24}z^{-1} \frac{1}{720}z + \cdots$, the power series formula gives $I = 2\pi i W_{\gamma}(0)a_{-1} = \frac{2\pi i}{24}$.
 - (m) By deforming the contour this is the same as the previous integral, which was $\frac{2\pi i}{24}$.
 - (n) For $f(z) = e^z$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(5) f(5) = 0$ since 5 is not in the circle.
 - (o) For f(z) = 1/(z+2i), $z_0 = 2i$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(2i) f(2i) = \pi/2$ since f is holomorphic inside the circle as it doesn't contain -2i.
 - (p) For f(z) = 1/(z-5), $z_0 = 0$ Cauchy's integral formula gives $I = 2\pi i W_{\gamma}(0) f(0) = -2\pi i/5$ since f is holomorphic inside the square as it doesn't contain 5.
 - (q) By partial fractions $f(z) = \frac{1/5}{z-5} \frac{1/5}{z}$ and by Cauchy on each term we see $I = (2\pi i/5) (2\pi i/5) = 0$.
- 11. (a) The winding numbers are +2, +1, +1, -1, -1, +1, 0.
 - (b) $\int_{\gamma} \frac{1}{z} dz = 2\pi i \cdot W_{\gamma}(0) = 4\pi i$ by the definition of winding number.
 - (c) $\int_{\gamma} \frac{1}{z-3} dz = 2\pi i \cdot W_{\gamma}(3) = -2\pi i$ by the definition of winding number.
 - (d) $\int_{\gamma} \frac{e^z}{z-2} dz = 2\pi i \cdot W_{\gamma}(2) f(2) = 2\pi i e^2$ by Cauchy's integral formula.
 - (e) $\int_{\gamma} \frac{e^z}{z-4} dz = 2\pi i \cdot W_{\gamma}(4) f(4) = -2\pi i e^4$ by Cauchy's integral formula.
 - (f) $\int_{\gamma} \frac{e^z}{z^2 6z + 8} dz = \frac{1}{2} \int_{\gamma} \frac{e^z}{z 4} dz \frac{1}{2} \int_{\gamma} \frac{e^z}{z 2} dz = -\pi i e^4 \pi i e^2$ by partial fractions and the above.
 - (g) $\frac{\cos z}{z^3} = z^{-3} \frac{1}{2}z^{-1} + \frac{1}{6}z + \cdots$ so $\int_{\gamma} \frac{\cos z}{z^3} dz = 2\pi i \cdot W_{\gamma}(0) \cdot a_{-1} = -2\pi i$ via series expansion.
- 12. By the differentiation-via-integration formula we have $\int_{\gamma} \frac{f(z)}{(z-z_0)^2} dz = f'(z_0)$, so $f'(z_0)$ is identically zero on \mathbb{C} . As shown in class (or as follows by noting $f(b) f(a) = \int_{\gamma'} f'(z) dz = 0$ on any contour γ' from a to b) this means f is constant.