Math 4555: Complex Variables

Midterm Exam (Instructor: Dummit)
October 29th, 2025

NAME	(please pr	rint legibly):	:	

- Show all work and justify all answers. A correct answer without sufficient work may not receive full credit!
- You may appeal to results covered at any point in the course, but please make clear what results you are using. Box all final numerical answers.
- You are responsible for checking that this exam has all 9 pages.
- You are allowed a calculator and a 1-page note sheet. Time limit: 100 minutes.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: ______

QUESTION	VALUE	SCORE
1	14	
2	12	
3	12	
4	12	
5	8	
6	12	
7	10	
TOTAL	80	

- 1. (14 points) Calculate the requested things:
- (a) Find all complex z with $z^4 = i$.

(b) Find log(9i), where log denotes the multivalued complex logarithm.

(c) Find all complex values of the expression $(9i)^i$.

(d) Let R be the region consisting of all complex z such that 2 < |z| < 10. Identify each statement as true or false (each answer is worth independent points):

True False The region R is closed.

True False The region R is bounded.

True False The region R is simply connected.

True False The principal complex logarithm Log(z) is continuous on R.

- 2. (12 points) Solve the following problems related to holomorphic functions:
- (a) For $f(z) = -iz + z^2\overline{z}^2$, show that the complex derivative f' does not exist at any point except z = 0, AND show f'(0) = -i.

(b) For a function f(z) = f(x+iy) with x, y real, let $f^*(z) = \overline{f(\overline{z})} = \overline{f(x-iy)}$: for example, if $f(z) = 3i + (2+i)z^2$ then $f^*(z) = -3i + (2-i)z^2$. Show that if f is holomorphic on the open region R, then f^* is holomorphic on the conjugate region $\overline{R} = {\overline{a} : a \in R}$.

3. (12 points) Consider the power series

$$f(z) = \sum_{n=0}^{\infty} \frac{n(n+1)}{2} z^n = z + 3z^2 + 6z^3 + 10z^4 + 15z^5 + 21z^6 + \cdots$$

(a) Find the radius and disc of convergence for f(z).

(b) Find a power series for a function F(z) with F'(z) = f(z) and F(0) = 2025.

(c) Find the terms in a Laurent series expansion centered at z = 0 for 1/f(z) up to order 1 (i.e., up through the z^1 -term).

(d) Suppose γ is a closed rectifiable contour lying inside the disc of convergence for f(z). What is the value of $\int_{\gamma} f(z) dz$? Briefly explain.

4. (12 points) Compute each of the following complex line integrals on the given non-closed contours γ :

(a)
$$\int_{\gamma} |z|^2 dz$$
 where $\gamma(t) = 3e^{it}$ for $0 \le t \le \pi$.

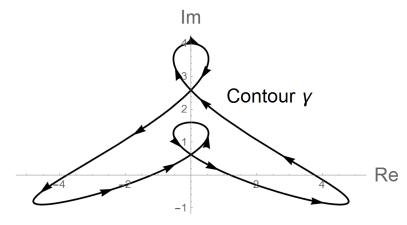
(b) $\int_{\gamma} [\text{Re}(z)]^2 dz$ where γ is the line segment from i to 3-4i.

(c) $\int_{\gamma} 3z^2 dz$ where $\gamma(t) = te^t + i \sin^{2025}(2\pi t)$ for $0 \le t \le 1$.

- 5. (8 points) Let $f(z) = \frac{e^{2z}}{z^4}$.
- (a) Find a Laurent series expansion for f(z) centered at z=0 and give explicitly the terms in the expansion up to order 0 (i.e., up to the constant term).

(b) Evaluate the contour integral $\int_{\gamma} f(z) dz$ where γ is the counterclockwise boundary of the square with vertices $\pm 2 \pm 2i$.

6. (12 points) Consider the contour γ plotted below.



(a) Find the winding numbers of γ around 0, around i, and around 3i.

(b) Find $\int_{\gamma} \frac{1}{z} dz$.

(c) Find $\int_{\gamma} \frac{e^z}{z-i} dz$.

(d) Find $\int_{\gamma} \frac{1}{z^2 + 1} dz$.

- 7. (10 points) Prove the following things:
- (a) Let $f(z) = \sum_{n=0}^{\infty} \frac{z^{3n}}{(3n)!} = 1 + \frac{z^3}{3!} + \frac{z^6}{6!} + \cdots$. Show that f(z) is holomorphic on the entire complex plane and that it satisfies the differential equation $f''(z) + f'(z) + f(z) = e^z$.

(b) Suppose that f(z) is holomorphic on a simply-connected region R with counterclockwise boundary γ . If z_0 is any interior point of R, prove that $\int_{\gamma} \frac{f'(z)}{z - z_0} dz = \int_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$ [Hint: Use the differentiation-via-integration formula.]

Blank page for scratch work.