- 1. (a) Zeroes occur when $e^{1/(z-1)} = 1$ so that $1/(z-1) = 2\pi i k$ so that $z = 1 + 1/(2\pi i k)$ for nonzero integers k. Poles occur when the denominator is zero and the numerator is not, which occurs when z = 0. An essential singularity occurs when the exponent of e is unbounded, which occurs at z = 1.
 - (b) Both poles are simple so the residue at z = 0 is $\lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{e^{1/(z-1)} 1}{z+4} = \boxed{\frac{e^{-1} 1}{4}}$ and the residue at z = -4 is $\lim_{z \to -4} (z+4) f(z) = \lim_{z \to -4} \frac{e^{1/(z-1)} 1}{z} = \boxed{\frac{e^{-1/5} 1}{-4}}$.
 - (c) The radius is the smallest distance to a point where f(z) is not holomorphic, which are the poles z = 0 and z = -4, and the essential singularity z = 1. The minimal distance is 1 to the pole at z = 0.
 - (d) By the residue theorem, this is $2\pi i$ times the sum of the residues inside the circle. Since the only singularity inside the circle is at z = 0, the integral is $2\pi i \cdot (e^{-1} 1)/4$.
- 2. (a) We have $e^z + e^{1/z} = \left[\cdots + \frac{1}{24}z^{-4} + \frac{1}{6}z^{-3} + \frac{1}{2}z^{-2} + z^{-1} + 2 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4 + \cdots \right]$
 - (b) With w = z + 1, $f(z) = -\frac{1}{w} \cdot \frac{1}{1 w} = -\frac{1}{w} \sum_{n=0}^{\infty} w^n = \sum_{n=-1}^{\infty} -(z+1)^n$
 - (c) With w = z + 1, $f(z) = \frac{1}{w^2} \cdot \frac{1}{1 1/w} = \frac{1}{w^2} \sum_{n=0}^{\infty} w^{-n} = \sum_{n=-\infty}^{-2} (z + 1)^n$
 - (d) There is a pole of order 2 at z = 0 and a pole of order 1 at z = -3. The residue at z = -3 is $\lim_{z \to -3} (z+3) f(z) = \lim_{z \to -3} \frac{z^3 + 1}{z^2} = \boxed{-26/9}$. The residue at z = 0 is $\frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} [z^2 f(z)] = \lim_{z \to 0} \frac{3z^2 (z+3) (z^3+1)}{(z+3)^2} = \boxed{-1/9}$.
 - (e) There are simple poles at each zero of $\sin 2z$, which occur for $z = k\pi/2$ for integers k. At $z = k\pi/2$, the residue is $\frac{e^z}{2\cos 2z} = \frac{e^{k\pi/2}}{2\cos(k\pi)} = (-1)^k e^{k\pi/2}/2$ using the simple pole residue formula (the residue of p(z)/q(z) is $p(z_0)/q'(z_0)$).
 - (f) The function has simple poles at $z = \pm 45i$ neither of which is inside the contour, so the integral is $\boxed{0}$ by the residue theorem.
 - (g) Only the pole at z = 45i is inside the contour. The residue there is $\lim_{z \to 45i} (z 45i) f(z) = \frac{1}{90i}$ so the integral is $2\pi i/(90i) = \pi/45$ by the residue theorem.
 - (h) Only the pole at z = 5 is inside the contour. The residue there is $\frac{1}{3!} \lim_{z \to 5} \frac{d^3}{dz^3} [(z-5)^4 f(z)] = \frac{1}{6} \lim_{z \to 5} \frac{d^3}{dz^3} [z^{-3}] = \frac{(-3)(-4)(-5)}{3! \cdot 5^6} = -\frac{2}{5^5}$ so the integral is $2\pi i \cdot (-2/5^5) = \boxed{-4\pi i/3125}$ by the residue theorem.
 - (i) The denominator has simple zeroes at $z=k\pi$, but since the numerator is zero at z=0, there is not a pole there. So the only poles inside the contour are at $z=\pm\pi$. The residue at $z=k\pi$ is $k\pi/\cos(k\pi)$ by the simple pole formula, so the integral is $2\pi i \cdot (\pi-\pi) = 0$.
 - (j) Substituting $z=e^{i\theta}$ yields $\int_0^{2\pi} r(\cos\theta,\sin\theta)\,d\theta=\int_{\gamma} f(z)\,dz$ where γ is the unit circle and $f(z)=r(\frac{z+z^{-1}}{2},\frac{z-z^{-1}}{2i})$. $\frac{1}{iz}=\frac{1}{i}\frac{1}{2z^2+5z+2}$ which has simple poles at z=-1/2,-2. Only z=-1/2 is inside the unit circle, and the residue of f there is $\lim_{z\to -1/2}\frac{1}{i}\frac{1}{4z+5}=\frac{1}{3i}$. Then by the residue theorem $I=\int_{\gamma} f(z)\,dz=2\pi i\cdot(\frac{1}{3i})=\boxed{2\pi/3}$.

- (k) Integrate along the semicircular contour of radius R, with $\gamma_1 = [-R, R]$ and γ_2 the upper semicircle from R to -R. Take $f(z) = 1/(z^4 + 4)$. Since f has simple poles at the solutions of $z^4 = 4$ which are $z = \pm 1 \pm i$ we see that $\pm 1 + i$ are inside γ . The residue at 1 + i is $\lim_{z \to 1+i} 1/(4z^3) = (-1-i)/16$ and the residue at -1+i is $\lim_{z \to -1+i} 1/(4z^3) = (1-i)/16$ so $\int_{\gamma} f(z) \, dz = 2\pi i \cdot [(-1-i)/16 + (1-i)/16] = \pi/4$. Since $I = \lim_{R \to \infty} \int_{\gamma_1} f(z) \, dz$ and $\left| \int_{\gamma_2} f(z) \, dz \right| \leq 2\pi \cdot \frac{1}{R^4 4} R = O(R^{-3})$ taking $R \to \infty$ yields $I = \left[\pi/4 \right]$.
- (l) Integrate along the semicircular contour of radius R, with $\gamma_1 = [-R, R]$ and γ_2 the upper semicircle from R to -R. Take $f(z) = e^{iz}/(z^2+4)$. Since f has simple poles at $z=\pm 3i$ we see z=3i is inside γ and the residue there is $\lim_{z\to 3i} e^{iz}/(z+3i) = e^{-3}/(6i)$ so $\int_{\gamma} f(z) \, dz = 2\pi i \cdot [e^{-3}/(6i)] = \pi e^{-3}/3$. Since $I = \text{Re}[\lim_{R\to\infty} \int_{\gamma_1} f(z) \, dz]$ and $\left|\int_{\gamma_2} f(z) \, dz\right| \le 2\pi \cdot \frac{1}{R^2-9} R = O(R^{-1})$ taking $R\to\infty$ and then taking the real part yields $I = \pi e^{-3}/3$.
- (m) By the argument principle / zero-and-pole counting, $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i [Z P]$ where Z is the number of zeroes and P is the number of poles inside γ . Here, f(z) has a zero of order 3 at z = 0, zeroes of order 1 at $z = \pm i$, and a pole of order 5 at z = 3. Only the zeroes are inside the circle, so the integral equals $2\pi i \cdot 4 = 8\pi i$.
- (n) By the argument principle / zero-and-pole counting, $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i [Z-P]$ where Z is the number of zeroes and P is the number of poles inside γ . Here, f(z) has a zero of order 3 at z=0, zeroes of order 1 at $z=\pm i$, and a pole of order 5 at z=3. The poles are also inside the circle now, so the integral equals $2\pi i \cdot (4-5) = \boxed{-2\pi i}$.
- 3. Recall that the Cauchy estimate says that if $|f(z)| \le M$ on $|z z_0| = r$, then $|f^{(n)}(z_0)| \le M \cdot n!/r^n$. Applying it here yields $|f^{(n)}(0)| \le r^{3/2-n} \cdot n!$, which for $n \ge 2$ tends to zero as $r \to \infty$. Thus, we see $f^{(n)}(0) = 0$ for $n \ge 2$, and so we have the power series f(z) = a + bz. But the given condition also requires f(0) = 0 so in fact a = 0 hence f(z) = bz as claimed.
 - Alternatively, the condition requires f(0) = 0 and that $|f(z)/z| \le 1$ for all $z \ne 0$, so f(z)/z has a removable singularity at z = 0 since it is bounded nearby. Removing it, we see g(z) = f(z)/z is entire and has $|g(z)| \le 1$ so g(z) is a bounded entire function hence is constant by Liouville's theorem.
- 4. Since q(z) is nonzero, it has finitely many zeroes and so f(z) has finitely many poles. If γ is the counterclockwise circle |z|=R where R is large enough that γ encloses all of the poles, then by the residue theorem we know that $\frac{1}{2\pi i}\int_{\gamma}f(z)\,dz$ is the sum of the residues of f(z). But for such R, using the arclength estimate we see that $\left|\int_{\gamma}f(z)\,dz\right|=O(2\pi R\cdot R^{\deg p}/R^{\deg q})=O(R^{1+\deg p-\deg q})$. By hypothesis the power is negative, so as $R\to\infty$ the integral goes to zero; since the integral is constant for large R, the integral and hence the sum of residues must equal zero.
- 5. Since $f(z)=z^2+3z-4$ is holomorphic, by the maximum modulus principle the maximum occurs on the boundary circle |z|=2. For $z=2e^{i\theta}$ we see $\left|z^2+3z-4\right|^2=(4e^{2i\theta}+6e^{i\theta}-4)(4e^{-2i\theta}+6e^{-i\theta}-4)=68-16(e^{2i\theta}+e^{-2i\theta})=68-32\cos2\theta$. The maximum value clearly occurs for $\cos2\theta=-1$, and then the maximum of $\left|z^2+3z-4\right|$ is $\sqrt{100}=10$.
- 6. Per the hint observe that $|e^{f(z)}| = e^{\text{Re}[f(z)]} \le e^{2025}$ and thus $e^{f(z)}$ is a bounded entire function hence it is constant by Liouville's theorem. If $e^{f(z)} = C$ then the image of f lies in the set of possible logarithms $\log(C)$, but no such set can be an open set. So by the open mapping theorem, f must be constant.
- 7. (a) Suppose M is not strictly increasing, so that $M(a) \ge M(b)$ for some a < b. This means there is some point z_a with $|z_a| = a$ such that $|f(z)| \le |f(z_a)|$ for all z on the circle |z| = b. However, this contradicts the maximum modulus principle applied to the region $|z| \le b$, which says that if f is nonconstant then the maximum modulus can only occur on the boundary of the disc.
 - (b) If M(r) does not tend to ∞ then it must be bounded, since it is increasing by part (a). But then f would be a bounded entire function hence constant by Liouville's theorem, contradiction.