1. Let
$$f(z) = \frac{e^{1/(z-1)} - 1}{z^2 + 4z}$$
.

- (a) Identify all zeroes, poles, and essential singularities of f.
- (b) Find the residue of f at each pole.
- (c) Find the radius of convergence of the power series for f(z) centered at z=i.
- (d) Find $\int_{\gamma} f(z) dz$ where γ is the counterclockwise circle $|z| = 10^{-100}$.

2. Calculate, with justification:

- (a) The terms in the Laurent series for f(z) = z/(z-2) on the region 0 < |z-1| < 1 from order -2 to 2.
- (b) The Laurent series for $f(z) = 1/(z+z^2)$ on the region 0 < |z+1| < 1.
- (c) The Laurent series for $f(z) = 1/(z+z^2)$ on the region |z+1| > 1.
- (d) All poles for $f(z) = (z^3 + 1)/(z^3 + 3z^2)$, their orders, and the residue at each.
- (e) All poles for $f(z) = e^z/(\sin 2z)$, their orders, and the residue at each.
- (f) $\int_{\gamma} \frac{1}{z^2 + 2025} dz$ where γ is the counterclockwise circle |z| = 1.
- (g) $\int_{\gamma} \frac{1}{z^2 + 2025} dz$ where γ is the counterclockwise circle |z 25i| = 25.
- (h) $\int_{\gamma} \frac{1}{z^3(z-5)^4} dz$ where γ is the counterclockwise circle |z-4|=3.
- (i) $\int_{\gamma} \frac{z}{\sin z} dz$ where γ is the counterclockwise circle |z| = 4.
- (j) $\int_0^{2\pi} \frac{1}{5 + 4\cos\theta} \, d\theta$
- $\text{(k)} \int_{-\infty}^{\infty} \frac{1}{z^4 + 4} \, dz.$
- (l) $\int_{-\infty}^{\infty} \frac{\cos z}{z^2 + 9} \, dz.$
- (m) $\int_{\gamma} \frac{f'(z)}{f(z)} dz$ where $f(z) = \frac{z^3(z^2+1)e^{3z}}{(z-3)^5}$ and γ is the counterclockwise circle |z|=2.
- (n) $\int_{\gamma} \frac{f'(z)}{f(z)} dz$ where $f(z) = \frac{z^3(z^2+1)e^{3z}}{(z-3)^5}$ and γ is the counterclockwise circle |z| = 4.
- 3. Suppose that f(z) is entire and $|f(z)| \le |z|$ for all z. Show that f(z) = bz for some constant b. [Hint: Cauchy estimates.]
- 4. Suppose that p(z) and q(z) are polynomials with $1 + \deg p < \deg q$. Show that the sum of the residues of f(z) = p(z)/q(z), over all poles, is equal to zero. [Hint: Integrate around |z| = R as $R \to \infty$.]
- 5. Prove that the maximum value of $|z^2 + 3z 4|$ on the region $|z| \le 2$ is 10.
- 6. Suppose that f(z) is entire and $\text{Re}[f(z)] \leq 2025$ for all $z \in \mathbb{C}$. Show f(z) is constant. [Hint: Consider $\left|e^{f(z)}\right|$.]
- 7. Suppose that f(z) is a nonconstant entire function. For real $r \ge 0$, let M(r) be the maximum value of |f(z)| on the circle |z| = r.
 - (a) Show that M(r) is a strictly increasing function: namely, that M(a) < M(b) for any a < b.
 - (b) Show that $M(r) \to \infty$ as $r \to \infty$.