E. Dummit’s Math 4555 ~ Complex Analysis, Fall 2025 ~ Homework 7 Solutions

1. Let v; and 7> be the two contours plotted below. Find the requested quantities:

Contour y»
Im

Contour y4
Im

2

2] / y2
Re Re

(a) The winding numbers of +; around 0, 1, ¢, —i, 1 4+ 4, 2+ 4, and —24.
e By deforming the contour without moving it through the given point, or alternatively drawing a ray
from the point to co and counting the number of signed crossings right-to-left minus left-to-right (as

one walks from the point to co along the ray), we see the desired winding numbers are , , ,

(2] [1] [0], and [0]

(b) The Winding numbers of 7 around —1, 1, 1 +4, 1 — 4, and —1 + 4.

e As in (a), by deforming the contour or drawing a ray, we see the desired winding numbers are
Lo} [= and [0}
1
(¢) The values of f dz and f : dz.
z —

e From the deﬁmtlon of the winding number, these are just 2miW,, (1) = and 2miW,, (1) = @

1 1
(d) The values of f71 —a+) dz and f ——d2.

- (1+414)
e From the definition of the winding number, these are just 2miW,,, (1+1) = and 2miW.,, (1+1) =

~2ri]

(e) The values of f

Z

dz and f dz.

-1
e These are both of the form fw . 1z ; dz for f(z) = e* and zg = 1. By Cauchy’s integral formula the
— 20

values are 2mi - W, (20) f(20) = and 2mi - W, (20) f(20) = @

2
(f) The value of fw 2272 dz.

-1
. . » 2z 1 1 . .
e By partial fraction decomposition, = + . Cauchy’s integral formula yields
) 22 -1 227 1 z+1 .
. z -
f,mZildz:Oaundf,y2 1dz:27rz,sofv2z271dz=f,y2: 2+ [, +1d z=|2mi|.
2
(g) The value Of f72 m dz.
e By partial fraction decomposition, PO v = - (11 =3 - — (21 ) Cauchy’s integral
1 1 2
formula ylelds f’)’l m dz = —2mi and f’)’l m dz 27TZ SO f TH dz =

) ! ) =i(—2mi) —i(—2me) =| 0|
Zf,ylmdz—zf%de— ( 2 ) ( 2 ) @




2. For each function f on each contour -, calculate fv f(z)dz

3

(a) f(z) = j_ 7 on the counterclockwise boundary of the circle |z| = 4.
z
e This is of the form f ) dz for f(z) = 2% and 2y = —1. By Cauchy’s integral formula the value

is 273 - Wy (20) f(z0) =[ —2mi .
(b) f() = <

on the counterclockwise boundary of the circle |z| = 4.

e This is of the form f,y Zf(zz dz for f(z) = e* and zp = 2. By Cauchy’s integral formula the value is
— %

2mi - W, (20) f(20) = [2mi - €?].

(© f(z) = 22

T on the counterclockwise boundary of the circle |z| = 4.

e This is of the form f ) dz for f(z) = sin?(2z) and zy = 1. By Cauchy’s integral formula the

value is 2mi - W, (20) f(zo) = 2m -sin?(2) |

2
1
(d) f(z)= % on the counterclockwise boundary of the rectangle with vertices +20, £253.
22 _
. . . " 1 1
e First by partial fraction decomposition we have f(z) =1+ 1 251 Note that both 1 and —1
z— z

are in 7.
e Then fyldz:O, f,y po
integral is @

2
1
(e) f(z) = Zi—i_l on the counterclockwise boundary of the square with vertices 0, 10 — 104, 20, 10 + 104.

1
dz = 27i, and f dz = 2mi all by Cauchy’s integral formula. So the

2
e Asin (c), f(z) =1+ L _ . Note that 1 is in v but —1 is not.
z -1 z+1
e Then f7 ldz = f dz = 2mi, and f dz = 0 all by Cauchy’s integral formula. So the
integral is .
) flz)= Z:;Z on the counterclockwise boundary of the circle |z — 7| = e ™.

e The function only fails to be holomorphic for z = 0 and for sin z = 0 (namely z = k7 for integers k).

e Since the circle has radius e™™ < 1 we may shrink the circle arbitrarily close to = without changing
the value of the integral.

z s
e Then, as a Laurent series centered at z = m, we can crunch out —— = ——(z —m)~" — — (7 —
zsin z ™ 0
1) + -+, which converges on a disc of positive radius since the series for ¢* and z sin z converge for
all z.
z eﬂ'
e So by our results on integrating power series we see [ ——dz = 2mi- (——) =|—2¢e"i|.
7T zsinz T

(2) f(2) = ze'/% on the counterclockwise boundary of the circle |z| = 2. [Hint: On ~, Z can be written in
terms of z.]

e Per the hint we observe that for |z| = 2 we have 2z = |2|* =450 2 = 4/2.
z/4

4
e So on v we have f(z) = —e?*/4, so the integral is f7 dz which by Cauchy’s integral formula is
z

2mi-1-4=|8mi|




1
3. If ~ is the unit circle traversed once counterclockwise, let I(a,b) = fw m dz.

(a) Find I(a,a) if |a| # 1.
1
e Note that — has an antiderivative —
z—a)
of line integrals.

(b) Find I(a,b) if |a] < 1 and |b| < 1 and a # b.

, so the integral is @ by the fundamental theorem
z—a

1 1 1
e By partial fraction decomposition we have = — . Note also that
(z—a)(z—=b) a—-blz—a z-—b
I 1 ds — 2mi %f \c|<1‘
Tz—c¢ 0 if |¢|>1
1 1 1 1
.Then[(a,b)H[fvz_adzfvz_bdz]CL—b[QT('Lsz'L]@

(¢) Find I(a,b) if |a] < 1 and |b] > 1.

. 1 1 1 1 ) 27
e Asin (b) WehaveI(a,b)—m {I"Yz—adz_sz—bdz} —a_b[Qm}— pa
(d) Find I(a,b) if |a] > 1 and |b| > 1 and a # b.
. 1 1 1 1
e Asin (b) we have I(a,b) = — {fu_adz—fu_bdz} 7a_b[0—0]7@.

4. The goal of this problem is to give another way to evaluate the integral I,(zo) = f7 dz where 7 is any

counterclockwise-oriented circle not containing zy, which was the subject of problem 5 of homework 6.

27r
(a) Suppose z is a distance R > 0 away from the closest point on the circle. Show that f,y dz’ < %
Z — 20
where r is the radius of the circle. [Hint: Bound the integral by the arclength times the maximum of the
function.]
e By problem 7c of homework 6, we have fv dz| < sM where s = 27r is the arclength of the
zZ— 20
circle and M is the maximum value of on the circle. But this last quantity is the reciprocal
zZ— 20
of the minimum distance from zy to a point on the circle, so M = i
1 27r
e Thus we get f dz| < sM = —— as claimed.
Yz — 2z R

(b) Suppose zg is outside the circle. Show that f7 dz = 0. [Hint: Move v far away from zp.]

zZ— 20

e Since f(z) =

not cross zo. But since zg is outside the circle, we can move the circle as far away as we like, say a

is holomorphic for z # 2y, we can move the circle arbitrarily as long it does

2
distance R = =" for any € > 0.
€

2mr

1
e Then (a) yields ‘fv _— dz‘ < & =€ Thus since fv dz has absolute value less than e for
zZ— 20

zZ— 20
every € > 0, the integral must be zero.

(c) Suppose z is in the interior of the circle. Show that fv dz = 2mi. [Hint: Recenter v at zo.]

zZ— 20

e Since f(z) =

cross zp. So we may recenter the circle at zg.

is holomorphic for z # 2y, we can move the circle arbitrarily as long it does not

e Now just parametrize: if v is |z — 2| = r traversed once counterclockwise, taking (t) = a + re’ for

1 )
0 <t < 27 yields fv —dz = 027r —ire't dt = 027r idt = 2mi as claimed.
z— 2 re




5. Suppose p(z) is a polynomial of degree at least 2. Then p(z) has finitely many complex zeroes, so they are

1
all contained in a disc |z| < r for some r. For R > r, let I(R) = fm ) dz where g is the circle 2| = R

traversed once counterclockwise.
(a) Show that I(R) = I(r) for all R > r.

1
e Note that — is holomorphic everywhere except at the zeroes of p(z), which are all contained inside
p(z

the disc |z] < r. So the function is holomorphic everywhere outside |z| < 7.

e This means we may deform the contour |z| = r into |z] = R without passing through any points
where the function is not holomorphic. Hence by deformation of contours, we have I(r) = I(R).

2
(b) Show that |I(R)| < W;TRW where p has degree d and leading coefficient a. [Hint: You may assume
al|(R—r

p(z) factors as p(z) = a(z — 21)(z — 22) - (2 — z4) ]

e By the fundamental theorem of algebra we may suppose p(z) factors as p(z) = a(z—z1)(z—22) -+ (z—
zq) where by hypothesis |z;| < r for each i.

e Then if |z| = R we have [p(z)| = |a[|z —z1||z — 22| ---[2 = za] > a[(|2] = |21])--- (l2] = |zal) =

la| (R — )¢ by the triangle inequality applied to each factor.

1
e This means < - on the contour yg. Applying the basic estimate for a contour
p(2)| = la (R =) .
integral of arclength times maximum, we see [I(R)| < 27R - Tl (R=n) as claimed.
al(R—r
(¢) Show that limp_,o0 I(R) = 0. Deduce that I(r) = 0.
2R

2
~ TR 0 as R = 0.

e Since d > 2 and |a| and 7 are fixed constants, we see that ——————
la| (R =) |a]

2
Therefore since |I(R)| < gl - by (b) and the upper bound goes to zero as R — oo, we have

= lal(R—7)
limp_e0 I(R) = 0.
e Then by (a), since I(r) = I(R) for all R > r, we have I(r) = limg_ o I(r) = limg_ o [(R) = 0, as
desired.

6. The goal of this problem is to give a third approach for evaluating the integral I (zo) = fv dz where ~y
zZ— 20

is any counterclockwise-oriented circle not containing zj.

(a) Suppose zq is outside the circle. Show that fv dz = 0. [Hint: Pick a branch of log(z — zg) that

Z— 20
does not intersect the circle.]

e Since zq is outside the circle, we can choose a branch F(z) of log(z — 2¢) that does not intersect the
circle (e.g., by taking the branch cut along the ray from 2y to co in the direction opposite from the
center of the circle).

e Then on ~ the integrand has an antiderivative F'(z), so since = is closed, by the fundamental theorem
of calculus / independence of path, the integral is zero.

(b) Suppose zq is in the interior of the circle and let the horizontal ray z = 2o + ¢ for ¢ > 0 intersect the
circle at P. Choose any « and § on the circle such that the points P, «, [ are in counterclockwise order

dz =

around the circle, and take 4 to be the counterclockwise arc from « to 5. Show that f‘r
zZ— 20

Log(B — z0) — Log(a — 20).

e Since has an antiderivative F'(z) = Log(z — zp) for z — 2y & [0, c0), which is to say, for z not

zZ— 20
on the horizontal ray z = 2y + t for ¢ > 0, and the contour 4 does not intersect the ray, then by the

dz = F(B)—F(a) = Log(8—20)—Log(a—2zp).

fundamental theorem of line integrals we have f%
Z— 20



1
(c) Suppose zg is in the interior of the circle. Show that fv ——— dz = 2mi. [Hint: In (b), let o approach P
zZ— 20
from above and 8 approach P from below.]

e Note that v is the limit of the curve 4 as a approaches P from above and § approaches P from
below.

e So by continuity of the integral, we have f7 P dz =limg_,p_ F(B) —lim,_, p4 F'(o) = [Log(P —
— 20

z0) + 2mi] — Log(P — zp) = 2mi, since the logarithm argument is 27i larger from below than from
above.

7. [Challenge] The goal of this problem is to establish some basic facts about the gamma and zeta functions,
which are two special functions with broad utility in complex analysis, number theory, statistics, physics, and
various other areas. Recall that for a positive real number o and a complex number z, we have o = e,

(a) Suppose n is a positive integer. Show that fooo t"lemtdt = (n— 1)\
e Induction on n. For n =1 we have [;~ e "dt = —e7[32) =1 = 0! as claimed.
e For the inductive step suppose [~ " "te~" dt = (n—1)!. Then integrating by parts yields [~ t"e ™" dt =
t(—e )2 — [y nt" (—e ) dt =n [Tt et dt =n- (n — 1)l = nl as claimed.
(b) Suppose that Re(z) > 1. Show that the integral [;*¢*~'e™" dt converges absolutely.
e Per the hint, first we show that [~ ¢*~'e~" dt converges for positive real .

e By (a) it converges for positive integral values of x, and since the integrand t*~1le~? is an increasing
function of x for ¢t > 1, this means floo t*~le=t dt converges for all x > 1. Then adding the finite

value [ t*~'e~'dt to it shows that [ ¢*~'e~"dt converges also.
e Now for the complex case, with z = z+iy where z > 0, for t > 0 we have [t*e~"| = |e(z+iy*1) nte—t| =

ele=nte=t —gr=le=t Go [* |t~ te~t| dt = [ t*~'e~' dt which converges as noted above.
e Thus [~ t*"'e™"dt converges absolutely as desired.

(c) Let R be the region with Re(z) > 1. Show that I'(z) = [;~¢*~'e~"dt is holomorphic on R. [Hint:
Differentiate under the integral sign.|

e By (b), since the integral fooo t*~le=tdt converges absolutely for Re(z) > 1, we may differentiate
under the integral sign to obtain I'(z) = [ = [tz te7!] dt = [[“t*"'Inte " dt.

o This integral is also convergent since for example [Int| < ¢ for large ¢ and |In¢| < ¢~¢ for small ¢.

e Thus I' is holomorphic as claimed.

o 1
(d) Suppose that Re(z) > 1. Show that the series )~ ; - converges absolutely.
1

e For z = x 4 iy we have —.
ne

]‘Z‘ —_ |67(a:+iy)lnn| _ efa:lnn _
n

1

e So we need only show that Y~ — converges for x > 1. But this is a standard fact about p-series:
n

tl—:lt

1
— |2, = ——— hence it

1
the sum is a Riemann sum for the convergent integral [ = dt = . .
— —x

converges by the integral test.

. . o0 1 . .
(e) Let R be the region with Re(z) > 1. Show that ((z) =>_ pelt holomorphic on R.

n=1

e By (d) since the series converges absolutely, we may differentiate term by term to see (’(z) =

—Inn
(o]
Zn:l n?
. . . . —Inn Inn
e This series is also convergent by the integral test since|lnn| < n° for large n, so —| = —
n n
n ", whose integral still converges as long as we take e sufficiently small.




