
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 7 Solutions

1. Let γ1 and γ2 be the two contours plotted below. Find the requested quantities:

(a) The winding numbers of γ1 around 0, 1, i, −i, 1 + i, 2 + i, and −2i.

• By deforming the contour without moving it through the given point, or alternatively drawing a ray
from the point to∞ and counting the number of signed crossings right-to-left minus left-to-right (as

one walks from the point to ∞ along the ray), we see the desired winding numbers are 3 , 2 , 1 ,

2 , 1 , 0 , and 0 .

(b) The winding numbers of γ2 around −1, 1, 1 + i, 1− i, and −1 + i.

• As in (a), by deforming the contour or drawing a ray, we see the desired winding numbers are 1 ,

0 , −1 , −1 , and 0 .

(c) The values of
´
γ1

1

z − 1
dz and

´
γ2

1

z − 1
dz.

• From the de�nition of the winding number, these are just 2πiWγ1(1) = 4πi and 2πiWγ2(1) = 0 .

(d) The values of
´
γ1

1

z − (1 + i)
dz and

´
γ2

1

z − (1 + i)
dz.

• From the de�nition of the winding number, these are just 2πiWγ1(1+ i) = 2πi and 2πiWγ2(1+ i) =

−2πi .

(e) The values of
´
γ1

ez

z − 1
dz and

´
γ2

ez

z − 1
dz.

• These are both of the form
´
γ

f(z)

z − z0
dz for f(z) = ez and z0 = 1. By Cauchy's integral formula the

values are 2πi ·Wγ1(z0) f(z0) = 2πi · 2e and 2πi ·Wγ2(z0) f(z0) = 0 .

(f) The value of
´
γ2

2z

z2 − 1
dz.

• By partial fraction decomposition,
2z

z2 − 1
=

1

z − 1
+

1

z + 1
. Cauchy's integral formula yields

´
γ2

1

z − 1
dz = 0 and

´
γ2

1

z + 1
dz = 2πi, so

´
γ2

2z

z2 − 1
dz =

´
γ2

1

z − 1
dz +

´
γ2

1

z + 1
dz = 2πi .

(g) The value of
´
γ2

2

z2 − 2z + 2
dz.

• By partial fraction decomposition,
2

z2 − 2z + 2
=

i

z − (1− i)
− i

z − (1 + i)
. Cauchy's integral

formula yields
´
γ1

1

z − (1 + i)
dz = −2πi and

´
γ1

1

z − (1− i)
dz = −2πi, so

´
γ1

2

z2 − 2z + 2
dz =

i
´
γ1

1

z − (1− i)
dz − i

´
γ1

1

z − (1 + i)
dz = i(−2πi)− i(−2πi) = 0 .
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2. For each function f on each contour γ, calculate
´
γ
f(z) dz:

(a) f(z) =
z3

z + 1
on the counterclockwise boundary of the circle |z| = 4.

• This is of the form
´
γ

f(z)

z − z0
dz for f(z) = z3 and z0 = −1. By Cauchy's integral formula the value

is 2πi ·Wγ(z0) f(z0) = −2πi .

(b) f(z) =
ez

z − 2
on the counterclockwise boundary of the circle |z| = 4.

• This is of the form
´
γ

f(z)

z − z0
dz for f(z) = ez and z0 = 2. By Cauchy's integral formula the value is

2πi ·Wγ(z0) f(z0) = 2πi · e2 .

(c) f(z) =
sin2(2z)

z − 1
on the counterclockwise boundary of the circle |z| = 4.

• This is of the form
´
γ

f(z)

z − z0
dz for f(z) = sin2(2z) and z0 = 1. By Cauchy's integral formula the

value is 2πi ·Wγ(z0) f(z0) = 2πi · sin2(2) .

(d) f(z) =
z2 + 1

z2 − 1
on the counterclockwise boundary of the rectangle with vertices ±20, ±25i.

• First by partial fraction decomposition we have f(z) = 1 +
1

z − 1
− 1

z + 1
. Note that both 1 and −1

are in γ.

• Then
´
γ

1 dz = 0,
´
γ

1

z − 1
dz = 2πi, and

´
γ

1

z + 1
dz = 2πi all by Cauchy's integral formula. So the

integral is 0 .

(e) f(z) =
z2 + 1

z2 − 1
on the counterclockwise boundary of the square with vertices 0, 10− 10i, 20, 10 + 10i.

• As in (c), f(z) = 1 +
1

z − 1
− 1

z + 1
. Note that 1 is in γ but −1 is not.

• Then
´
γ

1 dz = 0,
´
γ

1

z − 1
dz = 2πi, and

´
γ

1

z + 1
dz = 0 all by Cauchy's integral formula. So the

integral is 2πi .

(f) f(z) =
ez

z sin z
on the counterclockwise boundary of the circle |z − π| = e−π.

• The function only fails to be holomorphic for z = 0 and for sin z = 0 (namely z = kπ for integers k).

• Since the circle has radius e−π < 1 we may shrink the circle arbitrarily close to π without changing
the value of the integral.

• Then, as a Laurent series centered at z = π, we can crunch out
ez

z sin z
= −e

π

π
(z − π)−1 − eπ

π2
(π −

1) + · · · , which converges on a disc of positive radius since the series for ez and z sin z converge for
all z.

• So by our results on integrating power series we see
´
γ

ez

z sin z
dz = 2πi · (−e

π

π
) = −2eπi .

(g) f(z) = ze1/z on the counterclockwise boundary of the circle |z| = 2. [Hint: On γ, z can be written in
terms of z.]

• Per the hint we observe that for |z| = 2 we have zz = |z|2 = 4 so z = 4/z.

• So on γ we have f(z) =
4

z
ez/4, so the integral is

´
γ

4ez/4

z
dz which by Cauchy's integral formula is

2πi · 1 · 4 = 8πi .
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3. If γ is the unit circle traversed once counterclockwise, let I(a, b) =
´
γ

1

(z − a)(z − b)
dz.

(a) Find I(a, a) if |a| 6= 1.

• Note that
1

(z − a)2
has an antiderivative − 1

z − a
, so the integral is 0 by the fundamental theorem

of line integrals.

(b) Find I(a, b) if |a| < 1 and |b| < 1 and a 6= b.

• By partial fraction decomposition we have
1

(z − a)(z − b)
=

1

a− b

[
1

z − a
− 1

z − b

]
. Note also that

´
γ

1

z − c
dz =

{
2πi if |c| < 1

0 if |c| > 1
.

• Then I(a, b) =
1

a− b

[´
γ

1

z − a
dz −

´
γ

1

z − b
dz

]
=

1

a− b
[2πi− 2πi] = 0 .

(c) Find I(a, b) if |a| < 1 and |b| > 1.

• As in (b) we have I(a, b) =
1

a− b

[´
γ

1

z − a
dz −

´
γ

1

z − b
dz

]
=

1

a− b
[2πi] =

2πi

a− b
.

(d) Find I(a, b) if |a| > 1 and |b| > 1 and a 6= b.

• As in (b) we have I(a, b) =
1

a− b

[´
γ

1

z − a
dz −

´
γ

1

z − b
dz

]
=

1

a− b
[0− 0] = 0 .

4. The goal of this problem is to give another way to evaluate the integral Iγ(z0) =
´
γ

1

z − z0
dz where γ is any

counterclockwise-oriented circle not containing z0, which was the subject of problem 5 of homework 6.

(a) Suppose z0 is a distance R > 0 away from the closest point on the circle. Show that

∣∣∣∣´γ 1

z − z0
dz

∣∣∣∣ ≤ 2πr

R
where r is the radius of the circle. [Hint: Bound the integral by the arclength times the maximum of the
function.]

• By problem 7c of homework 6, we have

∣∣∣∣´γ 1

z − z0
dz

∣∣∣∣ ≤ sM where s = 2πr is the arclength of the

circle and M is the maximum value of

∣∣∣∣ 1

z − z0

∣∣∣∣ on the circle. But this last quantity is the reciprocal

of the minimum distance from z0 to a point on the circle, so M =
1

R
.

• Thus we get

∣∣∣∣´γ 1

z − z0
dz

∣∣∣∣ ≤ sM =
2πr

R
as claimed.

(b) Suppose z0 is outside the circle. Show that
´
γ

1

z − z0
dz = 0. [Hint: Move γ far away from z0.]

• Since f(z) =
1

z − z0
is holomorphic for z 6= z0, we can move the circle arbitrarily as long it does

not cross z0. But since z0 is outside the circle, we can move the circle as far away as we like, say a

distance R =
2πr

ε
for any ε > 0.

• Then (a) yields

∣∣∣∣´γ 1

z − z0
dz

∣∣∣∣ ≤ 2πr

R
= ε. Thus since

´
γ

1

z − z0
dz has absolute value less than ε for

every ε > 0, the integral must be zero.

(c) Suppose z0 is in the interior of the circle. Show that
´
γ

1

z − z0
dz = 2πi. [Hint: Recenter γ at z0.]

• Since f(z) =
1

z − z0
is holomorphic for z 6= z0, we can move the circle arbitrarily as long it does not

cross z0. So we may recenter the circle at z0.

• Now just parametrize: if γ is |z − z0| = r traversed once counterclockwise, taking γ(t) = a+ reit for

0 ≤ t ≤ 2π yields
´
γ

1

z − z0
dz =

´ 2π
0

1

reit
ireit dt =

´ 2π
0
i dt = 2πi as claimed.
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5. Suppose p(z) is a polynomial of degree at least 2. Then p(z) has �nitely many complex zeroes, so they are

all contained in a disc |z| < r for some r. For R ≥ r, let I(R) =
´
γR

1

p(z)
dz where γR is the circle |z| = R

traversed once counterclockwise.

(a) Show that I(R) = I(r) for all R ≥ r.

• Note that
1

p(z)
is holomorphic everywhere except at the zeroes of p(z), which are all contained inside

the disc |z| < r. So the function is holomorphic everywhere outside |z| < r.

• This means we may deform the contour |z| = r into |z| = R without passing through any points
where the function is not holomorphic. Hence by deformation of contours, we have I(r) = I(R).

(b) Show that |I(R)| ≤ 2πR

|a| (R− r)d
where p has degree d and leading coe�cient a. [Hint: You may assume

p(z) factors as p(z) = a(z − z1)(z − z2) · · · (z − zd).]
• By the fundamental theorem of algebra we may suppose p(z) factors as p(z) = a(z−z1)(z−z2) · · · (z−
zd) where by hypothesis |zi| < r for each i.

• Then if |z| = R we have |p(z)| = |a| |z − z1| |z − z2| · · · |z − zd| ≥ |a| (|z| − |z1|) · · · (|z| − |zd|) =
|a| (R− r)d by the triangle inequality applied to each factor.

• This means

∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 1

|a| (R− r)d
on the contour γR. Applying the basic estimate for a contour

integral of arclength times maximum, we see |I(R)| ≤ 2πR · 1

|a| (R− r)d
as claimed.

(c) Show that limR→∞ I(R) = 0. Deduce that I(r) = 0.

• Since d ≥ 2 and |a| and r are �xed constants, we see that
2πR

|a| (R− r)d
∼ 2π

|a|
R1−d → 0 as R → 0.

Therefore since |I(R)| ≤ 2πR

|a| (R− r)d
by (b) and the upper bound goes to zero as R →∞, we have

limR→∞ I(R) = 0.

• Then by (a), since I(r) = I(R) for all R ≥ r, we have I(r) = limR→∞ I(r) = limR→∞ I(R) = 0, as
desired.

6. The goal of this problem is to give a third approach for evaluating the integral Iγ(z0) =
´
γ

1

z − z0
dz where γ

is any counterclockwise-oriented circle not containing z0.

(a) Suppose z0 is outside the circle. Show that
´
γ

1

z − z0
dz = 0. [Hint: Pick a branch of log(z − z0) that

does not intersect the circle.]

• Since z0 is outside the circle, we can choose a branch F (z) of log(z − z0) that does not intersect the
circle (e.g., by taking the branch cut along the ray from z0 to ∞ in the direction opposite from the
center of the circle).

• Then on γ the integrand has an antiderivative F (z), so since γ is closed, by the fundamental theorem
of calculus / independence of path, the integral is zero.

(b) Suppose z0 is in the interior of the circle and let the horizontal ray z = z0 + t for t ≥ 0 intersect the
circle at P . Choose any α and β on the circle such that the points P , α, β are in counterclockwise order

around the circle, and take γ̃ to be the counterclockwise arc from α to β. Show that
´
γ̃

1

z − z0
dz =

Log(β − z0)− Log(α− z0).

• Since
1

z − z0
has an antiderivative F (z) = Log(z − z0) for z − z0 6∈ [0,∞), which is to say, for z not

on the horizontal ray z = z0 + t for t ≥ 0, and the contour γ̃ does not intersect the ray, then by the

fundamental theorem of line integrals we have
´
γ̃

1

z − z0
dz = F (β)−F (α) = Log(β−z0)−Log(α−z0).
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(c) Suppose z0 is in the interior of the circle. Show that
´
γ

1

z − z0
dz = 2πi. [Hint: In (b), let α approach P

from above and β approach P from below.]

• Note that γ is the limit of the curve γ̃ as α approaches P from above and β approaches P from
below.

• So by continuity of the integral, we have
´
γ

1

z − z0
dz = limβ→P− F (β)− limα→P+ F (α) = [Log(P −

z0) + 2πi] − Log(P − z0) = 2πi, since the logarithm argument is 2πi larger from below than from
above.

7. [Challenge] The goal of this problem is to establish some basic facts about the gamma and zeta functions,
which are two special functions with broad utility in complex analysis, number theory, statistics, physics, and
various other areas. Recall that for a positive real number α and a complex number z, we have αz = ez lnα.

(a) Suppose n is a positive integer. Show that
´∞
0
tn−1e−t dt = (n− 1)!.

• Induction on n. For n = 1 we have
´∞
0
e−t dt = −e−t|∞t=0 = 1 = 0! as claimed.

• For the inductive step suppose
´∞
0
tn−1e−t dt = (n−1)!. Then integrating by parts yields

´∞
0
tne−t dt =

tn(−e−t)|∞t=0 −
´∞
0
ntn−1(−e−t) dt = n

´∞
0
tn−1e−t dt = n · (n− 1)! = n! as claimed.

(b) Suppose that Re(z) > 1. Show that the integral
´∞
0
tz−1e−t dt converges absolutely.

• Per the hint, �rst we show that
´∞
0
tx−1e−t dt converges for positive real x.

• By (a) it converges for positive integral values of x, and since the integrand tx−1e−t is an increasing
function of x for t > 1, this means

´∞
1
tx−1e−t dt converges for all x > 1. Then adding the �nite

value
´ 1
0
tx−1e−t dt to it shows that

´∞
0
tx−1e−t dt converges also.

• Now for the complex case, with z = x+iy where x > 0, for t > 0 we have
∣∣tz−1e−t∣∣ =

∣∣e(x+iy−1) ln te−t∣∣ =

e(x−1) ln te−t = tx−1e−t So
´∞
0

∣∣tz−1e−t∣∣ dt =
´∞
0
tx−1e−t dt which converges as noted above.

• Thus
´∞
0
tz−1e−t dt converges absolutely as desired.

(c) Let R be the region with Re(z) > 1. Show that Γ(z) =
´∞
0
tz−1e−t dt is holomorphic on R. [Hint:

Di�erentiate under the integral sign.]

• By (b), since the integral
´∞
0
tz−1e−t dt converges absolutely for Re(z) > 1, we may di�erentiate

under the integral sign to obtain Γ′(z) =
´∞
0

d

dz

[
tz−1e−t

]
dt =

´∞
0
tz−1 ln t e−t dt.

• This integral is also convergent since for example |ln t| < t for large t and |ln t| < t−ε for small t.

• Thus Γ is holomorphic as claimed.

(d) Suppose that Re(z) > 1. Show that the series
∑∞
n=1

1

nz
converges absolutely.

• For z = x+ iy we have

∣∣∣∣ 1

nz

∣∣∣∣ =
∣∣e−(x+iy) lnn∣∣ = e−x lnn =

1

nx
.

• So we need only show that
∑∞
n=1

1

nx
converges for x > 1. But this is a standard fact about p-series:

the sum is a Riemann sum for the convergent integral
´∞
1

1

tx
dt =

t1−x

1− x
|∞t=1 = − 1

1− x
hence it

converges by the integral test.

(e) Let R be the region with Re(z) > 1. Show that ζ(z) =
∑∞
n=1

1

nz
is holomorphic on R.

• By (d) since the series converges absolutely, we may di�erentiate term by term to see ζ ′(z) =∑∞
n=1

− lnn

nz
.

• This series is also convergent by the integral test since|lnn| < nε for large n, so

∣∣∣∣− lnn

nz

∣∣∣∣ =
lnn

nx
<

nε−x, whose integral still converges as long as we take ε su�ciently small.
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