- 1. Suppose $\gamma:[a,b]\to\mathbb{C}$ is a contour. The <u>length</u> of the contour γ is defined as $\int_a^b |\gamma'(t)| \ dt$. Note that for $\gamma(t)=x(t)+iy(t)$ this formula reduces to the familiar arclength formula $s=\int_a^b \sqrt{x'(t)^2+y'(t)^2} \ dt$.
 - (a) Find the length of the contour parametrized by $\gamma(t) = 4e^{3it}$, $0 \le t \le \pi$.
 - We have $\gamma'(t) = 12e^{3it}$ so $|\gamma'(t)| = 12$ and the length is $\int_0^{\pi} 12 dt = \boxed{12\pi}$
 - (b) Find the length of the contour parametrized by $\gamma(t)=t+i\cosh(t),\,0\leq t\leq 1.$
 - We have $\gamma'(t) = 1 + i \sinh(t)$ so $|\gamma'(t)| = \sqrt{1 + \sinh^2 t} = \cosh t$ so the length is $\int_0^1 \cosh(t) dt = \sinh(t) \sin(t) dt$
 - (c) Find the length of the contour parametrized by $\gamma(t) = (1-2t) + (3+t)i, 0 \le t \le 1$.
 - We have $\gamma'(t) = -2 + i$ so $|\gamma'(t)| = \sqrt{5}$ and the length is $\int_0^1 \sqrt{5} dt = \sqrt{5}$
 - (d) Find the length of the contour parametrized by $\gamma(t) = (\pi + et) + (\sqrt{2} \pi t)i$, $0 \le t \le 1$.
 - We have $\gamma'(t) = e \pi i$ so $|\gamma'(t)| = \sqrt{e^2 + \pi^2}$ and the length is $\int_0^1 \sqrt{e^2 + \pi^2} dt = \sqrt{e^2 + \pi^2}$
- 2. For each function f on each contour γ , calculate $\int_{\gamma} f(z) dz$ without using a parametrization of γ :
 - (a) $f(z) = z^{-3}$ on the upper half of the unit circle traversed from z = 1 to z = -1.
 - Since f(z) has an antiderivative $F(z) = -\frac{1}{2}z^{-2}$, by the fundamental theorem of line integrals we have $\int_{\gamma} f(z) dz = F(-1) F(1) = \boxed{0}$.
 - (b) $f(z) = z^n$ (n an integer with $n \neq -1$) on the counterclockwise boundary of the square with vertices ± 1 , $\pm i$.
 - Since f(z) has an antiderivative $F(z) = \frac{z^{n+1}}{n+1}$ and the contour is closed, by the fundamental theorem of line integrals we have $\int_{\gamma} f(z) dz = \boxed{0}$.
 - (c) $f(z) = 3z^2$ on the curve $\gamma(t) = e^{e^t} \tan(t^2)i$ for $0 \le t \le 1$.
 - Since f(z) has an antiderivative $F(z) = z^3$, by the fundamental theorem of line integrals we have $\int_{\gamma} f(z) dz = F(\gamma(1)) F(\gamma(0)) = \boxed{(e-i\tan 1)^3 e^3}.$
 - (d) $f(z) = e^z$ on the portion of the ellipse $\frac{\operatorname{Re}(z)^2}{(\ln 2)^2} + \frac{\operatorname{Im}(z)^2}{4\pi^2} = 1$ clockwise from $z = \ln 2$ to $z = 2\pi i$.
 - Since f(z) has an antiderivative $F(z) = e^z$, by the fundamental theorem of line integrals we have $\int_{\gamma} f(z) dz = F(2\pi i) F(\ln 2) = \boxed{e^{2\pi i} e^{\ln 2}} = \boxed{-1}.$
 - (e) f(z) = 1/z on the polygonal path with successive vertices i, -1 + 7i, -20 25i, and -i.
 - Note 1/z has an antiderivative F(z) = Log(z) on $\mathbb{C}\setminus[0,\infty)$ inside which this path lies.
 - So by the fundamental theorem of line integrals, $\int_{\gamma} f(z) dz = F(-i) F(i) = \text{Log}(-i) \text{Log}(i) = i\pi$
 - (f) f(z) = Log(z) on the polygonal path with successive vertices i, -1 + 7i, -20 25i, and -i.
 - Note that Log(z) is holomorphic on $\mathbb{C}\setminus[0,\infty)$ inside which this path lies.
 - By the product rule we see $F(z) = z \log(z) z$ has derivative $f(z) = \log(z)$, so by the fundamental theorem of line integrals, $\int_{\gamma} f(z) dz = F(-i) F(i) = [(-i) \log(-i) (-i)] [i \log(i) i] = \boxed{2\pi + 2i}$.

¹Obviously, since this is in Part I, we won't actually know for sure that you didn't use a parametrization, but read between the lines on the directions here (namely, that you should be able to solve each part without using a parametrization).

- 3. For each function f on each closed contour γ , calculate $\int_{\gamma} f(z) dz$:
 - (a) $f(z) = z^{-1}$ on the counterclockwise boundary of the triangle with vertices 1 and $-2 \pm i\sqrt{3}$.
 - Note f is holomorphic for all $z \neq 0$.
 - We can deform this contour in $\mathbb{C}\setminus\{0\}$ into the unit circle, and thus the integral is $2\pi i$.
 - (b) $f(z) = z^{-1}$ on the counterclockwise boundary of the triangle with vertices -1 and $-2 \pm i\sqrt{3}$.
 - Note f is holomorphic for all $z \neq 0$.
 - Since this triangle does not contain z = 0, we can deform this contour to a point, and so the integral is $\boxed{0}$.
 - (c) $f(z) = z^{-1}$ on the polygonal path with successive vertices 1, i, -1, -i, 2, 2i, -2, -2i, and 1.
 - Note f is holomorphic for all $z \neq 0$.
 - We can deform this contour in $\mathbb{C}\setminus\{0\}$ into a path that winds twice around the unit circle, so the integral is $4\pi i$.
 - (d) $f(z) = \frac{i}{z^2 iz}$ on the counterclockwise boundary of the ellipse $\frac{\text{Re}(z)^2}{(\ln 2)^2} + \frac{\text{Im}(z)^2}{4\pi^2} = 1$.
 - Note f is holomorphic for all $z \neq 0, i$, and both of these points lie in the ellipse.
 - Furthermore, from partial fraction decomposition we have $\frac{i}{z^2 iz} = \frac{1}{z i} \frac{1}{z}$, so we need only calculate $\int_{\gamma} \frac{1}{z} dz$ and $\int_{\gamma} \frac{1}{z i} dz$.
 - For $\int_{\gamma} \frac{1}{z} dz$ we deform the contour into the unit circle to see the integral is $2\pi i$. For $\int_{\gamma} \frac{1}{z-i} dz$ we deform the contour into the circle |z-i|=1 and then substitute w=z-i to see that the integral is $2\pi i$.
 - Therefore we have $\int_{\gamma} \frac{i}{z^2 iz} dz = \int_{\gamma} \frac{1}{z i} dz \int_{\gamma} \frac{1}{z} dz = \boxed{0}$
 - (e) $f(z) = \frac{z}{z^2 + 1}$ on the counterclockwise boundary of the square with vertices ± 1 and $\pm 1 + 2i$.
 - Note f is holomorphic for all $z \neq i, -i$, and i lies inside the square while -i does not.
 - Furthermore, from partial fraction decomposition we have $\frac{z}{z^2+1} = \frac{1/2}{z+i} + \frac{1/2}{z-i}$, so we need only calculate $\int_{\gamma} \frac{1}{z+i} dz$ and $\int_{\gamma} \frac{1}{z-i} dz$.
 - Since -i is not in the square we see that $\int_{\gamma} \frac{1}{z+i} dz$ by deforming the contour to a point. For $\int_{\gamma} \frac{1}{z-i} dz$ we deform the contour to the circle |z-i|=1 to see that the integral is $2\pi i$ as earlier.
 - Therefore we have $\int_{\gamma} \frac{1}{z^2+1} dz = \frac{1}{2} \int_{\gamma} \frac{1}{z+i} dz + \frac{1}{2} \int_{\gamma} \frac{1}{z-i} dz = \boxed{\pi i}$.
- 4. Let f(z) be continuous on a connected open region R. Prove that the following are equivalent (you may freely appeal to theorems proven in class or in the notes; if you find yourself writing a long solution then you've missed something):
 - (a) The line integral $\int_{\gamma} f(z) dz = 0$ for all closed contours γ in R.
 - (b) There exists a holomorphic F(z) on R such that F'(z) = f(z).
 - (c) For any $a, b \in R$ and any contours γ_1 and γ_2 in R from a to b, $\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$.
 - (a) implies (b): This is the existence of antiderivatives theorem from the notes.
 - (b) implies (c): This is independence of path: $\int_{\gamma_1} f(z) dz = F(b) F(a) = \int_{\gamma_2} f(z) dz$.
 - (c) implies (a): Suppose γ is closed. Take $\gamma_1 = \gamma$ and γ_2 to be constant at any point on γ . Then $\int_{\gamma_2} f(z) dz = 0$, so the hypothesis of (c) yields immediately $\int_{\gamma} f(z) dz = 0$.

- 5. The goal of this problem is to compute the integral $I(z_0) = \int_{\gamma} \frac{dz}{z z_0}$ where γ is the unit circle traversed once counterclockwise and $|z_0| \neq 1$.
 - (a) If $z_0 = re^{i\theta}$ show that $I(z_0) = I(r)$. [Hint: Make a substitution.]
 - We substitute $z = e^{i\theta}\tilde{z}$, with $dz = e^{i\theta}d\tilde{z}$. This substitution corresponds to a rotation of θ radians (clockwise going from z to \tilde{z} , or counterclockwise going from \tilde{z} to z), which does not change the contour γ .
 - Then we have $I(z_0) = \int_{\gamma} \frac{dz}{z z_0} = \int_{\gamma} \frac{e^{i\theta} d\tilde{z}}{e^{i\theta}\tilde{z} re^{i\theta}} = \int_{\gamma} \frac{d\tilde{z}}{\tilde{z} r} = I(r)$ as required.
 - (b) Suppose $r \ge 0$ and $r \ne 1$. Show that $\int_0^{2\pi} \frac{r \sin t}{1 2r \cos t + r^2} dt = 0$.
 - Observe that the derivative of $\ln(1-2r\cos t+r^2)$ is $\frac{2r\sin t}{1-2r\cos t+r^2}$. Since the argument of the logarithm ranges from $(r-1)^2$ to $(r+1)^2$ and $r \neq 1$, it is never zero.
 - Thus by the fundamental theorem of calculus we have $\int_0^{2\pi} \frac{r \sin t}{1 2r \cos t + r^2} dt = \frac{1}{2} \ln(1 2r \cos t + r^2)|_{t=0}^{2\pi} = 0$ by periodicity.
 - (c) Show that $\int_0^\pi \frac{1-r\cos t}{1-2r\cos t+r^2}\,dt=\begin{cases} \pi & \text{if } 0\leq r<1\\ 0 & \text{if } r>1 \end{cases}$. [Hint: Substitute $x=\tan(t/2)$, which has $dt=\frac{2dx}{1+x^2}$ and $\cos t=\frac{1-x^2}{1+x^2}$. You may want to make a computer do the partial fraction decomposition.]
 - Making the suggested substitution $x = \tan(t/2)$, which has $dt = \frac{2dx}{1+x^2}$ and $\cos t = \frac{1-x^2}{1+x^2}$ and has an integration range of $(-\infty, \infty)$ for x yields

$$\int_0^\pi \frac{1 - r \cos t}{1 - 2r \cos t + r^2} dt = 2 \int_0^\infty \frac{1 - r \cdot \frac{1 - x^2}{1 + x^2}}{1 - 2r \cdot \frac{1 - x^2}{1 + x^2} + r^2} \cdot \frac{dx}{1 + x^2}$$

$$= 2 \int_0^\infty \frac{(1 + x^2) - r(1 - x^2)}{(1 + r^2)(1 + x^2) - 2r(1 - x^2)} \cdot \frac{dx}{1 + x^2}$$

$$= 2 \int_0^\infty \frac{(1 - r) + (1 + r)x^2}{(1 - 2r + r^2) + (1 + 2r + r^2)x^2} \cdot \frac{dx}{1 + x^2}$$

$$= 2 \int_0^\infty \left[\frac{1/2}{1 + x^2} - \frac{(r^2 - 1)/2}{(1 - 2r + r^2) + (1 + 2r + r^2)x^2} \right] dx$$

$$= \int_0^\infty \frac{1}{1 + x^2} dx - \int_0^\infty \frac{1}{1 + \left[\frac{r + 1}{r - 1}x\right]^2} \frac{r + 1}{r - 1} dx$$

- The first integral is $\frac{\pi}{2}$ while substituting $u = \frac{r+1}{r-1}x$ in the second integral yields $\int_0^\infty \frac{du}{1+u^2} = \frac{\pi}{2}$ also, but with the order of integration preserved for r > 1 and reversed for r < 1. So for r > 1 the two integrals cancel and the sum is zero, while for r < 1 the integrals add and the sum is π .
- (d) Find the value of $I(z_0)$ in terms of z_0 .
 - By (a) we just need to evaluate I(r). With $\gamma(t) = e^{it}$ for $0 \le t \le 2\pi$ we have $\gamma'(t) = ie^{it}$ and $\frac{1}{z-r} = \frac{1}{e^{it}-r}$.
 - Plugging in the parametrization then yields $\int_{\gamma} \frac{1}{z-r} dz = \int_{0}^{2\pi} \frac{1}{e^{it}-r} \cdot ie^{it} dt = i \int_{0}^{2\pi} \frac{\cos t + i \sin t}{(\cos t r) + i \sin t} dt$ $= i \int_{0}^{2\pi} \frac{(\cos t + i \sin t)(\cos t r i \sin t)}{(\cos t r)^{2} + \sin^{2} t} dt = i \int_{0}^{2\pi} \frac{1 r \cos t r i \sin t}{1 2r \cos t + r^{2}} dt.$
 - By (b) and (c) we see that this integral equals 0 when r > 1 and $i \cdot 2\pi$ when r < 1. So $I(z_0) = 2\pi i$ for $|z_0| < 1$ and 0 for $|z_0| > 1$.

- 6. Recall that if $\gamma_0 : [0,1] \to \mathbb{C}$ and $\gamma_1 : [0,1] \to \mathbb{C}$ are continuous closed curves in a region R, we say they are <u>homotopic</u> in R if there exists some continuous function $h : [0,1] \times [0,1] \to R$ with h(s,0) = h(s,1) for all s and $h(0,t) = \gamma_0(t)$ and $h(1,t) = \gamma_1(t)$. Prove that being homotopic in R is an equivalence relation on continuous closed curves in R. [Hint: For transitivity, use half of the interval to go from γ_0 to γ_1 and the other half to go from γ_1 to γ_2 .]
 - Reflexive: To show γ is homotopic to itself, simply take the trivial homotopy, with $h(s,t) = \gamma(t)$ for all s.
 - Symmetric: If γ_0 is homotopic to γ_1 with h(s,0) = h(s,1), $h(0,t) = \gamma_0(t)$, and $h(1,t) = \gamma_1(t)$, then let $\tilde{h}(s,t) = h(1-s,t)$. Then \tilde{h} has $\tilde{h}(s,0) = h(s,1) = h(s,0) = \tilde{h}(s,1)$ and $\tilde{h}(0,t) = h(1,t) = \gamma_1(t)$ and $\tilde{h}(1,t) = h(0,t) = \gamma_0(t)$ so \tilde{h} is a homotopy from γ_1 to γ_0 .
 - Transitive: Suppose γ_0 is homotopic to γ_1 with $h_1(s,0) = h_1(s,1)$, $h_1(0,t) = \gamma_0(t)$, and $h_1(1,t) = \gamma_1(t)$, and also that γ_1 is homotopic to γ_2 with $h_1(s,0) = h_1(s,1)$, $h_1(0,t) = \gamma_1(t)$, and $h_1(1,t) = \gamma_2(t)$. Then let $h(s,t) = \begin{cases} h_1(2s,t) & \text{for } 0 \le s \le 1/2 \\ h_2(2s-1,t) & \text{for } 1/2 < s \le 1 \end{cases}$.
 - Since h_1 and h_2 are continuous and agree on the boundary s=1/2, since $h_1(1,t)=\gamma_1(t)=h_2(0,t)$ for each t, we see h is continuous. Furthermore $h(s,0)=\begin{cases}h_1(s,0) & \text{for } 0\leq s\leq 1/2\\h_2(s,0) & \text{for } 1/2< s\leq 1\end{cases}=\begin{cases}h_1(s,1) & \text{for } 0\leq s\leq 1/2\\h_2(s,1) & \text{for } 1/2< s\leq 1\end{cases}=h(s,1)$, and $h(0,t)=\gamma_0(t)$ and $h(1,t)=\gamma_2(t)$. So h is a homotopy from γ_0 to γ_2 as desired.
- 7. [Challenge] Recall the definition of the length of a contour from problem 1.
 - (a) Suppose that $\gamma_1:[a,b]\to\mathbb{C}$ and $\gamma_2:[c,d]\to\mathbb{C}$ are continuously differentiable and there exists a continuously differentiable increasing function $g:[a,b]\to[c,d]$ with g(a)=c and g(b)=d such that $\gamma_1=\gamma_2\circ g$, show that $\int_a^b|\gamma_1'(t)|\ dt=\int_c^d|\gamma_2'(s)|\ ds$. [Hint: Substitution.]
 - Make the substitution t = g(s). For t = a we have s = g(a) = c and for t = b we have s = g(b) = d, and also dt = g'(s) ds. Additionally note that g'(s) > 0 by the assumption that g is increasing.
 - Then substituting t = g(s) in $\int_a^b |\gamma_1'(t)| dt$ yields $\int_c^d |\gamma_1'(g(s))| g'(s) ds = \int_c^d |\gamma_1'(g(s))g'(s)| ds = \int_c^d |\gamma_2'(s)| ds$ by the chain rule and the fact that g'(s) = |g'(s)| since g'(s) > 0.
 - (b) Prove that the length of a contour is independent of the parametrization. [Hint: Sum (a).]
 - Suppose we have two different parametrizations of the same contour. By breaking each at the points where either one is nondifferentiable, we may assume that $\gamma = \gamma_1 \cup \cdots \cup \gamma_n$ and $\tilde{\gamma} = \tilde{\gamma}_1 \cup \cdots \cup \tilde{\gamma}_n$ where each γ_i and $\tilde{\gamma}_i$ is continuously differentiable and has the same endpoints.
 - Then applying (a) to each pair $(\gamma_i, \tilde{\gamma}_i)$ we see that the length of γ_i equals the length of $\tilde{\gamma}_i$. Summing over all pieces and observing that the length integral is additive shows immediately that the length of γ equals the length of $\tilde{\gamma}$.
 - (c) Suppose that $|f(z)| \leq M$ on the contour γ of length s. Prove that $\left| \int_{\gamma} f(z) dz \right| \leq Ms$.
 - Suppose $\gamma:[a,b]\to\mathbb{C}$ is a contour. Then $\left|\int_{\gamma}f(z)\,dz\right|=\left|\int_a^bf(\gamma(t))\,\gamma'(t)\,dt\right|\leq\int_a^b|f(\gamma(t))|\,|\gamma'(t)|\,dt\leq\int_a^bM|\gamma'(t)|\,dt=M\int_a^b|\gamma'(t)|\,dt=Ms$ using the triangle inequality and the fact that $|f(\gamma(t))|\leq M$ for all t.