
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 6 Solutions

1. Suppose γ : [a, b] → C is a contour. The length of the contour γ is de�ned as
´ b
a
|γ′(t)| dt. Note that for

γ(t) = x(t) + iy(t) this formula reduces to the familiar arclength formula s =
´ b
a

√
x′(t)2 + y′(t)2 dt.

(a) Find the length of the contour parametrized by γ(t) = 4e3it, 0 ≤ t ≤ π.

• We have γ′(t) = 12e3it so |γ′(t)| = 12 and the length is
´ π
0
12 dt = 12π .

(b) Find the length of the contour parametrized by γ(t) = t+ i cosh(t), 0 ≤ t ≤ 1.

• We have γ′(t)=1+ i sinh(t) so |γ′(t)|=
√

1 + sinh2 t=cosh t so the length is
´ 1
0
cosh(t)dt= sinh(1) .

(c) Find the length of the contour parametrized by γ(t) = (1− 2t) + (3 + t)i, 0 ≤ t ≤ 1.

• We have γ′(t) = −2 + i so |γ′(t)| =
√
5 and the length is

´ 1
0

√
5 dt =

√
5 .

(d) Find the length of the contour parametrized by γ(t) = (π + et) + (
√
2− πt)i, 0 ≤ t ≤ 1.

• We have γ′(t) = e− πi so |γ′(t)| =
√
e2 + π2 and the length is

´ 1
0

√
e2 + π2 dt =

√
e2 + π2 .

2. For each function f on each contour γ, calculate
´
γ
f(z) dz without1 using a parametrization of γ:

(a) f(z) = z−3 on the upper half of the unit circle traversed from z = 1 to z = −1.

• Since f(z) has an antiderivative F (z) = −1

2
z−2, by the fundamental theorem of line integrals we

have
´
γ
f(z) dz = F (−1)− F (1) = 0 .

(b) f(z) = zn (n an integer with n 6= −1) on the counterclockwise boundary of the square with vertices ±1,
±i.

• Since f(z) has an antiderivative F (z) =
zn+1

n+ 1
and the contour is closed, by the fundamental theorem

of line integrals we have
´
γ
f(z) dz = 0 .

(c) f(z) = 3z2 on the curve γ(t) = ee
t − tan(t2)i for 0 ≤ t ≤ 1.

• Since f(z) has an antiderivative F (z) = z3, by the fundamental theorem of line integrals we have´
γ
f(z) dz = F (γ(1))− F (γ(0)) = (e− i tan 1)3 − e3 .

(d) f(z) = ez on the portion of the ellipse
Re(z)2

(ln 2)2
+

Im(z)2

4π2
= 1 clockwise from z = ln 2 to z = 2πi.

• Since f(z) has an antiderivative F (z) = ez, by the fundamental theorem of line integrals we have´
γ
f(z) dz = F (2πi)− F (ln 2) = e2πi − eln 2 = −1 .

(e) f(z) = 1/z on the polygonal path with successive vertices i, −1 + 7i, −20− 25i, and −i.
• Note 1/z has an antiderivative F (z) = Log(z) on C\[0,∞) inside which this path lies.

• So by the fundamental theorem of line integrals,
´
γ
f(z) dz = F (−i)−F (i) = Log(−i)−Log(i) = iπ .

(f) f(z) = Log(z) on the polygonal path with successive vertices i, −1 + 7i, −20− 25i, and −i.
• Note that Log(z) is holomorphic on C\[0,∞) inside which this path lies.

• By the product rule we see F (z) = z Log(z)− z has derivative f(z) = Log(z), so by the fundamental

theorem of line integrals,
´
γ
f(z) dz = F (−i)−F (i) = [(−i)Log(−i)−(−i)]−[iLog(i)−i] = 2π + 2i .

1Obviously, since this is in Part I, we won't actually know for sure that you didn't use a parametrization, but read between the lines
on the directions here (namely, that you should be able to solve each part without using a parametrization).
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3. For each function f on each closed contour γ, calculate
´
γ
f(z) dz:

(a) f(z) = z−1 on the counterclockwise boundary of the triangle with vertices 1 and −2± i
√
3.

• Note f is holomorphic for all z 6= 0.

• We can deform this contour in C\{0} into the unit circle, and thus the integral is 2πi .

(b) f(z) = z−1 on the counterclockwise boundary of the triangle with vertices −1 and −2± i
√
3.

• Note f is holomorphic for all z 6= 0.

• Since this triangle does not contain z = 0, we can deform this contour to a point, and so the integral
is 0 .

(c) f(z) = z−1 on the polygonal path with successive vertices 1, i, −1, −i, 2, 2i, −2, −2i, and 1.

• Note f is holomorphic for all z 6= 0.

• We can deform this contour in C\{0} into a path that winds twice around the unit circle, so the

integral is 4πi .

(d) f(z) =
i

z2 − iz
on the counterclockwise boundary of the ellipse

Re(z)2

(ln 2)2
+

Im(z)2

4π2
= 1.

• Note f is holomorphic for all z 6= 0, i, and both of these points lie in the ellipse.

• Furthermore, from partial fraction decomposition we have
i

z2 − iz
=

1

z − i
− 1

z
, so we need only

calculate
´
γ

1

z
dz and

´
γ

1

z − i
dz.

• For
´
γ

1

z
dz we deform the contour into the unit circle to see the integral is 2πi. For

´
γ

1

z − i
dz we

deform the contour into the circle |z − i| = 1 and then substitute w = z − i to see that the integral
is 2πi.

• Therefore we have
´
γ

i

z2 − iz
dz =

´
γ

1

z − i
dz −

´
γ

1

z
dz = 0 .

(e) f(z) =
z

z2 + 1
on the counterclockwise boundary of the square with vertices ±1 and ±1 + 2i.

• Note f is holomorphic for all z 6= i,−i, and i lies inside the square while −i does not.

• Furthermore, from partial fraction decomposition we have
z

z2 + 1
=

1/2

z + i
+

1/2

z − i
, so we need only

calculate
´
γ

1

z + i
dz and

´
γ

1

z − i
dz.

• Since −i is not in the square we see that
´
γ

1

z + i
dz by deforming the contour to a point. For

´
γ

1

z − i
dz we deform the contour to the circle |z − i| = 1 to see that the integral is 2πi as earlier.

• Therefore we have
´
γ

1

z2 + 1
dz =

1

2

´
γ

1

z + i
dz +

1

2

´
γ

1

z − i
dz = πi .

4. Let f(z) be continuous on a connected open region R. Prove that the following are equivalent (you may freely
appeal to theorems proven in class or in the notes; if you �nd yourself writing a long solution then you've
missed something):

(a) The line integral
´
γ
f(z) dz = 0 for all closed contours γ in R.

(b) There exists a holomorphic F (z) on R such that F ′(z) = f(z).

(c) For any a, b ∈ R and any contours γ1 and γ2 in R from a to b,
´
γ1
f(z) dz =

´
γ2
f(z) dz.

• (a) implies (b): This is the existence of antiderivatives theorem from the notes.

• (b) implies (c): This is independence of path:
´
γ1
f(z) dz = F (b)− F (a) =

´
γ2
f(z) dz.

• (c) implies (a): Suppose γ is closed. Take γ1 = γ and γ2 to be constant at any point on γ. Then´
γ2
f(z) dz = 0, so the hypothesis of (c) yields immediately

´
γ
f(z) dz = 0.
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5. The goal of this problem is to compute the integral I(z0) =
´
γ

dz

z − z0
where γ is the unit circle traversed once

counterclockwise and |z0| 6= 1.

(a) If z0 = reiθ show that I(z0) = I(r). [Hint: Make a substitution.]

• We substitute z = eiθ z̃, with dz = eiθdz̃. This substitution corresponds to a rotation of θ radians
(clockwise going from z to z̃, or counterclockwise going from z̃ to z), which does not change the
contour γ.

• Then we have I(z0) =
´
γ

dz

z − z0
=
´
γ

eiθdz̃

eiθ z̃ − reiθ
=
´
γ

dz̃

z̃ − r
= I(r) as required.

(b) Suppose r ≥ 0 and r 6= 1. Show that
´ 2π
0

r sin t

1− 2r cos t+ r2
dt = 0.

• Observe that the derivative of ln(1 − 2r cos t + r2) is
2r sin t

1− 2r cos t+ r2
. Since the argument of the

logarithm ranges from (r − 1)2 to (r + 1)2 and r 6= 1, it is never zero.

• Thus by the fundamental theorem of calculus we have
´ 2π
0

r sin t

1− 2r cos t+ r2
dt =

1

2
ln(1 − 2r cos t +

r2)|2πt=0 = 0 by periodicity.

(c) Show that
´ π
0

1− r cos t
1− 2r cos t+ r2

dt =

{
π if 0 ≤ r < 1

0 if r > 1
. [Hint: Substitute x = tan(t/2), which has dt =

2dx

1 + x2
and cos t =

1− x2

1 + x2
. You may want to make a computer do the partial fraction decomposition.]

• Making the suggested substitution x = tan(t/2), which has dt =
2dx

1 + x2
and cos t =

1− x2

1 + x2
and has

an integration range of (−∞,∞) for x yields

ˆ π

0

1− r cos t
1− 2r cos t+ r2

dt = 2

ˆ ∞
0

1− r · 1− x
2

1 + x2

1− 2r · 1− x
2

1 + x2
+ r2

· dx

1 + x2

= 2

ˆ ∞
0

(1 + x2)− r(1− x2)
(1 + r2)(1 + x2)− 2r(1− x2)

· dx

1 + x2

= 2

ˆ ∞
0

(1− r) + (1 + r)x2

(1− 2r + r2) + (1 + 2r + r2)x2
· dx

1 + x2

= 2

ˆ ∞
0

[
1/2

1 + x2
− (r2 − 1)/2

(1− 2r + r2) + (1 + 2r + r2)x2

]
dx

=

ˆ ∞
0

1

1 + x2
dx−

ˆ ∞
0

1

1 + [ r+1
r−1x]

2

r + 1

r − 1
dx

• The �rst integral is
π

2
while substituting u =

r + 1

r − 1
x in the second integral yields

´∞
0

du

1 + u2
=
π

2
also, but with the order of integration preserved for r > 1 and reversed for r < 1. So for r > 1 the
two integrals cancel and the sum is zero, while for r < 1 the integrals add and the sum is π.

(d) Find the value of I(z0) in terms of z0.

• By (a) we just need to evaluate I(r). With γ(t) = eit for 0 ≤ t ≤ 2π we have γ′(t) = ieit and
1

z − r
=

1

eit − r
.

• Plugging in the parametrization then yields
´
γ

1

z − r
dz =

´ 2π
0

1

eit − r
·ieit dt = i

´ 2π
0

cos t+ i sin t

(cos t− r) + i sin t)
dt

= i
´ 2π
0

(cos t+ i sin t)(cos t− r − i sin t)
(cos t− r)2 + sin2 t

dt = i
´ 2π
0

1− r cos t− ri sin t
1− 2r cos t+ r2

dt.

• By (b) and (c) we see that this integral equals 0 when r > 1 and i · 2π when r < 1. So I(z0) =

2πi for |z0| < 1 and 0 for |z0| > 1 .
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6. Recall that if γ0 : [0, 1] → C and γ1 : [0, 1] → C are continuous closed curves in a region R, we say they
are homotopic in R if there exists some continuous function h : [0, 1] × [0, 1] → R with h(s, 0) = h(s, 1) for
all s and h(0, t) = γ0(t) and h(1, t) = γ1(t). Prove that being homotopic in R is an equivalence relation on
continuous closed curves in R. [Hint: For transitivity, use half of the interval to go from γ0 to γ1 and the
other half to go from γ1 to γ2.]

• Re�exive: To show γ is homotopic to itself, simply take the trivial homotopy, with h(s, t) = γ(t) for all
s.

• Symmetric: If γ0 is homotopic to γ1 with h(s, 0) = h(s, 1), h(0, t) = γ0(t), and h(1, t) = γ1(t), then let
h̃(s, t) = h(1 − s, t). Then h̃ has h̃(s, 0) = h(s, 1) = h(s, 0) = h̃(s, 1) and h̃(0, t) = h(1, t) = γ1(t) and
h̃(1, t) = h(0, t) = γ0(t) so h̃ is a homotopy from γ1 to γ0.

• Transitive: Suppose γ0 is homotopic to γ1 with h1(s, 0) = h1(s, 1), h1(0, t) = γ0(t), and h1(1, t) = γ1(t),
and also that γ1 is homotopic to γ2 with h1(s, 0) = h1(s, 1), h1(0, t) = γ1(t), and h1(1, t) = γ2(t). Then

let h(s, t) =

{
h1(2s, t) for 0 ≤ s ≤ 1/2

h2(2s− 1, t) for 1/2 < s ≤ 1
.

• Since h1 and h2 are continuous and agree on the boundary s = 1/2, since h1(1, t) = γ1(t) = h2(0, t) for

each t, we see h is continuous. Furthermore h(s, 0) =

{
h1(s, 0) for 0 ≤ s ≤ 1/2

h2(s, 0) for 1/2 < s ≤ 1
=

{
h1(s, 1) for 0 ≤ s ≤ 1/2

h2(s, 1) for 1/2 < s ≤ 1
=

h(s, 1), and h(0, t) = γ0(t) and h(1, t) = γ2(t). So h is a homotopy from γ0 to γ2 as desired.

7. [Challenge] Recall the de�nition of the length of a contour from problem 1.

(a) Suppose that γ1 : [a, b] → C and γ2 : [c, d] → C are continuously di�erentiable and there exists a
continuously di�erentiable increasing function g : [a, b] → [c, d] with g(a) = c and g(b) = d such that

γ1 = γ2 ◦ g, show that
´ b
a
|γ′1(t)| dt =

´ d
c
|γ′2(s)| ds. [Hint: Substitution.]

• Make the substitution t = g(s). For t = a we have s = g(a) = c and for t = b we have s = g(b) = d,
and also dt = g′(s) ds. Additionally note that g′(s) > 0 by the assumption that g is increasing.

• Then substituting t = g(s) in
´ b
a
|γ′1(t)| dt yields

´ d
c
|γ′1(g(s))| g′(s) ds =

´ d
c
|γ′1(g(s))g′(s)| ds =´ d

c
|γ′2(s)| ds by the chain rule and the fact that g′(s) = |g′(s)| since g′(s) > 0.

(b) Prove that the length of a contour is independent of the parametrization. [Hint: Sum (a).]

• Suppose we have two di�erent parametrizations of the same contour. By breaking each at the points
where either one is nondi�erentiable, we may assume that γ = γ1 ∪ · · · ∪ γn and γ̃ = γ̃1 ∪ · · · ∪ γ̃n
where each γi and γ̃i is continuously di�erentiable and has the same endpoints.

• Then applying (a) to each pair (γi, γ̃i) we see that the length of γi equals the length of γ̃i. Summing
over all pieces and observing that the length integral is additive shows immediately that the length
of γ equals the length of γ̃.

(c) Suppose that |f(z)| ≤M on the contour γ of length s. Prove that
∣∣∣´γ f(z) dz∣∣∣ ≤Ms.

• Suppose γ : [a, b]→ C is a contour. Then
∣∣∣´γ f(z) dz∣∣∣ = ∣∣∣´ ba f(γ(t)) γ′(t) dt∣∣∣ ≤ ´ ba |f(γ(t))| |γ′(t)| dt ≤´ b

a
M |γ′(t)| dt =M

´ b
a
|γ′(t)| dt =Ms using the triangle inequality and the fact that |f(γ(t))| ≤M

for all t.
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