E. Dummit’s Math 4555 ~ Complex Analysis, Fall 2025 ~ Homework 6 Solutions

1. Suppose 7 : [a,b] — C is a contour. The length of the contour « is defined as f |7 )| dt. Note that for
~(t) = z(t) + 4y(t) this formula reduces to the familiar arclength formula s = fa V()2 + o' (t)? dt.

(a) Find the length of the contour parametrized by () = 4e3%, 0 < t < 7.

o We have 7/(t) = 12¢%" so |y/(t)| = 12 and the length is [ 124t =[ 127
(b) Find the length of the contour parametrized by 7(t) =t + i cosh(t), 0 < ¢ < 1.

o We have 7/(t)=1+isinh(t) so |y (t)|=+/1 + sinh? t=cosh t so the length is fol cosh(t)dt=| sinh(1) |
(c¢) Find the length of the contour parametrized by v(t) = (1 —2t) + (3+1¢)i, 0 <¢ < 1.

e We have 7/(t) = —2 41 so |7/(t)| = v/5 and the length is fol V5dt = .

(d) Find the length of the contour parametrized by v(t) = (7 4 et) + (v/2 — wt)i, 0 < t < 1.

e We have 7/(t) = e — i so |7/ (t)| = ve? + m2 and the length is fol Ve +a2dt =|+e2+ 72|

2. For each function f on each contour ~, calculate fv f(z) dz without! using a parametrization of ~:
(a) f(2) =273 on the upper half of the unit circle traversed from z =1 to z = —1.

1
e Since f(z) has an antiderivative F(z) = —52_2, by the fundamental theorem of line integrals we
have [ f(z)dz = F(~1) = F(1) =[0]
(b) f(z) = 2™ (n an integer with n # —1) on the counterclockwise boundary of the square with vertices 1,
+i.
n+1
T and the contour is closed, by the fundamental theorem

e Since f(z) has an antiderivative F'(z) =
of line integrals we have fv f(z)dz = @
(c) f(z) =322 on the curve v(t) = e — tan(t2)i for 0 <t < 1.
e Since f(z) has an antiderivative F(z) = 23, by the fundamental theorem of line integrals we have
J, F(z)dz = F(3(1) = F(3(0)) = | (¢ — itan 1)* — &% |

Re(z)? | Tm(z)?
(d) f(2) = €* on the portion of the ellipse (16(5))2 + HZ(ZQ)

e Since f(z) has an antiderivative F #, by the fundamental theorem of line integrals we have

[, f(z)dz = F(2mi) — F(In2) eln? '—‘

(e) f(2) =1/z on the polygonal path with successive vertices i, —1 + 7i, —20 — 254, and —i.

=1 clockwise from 2z =In2 to z = 27i.

e Note 1/z has an antiderivative F(z) = Log(z) on C\[0, c0) inside which this path lies.
e So by the fundamental theorem of line integrals, f“r f(z)dz = F(—i)—F(i) = Log(—t)—Log(i) = .
(f) f(z) = Log(z) on the polygonal path with successive vertices i, —1 + 7i, —20 — 257, and —i.

e Note that Log(z) is holomorphic on C\[0, c0) inside which this path lies.
e By the product rule we see F(z) = zLog(z) — z has derivative f(z) = Log(z), so by the fundamental

theorem of line integrals, [, f(2) dz = F(—i)—F(i) = [(~i)Log(—i)— (~i)] - [i Log(i) —i] =[ 27 + 2i],

1Obviously, since this is in Part I, we won’t actually know for sure that you didn’t use a parametrization, but read between the lines
on the directions here (namely, that you should be able to solve each part without using a parametrization).



3. For each function f on each closed contour =, calculate fv f(z)dz:

(a) f(z) = z~! on the counterclockwise boundary of the triangle with vertices 1 and —2 4 i+/3.
e Note f is holomorphic for all z # 0.
e We can deform this contour in C\{0} into the unit circle, and thus the integral is .
(b) f(2) = 27! on the counterclockwise boundary of the triangle with vertices —1 and —2 = 4+/3.

e Note f is holomorphic for all z # 0.
e Since this triangle does not contain z = 0, we can deform this contour to a point, and so the integral
is
(c) f(z) = z~! on the polygonal path with successive vertices 1, i, —1, —i, 2, 2i, —2, —2i, and 1.
e Note f is holomorphic for all z # 0.
e We can deform this contour in C\{0} into a path that winds twice around the unit circle, so the

integral is .

i . . Re(2)?  Im(2)?
d = on the counterclockwise boundary of the ellipse =1.
(d) f(z) =, 0 unter wi undary ip n2)? + 1
e Note f is holomorphic for all z # 0,4, and both of these points lie in the ellipse.
i 1 1
e Furthermore, from partial fraction decomposition we have — ! — = - — —, so we need only
2?2 —iz z—1 z
1 1
calculate [ = dz and | - dz.
Tz Yz—1
1
e For fv — dz we deform the contour into the unit circle to see the integral is 27i. For f,y -dz we
z z—1
deform the contour into the circle |z —i| = 1 and then substitute w = z — i to see that the integral

is 2mi.
1 1

on the counterclockwise boundary of the square with vertices +1 and +1 + 2.

i
e Therefore we have [ ———

— 1z
z
(e) f(z) = 211
e Note f is holomorphic for all z # i, —i, and ¢ lies inside the square while —¢ does not.

1/2 1/2
SE / - / -, so we need only
2241 z+41i z—1

e Furthermore, from partial fraction decomposition we have

1 1

-dz and [ dz.
z+1 v

calculate
f'V zZ—1

e Since —i is not in the square we see that fv dz by deforming the contour to a point. For

z+1
fv - dz we deform the contour to the circle |z — i| = 1 to see that the integral is 27i as earlier.
z—1
e Therefore we have [ b dz L b dz + 1f L dz
Wi Vi = — — = |7 |
72241 27 z+1 27 z—1

4. Let f(2) be continuous on a connected open region R. Prove that the following are equivalent (you may freely
appeal to theorems proven in class or in the notes; if you find yourself writing a long solution then you’ve
missed something):

(a) The line integral fy f(z)dz =0 for all closed contours v in R.
(b) There exists a holomorphic F(z) on R such that F'(z) = f(2).
(c¢) For any a,b € R and any contours ; and 7, in R from a to b, fm f(z)dz = fw f(z)d=.

e (a) implies (b): This is the existence of antiderivatives theorem from the notes.

(b) implies (c): This is independence of path: f% f(z)dz=F()— F(a) = fw f(z)dz.

(c) implies (a): Suppose « is closed. Take 71 = v and 2 to be constant at any point on 7. Then
[, f(z)dz =0, so the hypothesis of (c) yields immediately [ f(z)dz = 0.




5. The goal of this problem is to compute the integral I(zg) = f7 where v is the unit circle traversed once

zZ— 20
counterclockwise and |zp| # 1.
(a) If zg = re'® show that I(zp) = I(r). [Hint: Make a substitution.|

e We substitute z = €Y%, with dz = e?’d3. This substitution corresponds to a rotation of  radians
(clockwise going from z to Z, or counterclockwise going from Z to z), which does not change the

contour .
d 0dz dz
e Then we have I(z) = [, . 7220 =/, ewz — ie“’ =/, F —Zr = I(r) as required.
™ int
(b) Suppose r > 0 and r # 1. Show that f02 *()I;t—&-rz dt = 0.

2rsint

1—2rcost+r?
logarithm ranges from (r — 1)2 to (r 4+ 1) and r # 1, it is never zero.

e Observe that the derivative of In(1 — 2rcost + r?) is Since the argument of the

2 rsint 1
e Thus by the fundamental theorem of calculus we have fo R T —— dt = 3 In(1 — 2rcost +
r?)|2™, = 0 by periodicity.
11— t ifo<r<1 . . .
(c) Show that [; % dt = {Z)T ;f . ; : . |Hint: Substitute = tan(¢/2), which has dt =
2dx 1— 22 . . -,
——— and cost = ——. You may want to make a computer do the partial fraction decomposition.]
1+ a2 1+ 22
Making th ted substituti tan(t/2), which has df = —*_ and cost L= hdh
e Making the suggested substitution z = tan ich has dt = —— an = —— and has
g ugg u u r =ta , W T 22 cos 22
an integration range of (—oo, 00) for z yields -
-
/7r 1 —rcost g - 2/°° 1_T'1_|_x2 dx
o 1—2rcost+1r? N 0 1— 22 1+ 22
1—2r- + 72
1+ 22
B 2/0" (1+2%) —r(1 —2?) dx
B o (1+72)(1+22) —2r(1 —22) 1+a2
_ 2/°° (1—7r)+ (1 +7)2? dx
o A=2r+r2)+1Q+2r+r2)z2 1422

B 2/00 12 (2 —1)/2 ;
- 0 1+22 (1-2r+r2)+ (1+2r+7r2)a? .

> 1 o 1 r+1
= ﬁdzf SRR dxr
o l+=z 0 1+[T71m] r—1

1 d
z in the second integral yields [ 17u2 — g
— U

also, but with the order of integration preserved for » > 1 and reversed for r < 1. So for > 1 the
two integrals cancel and the sum is zero, while for » < 1 the integrals add and the sum is 7.

(d) Find the value of I(zg) in terms of z.

e The first integral is g while substituting u = T

e By (a) we just need to evaluate I(r). With y(t) = e for 0 < t < 27 we have 7/(t) = ie"" and
1 1

z—r et —p’

27 . om cost 4+ isint

1 )
o S . _ it
e Plugging in the parametrization then yields fy p— dz = |, T dt =1 [, (cost —1) T isini)
. rox (cost +isint)(cost —r —isint) gt =i gﬂl—rcost—m’sintdt
=1 =1 .
0 (cost —7)2 4+ sin?t O 1—2rcost+r?

e By (b) and (c) we see that this integral equals 0 when r > 1 and 4 - 2r when r < 1. So I(z) =
’27m' for |zg| < 1 and 0 for |z9] > 1 ‘




6. Recall that if 79 : [0,1] — C and ~; : [0,1] — C are continuous closed curves in a region R, we say they
are homotopic in R if there exists some continuous function h : [0,1] x [0,1] — R with h(s,0) = h(s,1) for
all s and h(0,t) = 7o(t) and h(1,t) = 1 (¢). Prove that being homotopic in R is an equivalence relation on
continuous closed curves in R. [Hint: For transitivity, use half of the interval to go from 7o to 71 and the
other half to go from 7, to v2.]

e Reflexive: To show v is homotopic to itself, simply take the trivial homotopy, with h(s,t) = ~(¢) for all
s.

e Symmetric: If 7o is homotopic to v, with h(s,0) = h(s,1), h(0
h(s,t) = h(1 — s,t). Then h has h(s,0) = h(s,1) = h(s,0) =
h(1,t) = h(0,t) = vo(¢) so h is a homotopy from ~; to .

o Transitive: Suppose 7o is homotopic to y; with hi(s,0) = hi(s, 1), h1(0,t) = v0(t), and hy(1,t) = 1(t),
and also that -, is homotopic to v2 with hi(s,0) = hq(s,1), h1(0,t) = 71(t), and hy(1,¢) = y2(t). Then

h1(2s,t for 0 < s<1/2
let h(s,t) = {1(5) or0<s<l/

1) = 70(t), and h(1,t) = 71(t), then let
h(s, 1) and h(0,t) = h(1,t) = () and

ha(2s —1,t) for1/2<s<1

e Since h; and hs are continuous and agree on the boundary s = 1/2, since hy(1,t) = v1(t) = h2(0,¢) for

each t, we see h is continuous. Furthermore h(s,0) = = =
ha(s,0) for1/2<s<1 ha(s,1) for1/2<s<1

h(s,1), and h(0,t) = vo(t) and h(1,t) = v2(t). So h is a homotopy from vy to v2 as desired.

7. [Challenge] Recall the definition of the length of a contour from problem 1.

(a) Suppose that 41 : [a,b] = C and 7, : [¢,d] — C are continuously differentiable and there exists a
continuously differentiable increasing function g : [a,b] — [¢,d] with g(a) = ¢ and ¢(b) = d such that

1 = ¥2 o g, show that f |v1 ()] dt = f |75(s)| ds. [Hint: Substitution.]
e Make the substitution ¢ = g(s). For t = a we have s = g(a) = ¢ and for t = b we have s = g(b) = d,
and also dt = ¢'(s) ds. Additionally note that ¢’(s) > 0 by the assumption that g is increasing,.
e Then substituting ¢t = in f |v;(t)| dt yields f 17, (g(s)| ¢'(s)ds = fj 11 (g(8))g'(s)] ds =
f |7%(s)| ds by the chaln rule and the fact that ¢’(s) = |¢'(s)] since ¢’'(s) > 0.

(b) Prove that the length of a contour is independent of the parametrization. [Hint: Sum (a).]

e Suppose we have two different parametrizations of the same contour. By breaking each at the points
where either one is nondifferentiable, we may assume that y =y U--- Uy, and ¥ =4 U--- U,
where each ~; and 7; is continuously differentiable and has the same endpoints.

e Then applying (a) to each pair (v;,%;) we see that the length of ~; equals the length of 4;. Summing
over all pieces and observing that the length integral is additive shows immediately that the length
of v equals the length of 7.

(c) Suppose that |f(z)| < M on the contour + of length s. Prove that ’f f(2) dz‘ < Ms.

e Suppose v : [a,b] — Cisacontour. Then ‘fv f(z) dz‘ =

Y ()t < [21FG@) ()] dt <

f: M|y (t)] dt = Mf |/(t)| dt = M s using the triangle inequahty and the fact that |f( ) <M
for all ¢.

hi(s,0) for0<s<1/2 ) hi(s,1) for0<s<1/2



