
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 5 Solutions

1. Find all possible complex values for each of these expressions (note that log always denotes the multivalued
complex logarithm):

(a) log(e).

• Since e = e1 we have log(e) = 1 + 2kπi for k ∈ Z.

(b) log(i).

• Since i = eiπ/2 we have log(i) = (π/2 + 2kπ)i for k ∈ Z.

(c) i2i.

• By de�nition we have ab = eb log(a). Since log(i) = (π/2+2kπ)i from (a), we see ii = e2i[(π/2+2kπ)i] =

e−π−4kπ for k ∈ Z.

(d) 4i.

• By de�nition we have ab = eb log(a), so since log 4 = ln 4 + 2kπi, we have 4i = ei[ln(4)+2kπi] =

ei ln 4−2kπ = e−2kπ[cos(ln 4) + i sin(ln 4)] for k ∈ Z.

(e) elog(i).

• From (b) we have log(i) = (π/2 + 2kπ)i so elog(i) = eiπ/2e2kπi = i .

(f) log(ei).

• Since ei is already in polar form we have log(ei) = i+ 2kπi for k ∈ Z.

(g) 11/6.

• By de�nition we have ab = eb log(a). Since log(1) = 2πki, we have 11/6 = e2πki/6 for k ∈ Z.

• There are six possible values of this expression: e0, e2πi/6, e4πi/6, e6πi/6, e8πi/6, e10πi/6 . We can see

that these are just the six di�erent sixth roots of unity.

(h) (11/6)2.

• Squaring the six values from (f) yields three values, the three cube roots of unity: e0, e4πi/6, e8πi/6 .

(i) 12.

• By de�nition we have ab = eb log(a). Since log(1) = 2kπi, we see 12 = e2(2kπi) = e4kπi = 1 . (So
here, in fact the entirely sensible expression 12 really does only have one possible complex value!)

(j) (12)1/6.

• Since 12 = 1 this is the same six values as (g): e0, e2πi/6, e4πi/6, e6πi/6, e8πi/6, e10πi/6 . Note in

particular that this answer is not the same as (h)!

(k) 12/6.

• By de�nition we have ab = eb log(a). Since log(1) = 2πki, we have 12/6 = 11/3 = e2πki/3 for k ∈ Z.

• There are three possible values of this expression: e0, e2πi/3, e4πi/3 . We can see that these are just

the three di�erent cube roots of unity. Note in particular that 12/6 is not the same as (12)1/6 from
(j)!

(l) (−1)1/π.
• By de�nition we have ab = eb log(a). Since log(−1) = (π + 2kπ)i, we see (−1)1/π = e[(π+2kπ)i]/π =

e(1+2k)i = cos(2k + 1) + i sin(2k + 1) for k ∈ Z.
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2. For each function f on each curve γ, calculate
´
γ
f(z) dz:

(a) f(z) = 1/z, γ(t) = eit for 0 ≤ t ≤ π/2.
• We compute γ′(t) = ieit and f(z) = z−1 = e−it.

• Thus
´
γ
z−1 dz =

´ π
0
e−it · ieit dt =

´ π/2
0

i dt = iπ/2 .

(b) f(z) = zn (n an integer with n 6= −1), γ(t) = eit for 0 ≤ t ≤ π/2.
• We compute γ′(t) = ieit and f(z) = zn = enit.

• Thus
´
γ
zn dz =

´ π/2
0

enit · ieit dt =
´ π/2
0

ie(n+1)it dt =
e(n+1)it

n+ 1
|π/2t=0 =

e(n+1)iπ/2 − 1

n+ 1
.

(c) f(z) = 3z2, γ(t) = t+ (1− t)i for 0 ≤ t ≤ 1.

• We compute γ′(t) = 1− i and f(z) = 3[t+ (1− t)i]2.
• Thus

´
γ
3z2 dz =

´ 1
0
3[t+ (1− t)i]2 · (1− i) dt =

´ 1
0
[(−3 + 12t− 6t2) + (3− 6t2)i] dt = 1 + i .

• Alternatively, since f(z) is holomorphic with antiderivative F (z) = z3, by path independence the

value is F (γ(1))− F (γ(0)) = 1− (−i) = 1 + i .

(d) f(z) = 3z2, γ(t) = t+ (1− t)i for 0 ≤ t ≤ 1.

• We compute γ′(t) = 1− i and f(z) = 3[t− (1− t)i]2.
• Thus

´
γ
3z2 dz =

´ 1
0
3[t− (1− t)i]2) · (1− i) dt =

´ 1
0
[(−3 + 6t2) + (3− 12t+ 6t2)i] dt = −1− i .

(e) f(z) = Log(z), γ(t) = 2eit for 0 ≤ t ≤ 2π, where (as usual) Log denotes the principal complex logarithm.

• We compute γ′(t) = 2ieit and f(z) = Log(2eit) = ln(2) + it for 0 ≤ t < 2π. Since the integral is not
a�ected by the jump discontinuity at t = 2π, we can ignore it.

• Then
´
γ
Log(z) dz =

´ 2π
0

[ln(2) + it] · 2ieit dt =
´ 2π
0

[−2teit + 2 ln(2)ieit] dt = (−2eit + 2iteit +

2 ln(2)eit)|2πt=0 = 4πi .

3. For each contour γ, give a parametrization and then evaluate
´
γ
f(z) dz:

(a) The circle |z − 1| = 2 traversed twice counterclockwise, where f(z) = z.

• We can take γ(t) = 1 + 2eit for 0 ≤ t ≤ 4π.

• Then γ′(t) = 2ieit and f(z) = z = 1 + 2e−it.

• Then
´
γ
f(z) dz =

´ 4π
0

(1 + 2e−it)(2ieit) dt =
´ 4π
0

[2ieit + 4i] dt = 16πi .

(b) The path that starts at 0, follows a straight line to 1+2i, and then follows a straight line to 4+2i, where
f(z) = z.

• There are two pieces. For the piece from 0 to 1 + 2i we can take γ1(t) = (1 + 2i)t for 0 ≤ t ≤ 1 and
for the piece from 1 + 2i to 4 + 2i we can take γ2(t) = (1 + 2i) + 3t for 0 ≤ t ≤ 1.

• For γ1 we get γ′1(t) = 1 + 2i and f(z) = (1 + 2i)t so
´
γ1
f(z) dz =

´ 1
0
(1 + 2i)2t dt = −3/2 + 2i.

• For γ2 we get γ′2(t) = 3 and f(z) = (1 + 2i) + 3t so
´
γ2
f(z) dz =

´ 1
0
3[(1 + 2i) + 3t)] dt = 15/2 + 6i.

• So the desired integral is the sum (−3/2 + 2i) + (15/2 + 6i) = 6 + 8i .

• Alternatively, using the fact that f is holomorphic with antiderivative F (z) = z2/2, by indepen-
dence of path / the fundamental theorem of calculus for holomorphic functions we see the integral´
γ
f(z) dz = F (4 + 2i)− F (0) = 6 + 8i .

(c) The counterclockwise boundary of the triangle with vertices 0, 2, and 1 + i, where f(z) = Re(z).

• There are three pieces. For the piece from 0 to 2 we can take γ1(t) = 2t for 0 ≤ t ≤ 1, for the piece
from 2 to 1 + i we can take γ2(t) = (1− t)2 + t(1 + i) = (2− t) + it for 0 ≤ t ≤ 1, and for the piece
from 1 + i to 0 we can take γ3(t) = (1− t)(1 + i) + t · 0 = (1− t) + (1− t)i for 0 ≤ t ≤ 1.

• For γ1 we get γ′1(t) = 2 and f(z) = 2t so
´
γ1
f(z) dz =

´ 1
0
(2t)(2) dt = 2.
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• For γ2 we get γ′2(t) = −1 + i and f(z) = 2− t so
´
γ2
f(z) dz =

´ 1
0
(2− t)(−1 + i) dt = −3

2
+

3

2
i.

• For γ3 we get γ′3(t) = −1− i and f(z) = 1− t so
´
γ3
f(z) dz =

´ 1
0
(1− t)(−1− i) dt = −1

2
− 1

2
i.

• So the desired integral is the sum 2 + (−3

2
+

3

2
i) + (−1

2
− 1

2
i) = i .

4. By di�erentiating a power series expansion, we can often show it satis�es a di�erential equation inside its
radius of convergence. Show the following (make sure to check the radius of convergence!):

(a) Show that f(z) =
∑∞
n=0

z2n

(2n)!
satis�es f ′′(z) = f(z) for all z ∈ C.

• First, by the ratio test, with a2n =
1

(2n)!
, we see that

a2n+2

a2n
=

1

(2n+ 1)(2n+ 2)
→ 0 as n→∞, so

the series has radius of convergence ∞.

• Then di�erentiating term-by-term yields f ′(z) =
∑∞
n=0

2nz2n−1

(2n)!
=

∑∞
n=1

z2n−1

(2n− 1)!
and then f ′′(z) =∑∞

n=1

(2n− 1)z2n−2

(2n− 1)!
=

∑∞
n=1

z2n−2

(2n− 2)!
=

∑∞
n=0

z2n

(2n)!
= f(z) by reindexing.

• Since f ′′(z) also has radius of convergence ∞, this means f ′′(z) = f(z) on all of C.

(b) Show that f(z) =
∑∞
n=1

zn

n
satis�es f ′(z) =

1

1− z
for |z| < 1.

• First note that f(z) has radius of convergence 1, as shown in problem 6(a) of homework 3.

• Then for |z| < 1 we have f ′(z) =
∑∞
n=1

nzn−1

n
=

∑∞
n=1 z

n−1 =
∑∞
n=0 z

n =
1

1− z
since this last

series is the usual geometric series which converges to
1

1− z
for |z| < 1.

(c) Show that f(z) =
∑∞
n=0

z2n

(n!)2
satis�es z2f ′′(z) + zf ′(z) = 4z2f(z) for all z ∈ C.

• First, by the ratio test, with a2n =
1

(n!)2
, we see that

a2n+2

a2n
=

1

(n+ 1)2
→ 0 as n → ∞, so the

series has radius of convergence ∞.

• Then di�erentiating term-by-term yields f ′(z) =
∑∞
n=0

2nz2n−1

(n!)2
=

∑∞
n=1

2z2n−1

n!(n− 1)!
so f ′′(z) =∑∞

n=1

2(2n− 1)z2n−2

n!(n− 1)!
.

• So then z2f ′′(z) =
∑∞
n=1

2(2n− 1)z2n

n!(n− 1)!
while zf ′(z) =

∑∞
n=1

2z2n

n!(n− 1)!
, so the sum z2f ′′(z) +

zf ′(z) =
∑∞
n=1

2(2n)z2n

n!(n− 1)!
=

∑∞
n=1

4z2n

[(n− 1)!]2
. But 4z2f(z) =

∑∞
n=0

4z2n+2

(n!)2
=

∑∞
n=1

4z2n

[(n− 1)!]2
,

so we do have z2f ′′(z) + zf ′(z) = 4z2f(z). Since both sides have radius of convergence ∞, this
means f ′′(z) = f(z) on all of C.

5. We can often construct series solutions to a di�erential equation involving a function f(z) by writing f(z) =∑∞
n=0 an(z − z0)

n, di�erentiating formally, and then solving for the coe�cients ai. An advantage to this
approach is that it can also provide an easy proof for uniqueness of the solution under the (often reasonable)
assumption that the solution is analytic at z = z0.

(a) Show that the unique analytic solution at z = 0 to f ′(z) = f(z) with f(0) = 1 is f(z) =
∑∞
n=0

zn

n!
= ez.

• Suppose f(z) =
∑∞
n=0 anz

n is analytic at z = 0 and has f ′(z) = f(z) and f(0) = 1.

• Then f(0) = 1 implies a0 = 1, and then since f ′(z) =
∑∞
n=0 nanz

n−1 =
∑∞
n=0(n + 1)an+1z

n, we
have (n+ 1)an+1 = an for each n.
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• So, since a0 = 1, we see successively that a1 = 1, a2 =
1

2
, a3 =

1

3!
, and then by a trivial induction

we have an =
1

n!
for each n.

• Thus, the only possible solution is f(z) =
∑∞
n=0

zn

n!
= ez. But since this function does satisfy all of

the conditions, it is the unique analytic solution.

(b) Find the terms up to order 4 in a series expansion for an analytic solution at z = 0 to the di�erential
equation f ′′(z) + 3zf(z) = 1 with f(0) = f ′(0) = 1.

• Suppose f(z) =
∑∞
n=0 anz

n is analytic at z = 0 and has f ′′(z) + 3zf(z) = 1 and f(0) = f ′(0) = 1.

• Then f(0) = f ′(0) = 1 yields a0 = a1 = 1, so since f ′′(z) =
∑∞
n=0 n(n − 1)anz

n−1 =
∑∞
n=0 n(n +

1)an+2z
n and 3zf(z) =

∑∞
n=0 3anz

n+1 =
∑∞
n=0 3an−1z

n, comparing coe�cients yields
∑∞
n=0[3an−1+

n(n+ 1)an+2]z
n = 1.

• For n = 0 this yields 2a2 = 1 so a2 =
1

2
, and for larger n we get an+2 = − 3an−1

n(n+ 1)
.

• So starting with a0 = 1, a1 = 1, a2 =
1

2
, we get a3 = −1

2
and a4 = −1

4
, yielding f(z) =

1 + z +
1

2
z2 − 1

2
z3 − 1

4
z4 + · · · .

(c) Find the terms up to order 4 in a series expansion for an analytic solution at z = 1 to the di�erential
equation f ′′(z) + f ′(z) + (z − 1)2f(z) = 0 with f(1) = f ′(1) = 1.

• Suppose f(z) =
∑∞
n=0 an(z − 1)n is analytic at z = 1 and has f ′′(z) + f ′(z) + (z − 1)2f(z) = 0 and

f(1) = f ′(1) = 1. Set w = z − 1, so that the di�erential equation is f ′′(w) + f ′(w) + w2f(w) = 0.

• Then f(1) = f ′(1) = 1 yields a0 = a1 = 1, so since f ′(w) =
∑∞
n=0 nanw

n−1 =
∑∞
n=0(n+ 1)an+1w

n,
f ′′(w) =

∑∞
n=0(n + 1)(n + 2)an+2w

n, and w2f(w) =
∑∞
n=0 an−2w

n, comparing coe�cients yields∑∞
n=0[(n+ 1)(n+ 2)an+2 + (n+ 1)an+1 + an−2]w

n = 0.

• For n = 0 we obtain 2a2 + a1 = 0 so a2 = −1

2
. For n = 1 we obtain 6a3 + 2a2 = 0 so a3 =

1

6
.

Finally, for n ≥ 2 we have an+2 = −an−2 + (n+ 1)an+1

(n+ 1)(n+ 2)
which gives a4 = −1 + 3a3

3 · 4
= −1

8
.

• Thus we obtain f(z) = 1 + (z − 1)− 1

2
(z − 1)2 +

1

6
(z − 1)3 − 1

8
(z − 1)4 + · · · .

6. The goal of this problem is to prove (versions of) L'Hôpital's Rule for
0

0
limits of holomorphic and analytic

functions.

(a) Suppose that f and g are holomorphic at z = a, and that f(a) = g(a) = 0 where g′(a) 6= 0. Prove that

limz→a
f(z)

g(z)
=
f ′(a)

g′(a)
. [Hint: Evaluate

[f(z)− f(a)]/(z − a)
[g(z)− g(a)]/(z − a)

.]

• Per the hint, for z 6= a we have
f(z)

g(z)
=
f(z)− f(a)
g(z)− g(a)

=
[f(z)− f(a)]/(z − a)
[g(z)− g(a)]/(z − a)

.

• Taking the limit as z → a then yields limz→a
f(z)

g(z)
= limz→a

[f(z)− f(a)]/(z − a)
[g(z)− g(a)]/(z − a)

, but since the

limit of the numerator is f ′(a) and the limit of the denominator is g′(a) 6= 0, the limit of the quotient
is the quotient of the limits, namely f ′(a)/g′(a).

(b) Suppose that f and g are analytic at z = a and that f(a) = g(a) = 0 where g has order d at z = a (i.e., the

�rst nonzero coe�cient in the series expansion for g is the coe�cient of (z−a)d). Prove that limz→a
f(z)

g(z)

exists if and only if f has order at least d at z = a, and in such a case, limz→a
f(z)

g(z)
=
f (d)(a)

g(d)(a)
. [Hint:

Restrict attention to a disc of positive radius where f and g have their only zero at z = a.]
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• If f is identically zero the result is trivial. Otherwise, as noted in class, by the uniqueness result
there exists a disc of positive radius centered at a such that f has its only zero at z = a inside the
disc, and likewise there exists such a disc for g. Let R be the smaller of the radii of these two discs.

• Now let f(z) = ae(z−a)e+ae+1(z−a)e+1+ · · · and g(z) = bd(z−a)d+ bd+1(z−a)d+1+ · · · , where
both expansions converge on the disc |z − a| < R for some positive R, and f(z), g(z) 6= 0 except at
z = a.

• Then for z 6= a in the disc, we have
f(z)

g(z)
=
ae(z − a)e + ae+1(z − a)e+1 + · · ·
bd(z − a)d + bd+1(z − a)d+1 + · · ·

= (z−a)e−d ae + ae+1(z − a) + · · ·
bd + bd+1(z − a) + · · ·

.

• As z → a, the second quantity has limit
ae
bd

because the two corresponding power series are both

continuous at z = a.

• Therefore, the limit exists if and only if limz→a(z − a)e−d exists, and that is clearly true only when
e ≥ d: namely, when f vanishes to order at least d.

• In that case, the value of the limit equals 0 if e > d (since the exponent on z − a is positive) and in

that case f (d)(a) = 0 so the limit value is
f (d)(a)

g(d)(a)
, and otherwise if e = d then the value of the limit

is
ae
bd

=
ad
bd

=
f (d)(a)/d!

g(d)(a)/d!
=
f (d)(a)

g(d)(a)
as claimed.

7. [Challenge] The goal of this problem is to give an integral whose evaluation via Riemann sums is actually
easier than most other approaches. Fix a > 1 and consider the integral Ia =

´ π
0
ln(a2 − 2a cosx+ 1) dx.

(a) Show that
∏n−1
k=1(a

2 − 2a cos
kπ

n
+ 1) =

a2n − 1

a2 − 1
. [Hint: Factor in C.]

• First observe that a2 − 2a cos
kπ

n
+ 1 = (a− e2πki/n)(a− e−2πki/n) by direct expansion.

• Therefore,
∏n−1
k=1(a

2 − 2a cos
kπ

n
+ 1) =

∏n−1
k=1(a− e2πki/n)(a− e−2πki/n).

• If we now multiply this expression by a2 − 1 = (a − e0πi/n)(a − e2nπi/n), we obtain the product∏2n−1
j=0 (a− e2πji/n), which is the factorization of a2n − 1.

• Thus we have
∏n−1
k=1(a

2 − 2a cos
kπ

n
+ 1) =

a2n − 1

a2 − 1
as claimed.

(b) Show that the right-endpoint Riemann sum for Ia with partition P = {0, π/n, 2π/n, . . . , π(n− 1)/n, π}

is equal to
π

n
ln
a2n − 1

a2 − 1
+
π

n
ln(a+ 1)2.

• Since each interval has width π/n the Riemann sum is
π

n

∑n
k=1 ln(a

2 − 2a cos
kπ

n
+ 1).

• By (a), we have
∏n−1
k=1(a

2 − 2a cos
kπ

n
+ 1) =

a2n − 1

a2 − 1
, so since logarithms turn products into sums,

we see that
∑n−1
k=1 ln(a

2 − 2a cos
kπ

n
+ 1) = ln[

∏n−1
k=1(a

2 − 2a cos
kπ

n
+ 1)] = ln

a2n − 1

a2 − 1
.

• Thus after taking out the last term, the Riemann sum simpli�es to
π

n
ln
a2n − 1

a2 − 1
+
π

n
ln(a+ 1)2.

(c) Show that the value of the integral Ia is 2π ln a.

• Since a2− 2a cosx+1 ≥ a2− 2a+1 = (a− 1)2 > 0 the integral is well de�ned hence equals the limit
of its Riemann sums.

• The Riemann sum equals
π

n
ln
a2n − 1

a2 − 1
+
π

n
ln(a+ 1)2 =

π

n
ln(a2n − 1) +

π

n
ln
a+ 1

a− 1
from (b).

• The limit of the second term is zero, while the limit of the �rst term we can compute using L'Hôpital's

rule: limn→∞
π ln(a2n − 1)

n
= limn→∞

πa2n ln(a2)

a2n − 1
= limn→∞

2π ln a

1− a−2n
= 2π ln a. So the limit

equals 2π ln a as claimed.

5


