- 1. Find all possible complex values for each of these expressions (note that log always denotes the multivalued complex logarithm):
 - (a) $\log(e)$.
 - Since $e = e^1$ we have $\log(e) = \boxed{1 + 2k\pi i}$ for $k \in \mathbb{Z}$.
 - (b) $\log(i)$.
 - Since $i = e^{i\pi/2}$ we have $\log(i) = \boxed{(\pi/2 + 2k\pi)i}$ for $k \in \mathbb{Z}$.
 - (c) i^{2i} .
 - By definition we have $a^b = e^{b \log(a)}$. Since $\log(i) = (\pi/2 + 2k\pi)i$ from (a), we see $i^i = e^{2i[(\pi/2 + 2k\pi)i]} = e^{-\pi 4k\pi}$ for $k \in \mathbb{Z}$.
 - (d) 4^{i} .
 - By definition we have $a^b = e^{b \log(a)}$, so since $\log 4 = \ln 4 + 2k\pi i$, we have $4^i = e^{i[\ln(4) + 2k\pi i]} = e^{i \ln 4 2k\pi} = e^{-2k\pi} [\cos(\ln 4) + i\sin(\ln 4)]$ for $k \in \mathbb{Z}$.
 - (e) $e^{\log(i)}$.
 - From (b) we have $\log(i) = (\pi/2 + 2k\pi)i$ so $e^{\log(i)} = e^{i\pi/2}e^{2k\pi i} = [i]$.
 - (f) $\log(e^i)$.
 - Since e^i is already in polar form we have $\log(e^i) = i + 2k\pi i$ for $k \in \mathbb{Z}$.
 - (g) $1^{1/6}$.
 - By definition we have $a^b = e^{b \log(a)}$. Since $\log(1) = 2\pi ki$, we have $1^{1/6} = e^{2\pi ki/6}$ for $k \in \mathbb{Z}$.
 - There are six possible values of this expression: $e^0, e^{2\pi i/6}, e^{4\pi i/6}, e^{6\pi i/6}, e^{8\pi i/6}, e^{10\pi i/6}$. We can see that these are just the six different sixth roots of unity.
 - (h) $(1^{1/6})^2$.
 - Squaring the six values from (f) yields three values, the three cube roots of unity: $e^0, e^{4\pi i/6}, e^{8\pi i/6}$
 - (i) 1^2 .
 - By definition we have $a^b = e^{b \log(a)}$. Since $\log(1) = 2k\pi i$, we see $1^2 = e^{2(2k\pi i)} = e^{4k\pi i} = \boxed{1}$. (So here, in fact the entirely sensible expression 1^2 really does only have one possible complex value!)
 - (i) $(1^2)^{1/6}$.
 - Since $1^2 = 1$ this is the same six values as (g): $e^0, e^{2\pi i/6}, e^{4\pi i/6}, e^{6\pi i/6}, e^{8\pi i/6}, e^{10\pi i/6}$. Note in particular that this answer is *not* the same as (h)!
 - (k) $1^{2/6}$.
 - By definition we have $a^b = e^{b \log(a)}$. Since $\log(1) = 2\pi ki$, we have $1^{2/6} = 1^{1/3} = e^{2\pi ki/3}$ for $k \in \mathbb{Z}$.
 - There are three possible values of this expression: $e^0, e^{2\pi i/3}, e^{4\pi i/3}$. We can see that these are just the three different cube roots of unity. Note in particular that $1^{2/6}$ is *not* the same as $(1^2)^{1/6}$ from (j)!
 - (l) $(-1)^{1/\pi}$.
 - By definition we have $a^b = e^{b \log(a)}$. Since $\log(-1) = (\pi + 2k\pi)i$, we see $(-1)^{1/\pi} = e^{[(\pi + 2k\pi)i]/\pi} = e^{(1+2k)i} = \cos(2k+1) + i\sin(2k+1)$ for $k \in \mathbb{Z}$.

- 2. For each function f on each curve γ , calculate $\int_{\gamma} f(z) dz$:
 - (a) f(z) = 1/z, $\gamma(t) = e^{it}$ for $0 \le t \le \pi/2$.
 - We compute $\gamma'(t) = ie^{it}$ and $f(z) = z^{-1} = e^{-it}$.
 - Thus $\int_{\gamma} z^{-1} dz = \int_{0}^{\pi} e^{-it} \cdot ie^{it} dt = \int_{0}^{\pi/2} i dt = \boxed{i\pi/2}$
 - (b) $f(z) = z^n$ (n an integer with $n \neq -1$), $\gamma(t) = e^{it}$ for $0 \leq t \leq \pi/2$.
 - We compute $\gamma'(t) = ie^{it}$ and $f(z) = z^n = e^{nit}$.
 - Thus $\int_{\gamma} z^n dz = \int_0^{\pi/2} e^{nit} \cdot i e^{it} dt = \int_0^{\pi/2} i e^{(n+1)it} dt = \frac{e^{(n+1)it}}{n+1} \Big|_{t=0}^{\pi/2} = \boxed{\frac{e^{(n+1)i\pi/2} 1}{n+1}}$
 - (c) $f(z) = 3z^2$, $\gamma(t) = t + (1-t)i$ for $0 \le t \le 1$.
 - We compute $\gamma'(t) = 1 i$ and $f(z) = 3[t + (1 t)i]^2$.
 - Thus $\int_{\gamma} 3z^2 dz = \int_0^1 3[t + (1-t)i]^2 \cdot (1-i) dt = \int_0^1 [(-3+12t-6t^2) + (3-6t^2)i] dt = \boxed{1+i}$
 - Alternatively, since f(z) is holomorphic with antiderivative $F(z) = z^3$, by path independence the value is $F(\gamma(1)) F(\gamma(0)) = 1 (-i) = \boxed{1+i}$.
 - (d) $f(z) = 3\overline{z}^2$, $\gamma(t) = t + (1 t)i$ for $0 \le t \le 1$.
 - We compute $\gamma'(t) = 1 i$ and $f(z) = 3[t (1 t)i]^2$.
 - Thus $\int_{\gamma} 3\overline{z}^2 dz = \int_0^1 3[t (1-t)i]^2 \cdot (1-i) dt = \int_0^1 [(-3+6t^2) + (3-12t+6t^2)i] dt = \boxed{-1-i}$
 - (e) f(z) = Log(z), $\gamma(t) = 2e^{it}$ for $0 \le t \le 2\pi$, where (as usual) Log denotes the principal complex logarithm.
 - We compute $\gamma'(t) = 2ie^{it}$ and $f(z) = \text{Log}(2e^{it}) = \ln(2) + it$ for $0 \le t < 2\pi$. Since the integral is not affected by the jump discontinuity at $t = 2\pi$, we can ignore it.
 - Then $\int_{\gamma} \text{Log}(z) dz = \int_{0}^{2\pi} [\ln(2) + it] \cdot 2ie^{it} dt = \int_{0}^{2\pi} [-2te^{it} + 2\ln(2)ie^{it}] dt = (-2e^{it} + 2ite^{it} + 2\ln(2)e^{it})|_{t=0}^{2\pi} = \boxed{4\pi i}$.
- 3. For each contour γ , give a parametrization and then evaluate $\int_{\gamma} f(z) dz$:
 - (a) The circle |z-1|=2 traversed twice counterclockwise, where $f(z)=\overline{z}$.
 - We can take $\gamma(t) = 1 + 2e^{it}$ for $0 < t < 4\pi$.
 - Then $\gamma'(t) = 2ie^{it}$ and $f(z) = \overline{z} = 1 + 2e^{-it}$
 - Then $\int_{\gamma} f(z) dz = \int_{0}^{4\pi} (1 + 2e^{-it})(2ie^{it}) dt = \int_{0}^{4\pi} [2ie^{it} + 4i] dt = \boxed{16\pi i}$
 - (b) The path that starts at 0, follows a straight line to 1+2i, and then follows a straight line to 4+2i, where f(z)=z.
 - There are two pieces. For the piece from 0 to 1+2i we can take $\gamma_1(t)=(1+2i)t$ for $0 \le t \le 1$ and for the piece from 1+2i to 4+2i we can take $\gamma_2(t)=(1+2i)+3t$ for $0 \le t \le 1$.
 - For γ_1 we get $\gamma'_1(t) = 1 + 2i$ and f(z) = (1 + 2i)t so $\int_{\gamma_1} f(z) dz = \int_0^1 (1 + 2i)^2 t dt = -3/2 + 2i$.
 - For γ_2 we get $\gamma_2'(t) = 3$ and f(z) = (1+2i) + 3t so $\int_{\gamma_2} f(z) dz = \int_0^1 3[(1+2i) + 3t)] dt = 15/2 + 6i$.
 - So the desired integral is the sum $(-3/2+2i)+(15/2+6i)=\boxed{6+8i}$.
 - Alternatively, using the fact that f is holomorphic with antiderivative $F(z) = z^2/2$, by independence of path / the fundamental theorem of calculus for holomorphic functions we see the integral $\int_{\gamma} f(z) dz = F(4+2i) F(0) = \boxed{6+8i}$.
 - (c) The counterclockwise boundary of the triangle with vertices 0, 2, and 1+i, where f(z) = Re(z).
 - There are three pieces. For the piece from 0 to 2 we can take $\gamma_1(t) = 2t$ for $0 \le t \le 1$, for the piece from 2 to 1+i we can take $\gamma_2(t) = (1-t)2 + t(1+i) = (2-t) + it$ for $0 \le t \le 1$, and for the piece from 1+i to 0 we can take $\gamma_3(t) = (1-t)(1+i) + t \cdot 0 = (1-t) + (1-t)i$ for $0 \le t \le 1$.
 - For γ_1 we get $\gamma'_1(t) = 2$ and f(z) = 2t so $\int_{\gamma_1} f(z) dz = \int_0^1 (2t)(2) dt = 2$.

- For γ_2 we get $\gamma_2'(t) = -1 + i$ and f(z) = 2 t so $\int_{\gamma_2} f(z) dz = \int_0^1 (2 t)(-1 + i) dt = -\frac{3}{2} + \frac{3}{2}i$.
- For γ_3 we get $\gamma_3'(t) = -1 i$ and f(z) = 1 t so $\int_{\gamma_3} f(z) dz = \int_0^1 (1 t)(-1 i) dt = -\frac{1}{2} \frac{1}{2}i$.
- So the desired integral is the sum $2 + \left(-\frac{3}{2} + \frac{3}{2}i\right) + \left(-\frac{1}{2} \frac{1}{2}i\right) = \boxed{i}$
- 4. By differentiating a power series expansion, we can often show it satisfies a differential equation inside its radius of convergence. Show the following (make sure to check the radius of convergence!):
 - (a) Show that $f(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$ satisfies f''(z) = f(z) for all $z \in \mathbb{C}$.
 - First, by the ratio test, with $a_{2n} = \frac{1}{(2n)!}$, we see that $\frac{a_{2n+2}}{a_{2n}} = \frac{1}{(2n+1)(2n+2)} \to 0$ as $n \to \infty$, so the series has radius of convergence ∞
 - Then differentiating term-by-term yields $f'(z) = \sum_{n=0}^{\infty} \frac{2nz^{2n-1}}{(2n)!} = \sum_{n=1}^{\infty} \frac{z^{2n-1}}{(2n-1)!}$ and then $f''(z) = \sum_{n=0}^{\infty} \frac{z^{2n-1}}{(2n-1)!}$ $\textstyle \sum_{n=1}^{\infty} \frac{(2n-1)z^{2n-2}}{(2n-1)!} = \sum_{n=1}^{\infty} \frac{z^{2n-2}}{(2n-2)!} = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} = f(z) \text{ by reindexing.}$
 - Since f''(z) also has radius of convergence ∞ , this means f''(z) = f(z) on all of \mathbb{C} .
 - (b) Show that $f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ satisfies $f'(z) = \frac{1}{1-z}$ for |z| < 1.
 - First note that f(z) has radius of convergence 1, as shown in problem 6(a) of homework 3.
 - Then for |z| < 1 we have $f'(z) = \sum_{n=1}^{\infty} \frac{nz^{n-1}}{n} = \sum_{n=1}^{\infty} z^{n-1} = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ since this last series is the usual geometric series which converges to $\frac{1}{1-z}$ for |z|<1.
 - (c) Show that $f(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(n!)^2}$ satisfies $z^2 f''(z) + z f'(z) = 4z^2 f(z)$ for all $z \in \mathbb{C}$.
 - First, by the ratio test, with $a_{2n} = \frac{1}{(n!)^2}$, we see that $\frac{a_{2n+2}}{a_{2n}} = \frac{1}{(n+1)^2} \to 0$ as $n \to \infty$, so the series has radius of convergence ∞ .
 - Then differentiating term-by-term yields $f'(z) = \sum_{n=0}^{\infty} \frac{2nz^{2n-1}}{(n!)^2} = \sum_{n=1}^{\infty} \frac{2z^{2n-1}}{n!(n-1)!}$ so $f''(z) = \sum_{n=0}^{\infty} \frac{2nz^{2n-1}}{n!(n-1)!}$ $\sum_{n=1}^{\infty} \frac{2(2n-1)z^{2n-2}}{n!(n-1)!}.$
 - So then $z^2 f''(z) = \sum_{n=1}^{\infty} \frac{2(2n-1)z^{2n}}{n!(n-1)!}$ while $zf'(z) = \sum_{n=1}^{\infty} \frac{2z^{2n}}{n!(n-1)!}$, so the sum $z^2 f''(z) + \sum_{n=1}^{\infty} \frac{2z^{2n}}{n!(n-1)!}$ $zf'(z) = \sum_{n=1}^{\infty} \frac{2(2n)z^{2n}}{n!(n-1)!} = \sum_{n=1}^{\infty} \frac{4z^{2n}}{[(n-1)!]^2}. \text{ But } 4z^2f(z) = \sum_{n=0}^{\infty} \frac{4z^{2n+2}}{(n!)^2} = \sum_{n=1}^{\infty} \frac{4z^{2n}}{[(n-1)!]^2},$ so we do have $z^2f''(z)+zf'(z)=4z^2f(z)$. Since both sides have radius of convergence ∞ , this means f''(z) = f(z) on all of \mathbb{C} .
- 5. We can often construct series solutions to a differential equation involving a function f(z) by writing f(z) $\sum_{n=0}^{\infty} a_n(z-z_0)^n$, differentiating formally, and then solving for the coefficients a_i . An advantage to this approach is that it can also provide an easy proof for uniqueness of the solution under the (often reasonable) assumption that the solution is analytic at $z=z_0$.
 - (a) Show that the unique analytic solution at z=0 to f'(z)=f(z) with f(0)=1 is $f(z)=\sum_{n=0}^{\infty}\frac{z^n}{n!}=e^z$.

 - Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic at z = 0 and has f'(z) = f(z) and f(0) = 1. Then f(0) = 1 implies $a_0 = 1$, and then since $f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n$, we have $(n+1)a_{n+1} = a_n$ for each n.

- So, since $a_0 = 1$, we see successively that $a_1 = 1$, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3!}$, and then by a trivial induction we have $a_n = \frac{1}{n!}$ for each n.
- Thus, the only possible solution is $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$. But since this function does satisfy all of the conditions, it is the unique analytic solution.
- (b) Find the terms up to order 4 in a series expansion for an analytic solution at z=0 to the differential equation f''(z) + 3zf(z) = 1 with f(0) = f'(0) = 1.

 - Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic at z=0 and has f''(z) + 3z f(z) = 1 and f(0) = f'(0) = 1. Then f(0) = f'(0) = 1 yields $a_0 = a_1 = 1$, so since $f''(z) = \sum_{n=0}^{\infty} n(n-1)a_n z^{n-1} = \sum_{n=0}^{\infty} n(n+1)a_{n+2}z^n$ and $3z f(z) = \sum_{n=0}^{\infty} 3a_n z^{n+1} = \sum_{n=0}^{\infty} 3a_{n-1}z^n$, comparing coefficients yields $\sum_{n=0}^{\infty} [3a_{n-1} + n(n+1)a_{n+2}]z^n = 1$.
 - For n = 0 this yields $2a_2 = 1$ so $a_2 = \frac{1}{2}$, and for larger n we get $a_{n+2} = -\frac{3a_{n-1}}{n(n+1)}$
 - So starting with $a_0=1,\ a_1=1,\ a_2=\frac{1}{2},$ we get $a_3=-\frac{1}{2}$ and $a_4=-\frac{1}{4},$ yielding $f(z)=\frac{1}{2}$ $1+z+\frac{1}{2}z^2-\frac{1}{2}z^3-\frac{1}{4}z^4+\cdots$
- (c) Find the terms up to order 4 in a series expansion for an analytic solution at z=1 to the differential equation $f''(z) + f'(z) + (z-1)^2 f(z) = 0$ with f(1) = f'(1) = 1.
 - Suppose $f(z) = \sum_{n=0}^{\infty} a_n(z-1)^n$ is analytic at z=1 and has $f''(z) + f'(z) + (z-1)^2 f(z) = 0$ and f(1) = f'(1) = 1. Set w = z 1, so that the differential equation is $f''(w) + f'(w) + w^2 f(w) = 0$.
 - Then f(1) = f'(1) = 1 yields $a_0 = a_1 = 1$, so since $f'(w) = \sum_{n=0}^{\infty} n a_n w^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} w^n$, $f''(w) = \sum_{n=0}^{\infty} (n+1)(n+2) a_{n+2} w^n$, and $w^2 f(w) = \sum_{n=0}^{\infty} a_{n-2} w^n$, comparing coefficients yields $\sum_{n=0}^{\infty} [(n+1)(n+2) a_{n+2} + (n+1) a_{n+1} + a_{n-2}] w^n = 0$.
 - For n = 0 we obtain $2a_2 + a_1 = 0$ so $a_2 = -\frac{1}{2}$. For n = 1 we obtain $6a_3 + 2a_2 = 0$ so $a_3 = \frac{1}{6}$. Finally, for $n \ge 2$ we have $a_{n+2} = -\frac{a_{n-2} + (n+1)a_{n+1}}{(n+1)(n+2)}$ which gives $a_4 = -\frac{1+3a_3}{3\cdot 4} = -\frac{1}{8}$.
 - Thus we obtain $f(z) = \left| 1 + (z-1) \frac{1}{2}(z-1)^2 + \frac{1}{6}(z-1)^3 \frac{1}{8}(z-1)^4 + \cdots \right|$
- 6. The goal of this problem is to prove (versions of) L'Hôpital's Rule for $\frac{0}{0}$ limits of holomorphic and analytic functions.
 - (a) Suppose that f and g are holomorphic at z=a, and that f(a)=g(a)=0 where $g'(a)\neq 0$. Prove that $\lim_{z\to a} \frac{f(z)}{g(z)} = \frac{f'(a)}{g'(a)}$. [Hint: Evaluate $\frac{[f(z) - f(a)]/(z - a)}{[g(z) - g(a)]/(z - a)}$.]
 - Per the hint, for $z \neq a$ we have $\frac{f(z)}{g(z)} = \frac{f(z) f(a)}{g(z) g(a)} = \frac{[f(z) f(a)]/(z a)}{[g(z) g(a)]/(z a)}$.
 - Taking the limit as $z \to a$ then yields $\lim_{z \to a} \frac{f(z)}{g(z)} = \lim_{z \to a} \frac{[f(z) f(a)]/(z a)}{[g(z) g(a)]/(z a)}$, but since the limit of the numerator is f'(a) and the limit of the denominator is $g'(a) \neq 0$, the limit of the quotient is the quotient of the limits, namely f'(a)/g'(a).
 - (b) Suppose that f and g are analytic at z=a and that f(a)=g(a)=0 where g has order d at z=a (i.e., the first nonzero coefficient in the series expansion for g is the coefficient of $(z-a)^d$). Prove that $\lim_{z\to a} \frac{f(z)}{g(z)}$ exists if and only if f has order at least d at z = a, and in such a case, $\lim_{z\to a} \frac{f(z)}{g(z)} = \frac{f^{(d)}(a)}{g^{(d)}(a)}$. [Hint: Restrict attention to a disc of positive radius where f and g have their only zero at z=a.

- If f is identically zero the result is trivial. Otherwise, as noted in class, by the uniqueness result there exists a disc of positive radius centered at a such that f has its only zero at z = a inside the disc, and likewise there exists such a disc for g. Let R be the smaller of the radii of these two discs.
- Now let $f(z) = a_e(z-a)^e + a_{e+1}(z-a)^{e+1} + \cdots$ and $g(z) = b_d(z-a)^d + b_{d+1}(z-a)^{d+1} + \cdots$, where both expansions converge on the disc |z-a| < R for some positive R, and $f(z), g(z) \neq 0$ except at z = a.
- Then for $z \neq a$ in the disc, we have $\frac{f(z)}{g(z)} = \frac{a_e(z-a)^e + a_{e+1}(z-a)^{e+1} + \cdots}{b_d(z-a)^d + b_{d+1}(z-a)^{d+1} + \cdots} = (z-a)^{e-d} \frac{a_e + a_{e+1}(z-a) + \cdots}{b_d + b_{d+1}(z-a) + \cdots}$.
- As $z \to a$, the second quantity has limit $\frac{a_e}{b_d}$ because the two corresponding power series are both continuous at z = a.
- Therefore, the limit exists if and only if $\lim_{z\to a}(z-a)^{e-d}$ exists, and that is clearly true only when $e\geq d$: namely, when f vanishes to order at least d.
- In that case, the value of the limit equals 0 if e > d (since the exponent on z a is positive) and in that case $f^{(d)}(a) = 0$ so the limit value is $\frac{f^{(d)}(a)}{g^{(d)}(a)}$, and otherwise if e = d then the value of the limit is $\frac{a_e}{b_d} = \frac{a_d}{b_d} = \frac{f^{(d)}(a)/d!}{g^{(d)}(a)/d!} = \frac{f^{(d)}(a)}{g^{(d)}(a)}$ as claimed.
- 7. [Challenge] The goal of this problem is to give an integral whose evaluation via Riemann sums is actually easier than most other approaches. Fix a > 1 and consider the integral $I_a = \int_0^{\pi} \ln(a^2 2a\cos x + 1) dx$.
 - (a) Show that $\prod_{k=1}^{n-1} (a^2 2a \cos \frac{k\pi}{n} + 1) = \frac{a^{2n} 1}{a^2 1}$. [Hint: Factor in C.]
 - First observe that $a^2 2a\cos\frac{k\pi}{n} + 1 = (a e^{2\pi ki/n})(a e^{-2\pi ki/n})$ by direct expansion.
 - Therefore, $\prod_{k=1}^{n-1} (a^2 2a \cos \frac{k\pi}{n} + 1) = \prod_{k=1}^{n-1} (a e^{2\pi ki/n})(a e^{-2\pi ki/n}).$
 - If we now multiply this expression by $a^2 1 = (a e^{0\pi i/n})(a e^{2n\pi i/n})$, we obtain the product $\prod_{j=0}^{2n-1} (a e^{2\pi ji/n})$, which is the factorization of $a^{2n} 1$.
 - Thus we have $\prod_{k=1}^{n-1} (a^2 2a \cos \frac{k\pi}{n} + 1) = \frac{a^{2n} 1}{a^2 1}$ as claimed.
 - (b) Show that the right-endpoint Riemann sum for I_a with partition $P = \{0, \pi/n, 2\pi/n, \dots, \pi(n-1)/n, \pi\}$ is equal to $\frac{\pi}{n} \ln \frac{a^{2n}-1}{a^2-1} + \frac{\pi}{n} \ln(a+1)^2$.
 - Since each interval has width π/n the Riemann sum is $\frac{\pi}{n} \sum_{k=1}^{n} \ln(a^2 2a\cos\frac{k\pi}{n} + 1)$.
 - By (a), we have $\prod_{k=1}^{n-1} (a^2 2a \cos \frac{k\pi}{n} + 1) = \frac{a^{2n} 1}{a^2 1}$, so since logarithms turn products into sums, we see that $\sum_{k=1}^{n-1} \ln(a^2 2a \cos \frac{k\pi}{n} + 1) = \ln[\prod_{k=1}^{n-1} (a^2 2a \cos \frac{k\pi}{n} + 1)] = \ln \frac{a^{2n} 1}{a^2 1}$.
 - Thus after taking out the last term, the Riemann sum simplifies to $\frac{\pi}{n} \ln \frac{a^{2n}-1}{a^2-1} + \frac{\pi}{n} \ln(a+1)^2$.
 - (c) Show that the value of the integral I_a is $2\pi \ln a$.
 - Since $a^2 2a \cos x + 1 \ge a^2 2a + 1 = (a 1)^2 > 0$ the integral is well defined hence equals the limit of its Riemann sums.
 - The Riemann sum equals $\frac{\pi}{n} \ln \frac{a^{2n} 1}{a^2 1} + \frac{\pi}{n} \ln(a+1)^2 = \frac{\pi}{n} \ln(a^{2n} 1) + \frac{\pi}{n} \ln \frac{a+1}{a-1}$ from (b).
 - The limit of the second term is zero, while the limit of the first term we can compute using L'Hôpital's rule: $\lim_{n\to\infty}\frac{\pi\ln(a^{2n}-1)}{n}=\lim_{n\to\infty}\frac{\pi a^{2n}\ln(a^2)}{a^{2n}-1}=\lim_{n\to\infty}\frac{2\pi\ln a}{1-a^{-2n}}=2\pi\ln a$. So the limit equals $2\pi\ln a$ as claimed.