E. Dummit’s Math 4555 ~ Complex Analysis, Fall 2025 ~ Homework 5 Solutions

1. Find all possible complex values for each of these expressions (note that log always denotes the multivalued
complex logarithm):

(a)

(b)

O]

log(e).

e Since e = ¢! we have log(e) = for k € Z.
log(i).

e Since i = ¢/ we have log(i) = | (/2 + 2kn)i | for k € Z.

i,

b blog(a) 2i[(mw/24+2km)i] _

e By definition we have 0’ = ¢

for k € Z.
4t
e By definition we have a® = e?'°8(*), 50 since log4 = In4 + 2kmi, we have 4 = e/lM@+2hmil —
et A=2km — 1 o=2kT [co5(In4) 4 isin(In4)] | for k € Z.

Since log(i) = (7/2+2k)i from (a), we see i’ = e

elog(?)

e From (b) we have log(i) = (7/2 + 2kn)i so €o8() = eim/2e2kmi — [ ]

log(e?).
e Since €’ is already in polar form we have log(e') = for k € Z.
11/,

e By definition we have a® = ¢®1°8(¢), Since log(1) = 27ki, we have 1/6 = ¢27+/6 for | € Z.

27”/67 64‘/1'2/67 667”/6, 6871%/6’ 61071'2/6

e There are six possible values of this expression: |e°, e . We can see

that these are just the six different sixth roots of unity.
(11/6)2_

e Squaring the six values from (f) yields three values, the three cube roots of unity: ’ eV, eimi/6 8mi/6 ‘

12.

e By definition we have a® = e?1°8(®)_ Since log(1) = 2k7i, we see 12 = 2(2kmi) = etkmi — . (So
here, in fact the entirely sensible expression 12 really does only have one possible complex value!)

(12)1/6'

0 62m/6, Note in

(ATi/6 (6mi[6  8Ti/6 ,10mi/6 ‘

e Since 12 = 1 this is the same six values as (g): |e

particular that this answer is not the same as (h)!
12/6.

e By definition we have a® = ¢?1°8(2), Since log(1) = 27ki, we have 12/6 = 11/3 = ¢27+/3 for | € 7.

2mi/3 _Ami/3
,€e

e There are three possible values of this expression: | e’, e . We can see that these are just

the three different cube roots of unity. Note in particular that 12/¢ is not the same as (12)*/6 from
(!
(=D
e By definition we have a® = e?1°8(®), Since log(—1) = (7 + 2k7)i, we see (—1)1/7 = el(r+2kmil/m —
e(1+2k)t — ’ cos(2k + 1) +isin(2k + 1) ‘ for k € Z.




2. For each function f on each curve ~, calculate fv f(z)dz

(a) f(2)=1/z, y(t) =¢ for 0 <t < 7/2.
e We compute 7/(t) = ie and f(z) = 27! = e~ .
oThusfz 1dz-f0 et dt = 7T/Qz'alt:.

(b) f(2) = 2" (n an integer with n # —1), v(t) = €' for 0 <t < 7/2.
e We compute 7' (t) = ie’ and f(z) = 2" = emit.

e(nJrl)it a2 6(n+1)i7r/2 -1

n+1 "0 n+1 '

e Thus [ 2"dz = [™?enit . jeit gt — [T/?jen+Dit gy —
¥ 0 0

(¢) f(2) =322, y(t)=t+ (1 —t)ifor 0 <t <1.

e We compute +'(t) = 1 —i and f(2) = 3[t + (1 — t)i]>.

o Thus [ 322dz = [} 3t + (1 — )i - (1 —d)dt = [}[(~3 +12t — 6t2) + (3 — 6t2)i] dt =[1 + i

e Alternatively, since f(z) is holomorphic with antiderivative F(z) = 23, by path independence the

value is F(y(1)) — F((0)) =1 — (—i) =[1 +1]|

(d) f(z) =322, yt) =t+ (1 —t)ifor 0 <t < 1.

e We compute +/(t) = 1 —i and f(2) =3[t — (1 — t)i]%.

o Thus [ 872dz = [y 3[t — (1—1)i]?) - (1 —i)dt = [)[(—3+61%) + (3 — 12t + 6t2)i] dt = —1 — i},
(e) f(z) =Log(z), v(t) = 2¢' for 0 < t < 27, where (as usual) Log denotes the principal complex logarithm.

e We compute 7/(t) = 2ie’ and f(z) = Log(2¢') = In(2) + it for 0 < ¢t < 27. Since the integral is not
affected by the jump discontinuity at ¢ = 27, we can ignore it.

e Then f’y Log Z dz = 027r[]n(2) + Z't} - et dt = fOZTr[72t6it + 2111(2)7;6”} dt = (726“ + 2ite’t +
21n(2)e)|?™, =| 4mi |.

3. For each contour v, give a parametrization and then evaluate fﬁ/ f(z)dz

(a) The circle |z — 1| = 2 traversed twice counterclockwise, where f(z) = Z.
e We can take v(t) = 1 + 2¢" for 0 < t < 4.
e Then +/(t) = 2ie’ and f(z) =2z =1+ 2.
o Then [ f(z)dz= [}™(1+2e7)(2ie) dt = [, [2ie®* + 4i] dt = [16mi
(b) The path that starts at 0, follows a straight line to 1+ 2i, and then follows a straight line to 4 + 2, where
1) ==

e There are two pieces. For the piece from 0 to 1+ 2¢ we can take v1(¢t) = (1 + 2i)t for 0 < ¢ < 1 and
for the piece from 14 27 to 4 + 2i we can take y5(t) = (14 2¢) + 3t for 0 <t < 1.

For 71 we get 7{(t) = 1 +2i and f(2) = (1 +2i)t so [ f(z)dz= fol(l +2i)%tdt = —3/2 + 2i.
e For 5 we get v5(t) = 3 and f(2) = (1 + 2i) + 3t so fw f(z)dz = fol 3[(1 + 2i) + 3t)] dt = 15/2 + 6i.
So the desired integral is the sum (—3/2 + 2i) + (15/2 + 61) = .

Alternatively, using the fact that f is holomorphic with antiderivative F(z) = 22/2, by indepen-
dence of path / the fundamental theorem of calculus for holomorphic functions we see the integral

I, f(2)dz = F(4 4 2i) — F(0) = [6 +8i]

(c) The counterclockwise boundary of the triangle with vertices 0, 2, and 1 + ¢, where f(z) = Re(2).

e There are three pieces. For the piece from 0 to 2 we can take ;1 (t) = 2t for 0 < ¢ < 1, for the piece
from 2 to 1 + 4 we can take vo(t) = (1 — )2+ ¢(1 +14) = (2 —t) + it for 0 < ¢ < 1, and for the piece
from 1+ to 0 we can take y3(t) = (1 —¢)(1+4)+t-0= (1—t)+(1—t)ifor0§t§ 1.

o For 71 we get 7{(t) =2 and f(z) =2tso [ f(z)dz= fo (2¢)(2) dt = 2.



e For 5 we get v4(t) = —1+i and f(z) =2 —t so f“/z f(z)dz = f01(2 —t)(-1+di)dt =—= 4 =i.
o For 73 we get 74(t) = —1 —iand f(z) =1—tso [ f(z)dz= fol(l —t)(=1—i)dt = —= — =i.

3 3 1 1
e So the desired integral is the sum 2 4+ (—5 + 5@') + (—5 - 52’) = .

4. By differentiating a power series expansion, we can often show it satisfies a differential equation inside its
radius of convergence. Show the following (make sure to check the radius of convergence!):

2n

(a) Show that f(z) = 3, % satisfies f”(z) = f(z) for all z € C.
1 n 1

e First, by the ratio test, with aq, = m, we see that G;Zz = @n+1)@n £2) — 0 asn — oo, so

the series has radius of convergence oc.

2n22n—1 2277,—1
e Then differentiating term-by-term yields f'(z) = >, e > @n - and then f”(z) =
n)! n—1)!
o (2TL _ 1)Z2n—2 . ZQn—Q . ZQn ) .
anl W = anl m = Zn:O w = f(Z) by relndexmg.

e Since f’(z) also has radius of convergence oo, this means f”(z) = f(z) on all of C.

(b) Show that f(z) => "7 % satisfies f/(z) = : !

n=1 — 2z

for |z| < 1.

e First note that f(z) has radius of convergence 1, as shown in problem 6(a) of homework 3.

n—1 1
e Then for |z| < 1 we have f'(z) = >0, r_ - S 2t =% 2 = . since this last
n —z
1
series is the usual geometric series which converges to 1 for |z| < 1.
—z
2n
(¢) Show that f(z) =", (ZW satisfies 22 f"(2) + 2f'(z) = 422 f(z) for all z € C.
n!
1 1
e First, by the ratio test, with as, = —=, we see that Gant2 _ — 0 as n — o0, so the
(n!)? asn (n+1)2
series has radius of convergence co.
Then differentiating term-by-te ields f/(z) = .20 2n2 ] S 222 so f"(2)
° 11 rell 1 I'1I-0y-T€erin z) = — Y = v EEEE——— z) =
g y y n=0"(pl)2 = pl(n —1)!
oo 2(2n —1)z2n—2
= pl(n —1)!
0o 2(2n—1)2%" 0o 222m
e So then z2f"(z) = Y07, (n'n(n—)lz)' while zf'(z) = Y02, m, so the sum 22f"(z) +
2(2n) 2" 4z°n wo 422N T2 0o 4z°n

Zf’(z) = Zzozl m = Zzozl W But 4z2f(2') = Zn:OW = Zn:l m,

so we do have 22f"(2) + zf'(2) = 422 f(z2). Since both sides have radius of convergence oo, this
means f”(z) = f(z) on all of C.

5. We can often construct series solutions to a differential equation involving a function f(z) by writing f(z) =
oo o an(z — 29)", differentiating formally, and then solving for the coefficients a;. An advantage to this
approach is that it can also provide an easy proof for uniqueness of the solution under the (often reasonable)
assumption that the solution is analytic at z = zg.

Z?’L

(a) Show that the unique analytic solution at z =0 to f'(z) = f(z) with f(0) =11is f(z) =Y .~ i e*.

e Suppose f(z) = > 7 ,a,z" is analytic at z = 0 and has f/(z) = f(z) and f(0) = 1.

e Then f(0) = 1 implies ap = 1, and then since f'(z) = > .2 jnap,z""' = > ° (n+ 1)an412", we
have (n + 1)a,41 = a, for each n.



1 1
e So, since ag = 1, we see successively that a; = 1, as = 2 az = 3 and then by a trivial induction
1
we have a,, = — for each n.
n.

ZTL

e Thus, the only possible solution is f(z) = > ", — = €”. But since this function does satisfy all of
n!

the conditions, it is the unique analytic solution.
(b) Find the terms up to order 4 in a series expansion for an analytic solution at z = 0 to the differential
equation f”(z)+3zf(z) =1 with f(0) = f'(0) = 1.
e Suppose f(z) = .2 a,z" is analytic at z =0 and has f”(z) + 3zf(z) =1 and f(0) = f'(0) = 1.
e Then f(0) = f/(0) = 1 yields agp = a1 = 1, so since f"(z) = Y02 jn(n — a,z""' =307 n(n+
Dap422" and 3z f(z) = Y02 3a,2" "t = 3> 3a,—12", comparing coefficients yields Y~ ;[3a,—1+
n(n + 1)ap42]2" = 1.

1 30—
e For n = 0 this yields 2a3 = 1 so as = =, and for larger n we get a, 12 = —L.
2 n(n+1)
. . 1 1 o
e So starting with ag = 1, a1 = 1, as = 50 e get ag = —3 and a4 = T yielding f(z) =
1 1 1
1+z+§z2—523—124+--- .

(c) Find the terms up to order 4 in a series expansion for an analytic solution at z = 1 to the differential
equation f”(z) + f/(2) + (z — 1)2f(2) = 0 with f(1) = f'(1) = 1.
e Suppose f(z) = " an(z — 1)" is analytic at 2 = 1 and has f”(z) + f'(z) + (2 — 1)®f(z) = 0 and
f(1) = f'(1) = 1. Set w = z — 1, so that the differential equation is f”(w) + f'(w) + w?f(w) =
e Then f(1) = /(1) = 1 yields ag = a1 = 1, so since f'(w) = > o7 jna,w" " =37 (n+ 1)a,1w",
f(w) =307 (n+ 1) (n + 2)anr2w™, and w? f(w) = Y o2, an—sw™, comparing coefficients yields
S oln+ 1)(n +2)anio + (n+ 1)aps1 + an_oJw™ = 0.

1 1
e For n = 0 we obtain 2as + a3 = 0 so as = ~5 For n = 1 we obtain 6as + 2as = 0 so a3 = 5

n— Lan . 1+3 1
@n—z+ (n+ a1 which gives a4 = — + 9 _

Finally, for n > 2 we have a, 12 = —

(n+1)(n+2) 3-4 8
e Thus we obtain f(z) =1+ (z—1) — %(zf 1)% + %(zf 1)3 — é(zf 4+

0
6. The goal of this problem is to prove (versions of) L’Hopital’s Rule for 0 limits of holomorphic and analytic

functions.

(a) Suppose that f and g are holomorphic at z = a, and that f(a) = g(a) = 0 where ¢'(a) # 0. Prove that

) @) )~ )/ )
limsma 00) = giay- (it Evaluate {oos iz —a) |
s Per the tint o o ooy FG) S~ @) _ ()~ f(@))/(z ~ a)
Per the hint, for z 7 a we have 2oy = 00 " (@) ~ () —9@)/(z —a)°
e Taking the limit as z — a then ylelds lim, _,, f(g = lim,_,, [[chgzg :g((a))]]//((j_ )) but since the

is the quotient of the limits, namely f'(a )/g (a).
(b) Suppose that f and g are analytic at z = a and that f(a) = g(a) = 0 where g has order d at z = a (i.e., the

f(2)

first nonzero coefficient in the series expansion for g is the coefficient of (z—a)?). Prove that lim, _,, =%

g(
f(z)  fD(a) [

z)
exists if and only if f has order at least d at z = a, and in such a case, lim,_,, ——= = y . [Hint:
9(2)  ¢'D(a)

Restrict attention to a disc of positive radius where f and g have their only zero at z = a.|




e If f is identically zero the result is trivial. Otherwise, as noted in class, by the uniqueness result
there exists a disc of positive radius centered at a such that f has its only zero at z = a inside the
disc, and likewise there exists such a disc for g. Let R be the smaller of the radii of these two discs.
e Now let f(2) = ae(z—a)®+acy1(z—a)*T +--- and g(z) = bg(z —a)? + bgy1(z —a)™ ! +- -, where
both expansions converge on the disc |z — a|] < R for some positive R, and f(z),g(z) # 0 except at
z = a.
f(2)  ac(z—a)®+ acq1(z — a)stl 4 ... o g e+ ep1(z—a)+ -

Then f in the di h = = (2= _
e Then for z # a in the disc, we aveg(z) balz — ) & bay1(z —a) 4 - (z—a) bat bari(e—a) o

. .., a . .
e As z — a, the second quantity has limit b—e because the two corresponding power series are both
d

continuous at z = a.

)e—d

e Therefore, the limit exists if and only if lim,_,,(z — a exists, and that is clearly true only when

e > d: namely, when f vanishes to order at least d.
e In that case, the value of the limit equals 0 if e > d (since the exponent on z — a is positive) and in
f9(a)
9 (a)

as claimed.

that case f(?(a) = 0 so the limit value is

ac _aq _ f)/d! _ f(a)

b T b ¢ D(a)jdl T ¢@(a)

, and otherwise if e = d then the value of the limit

7. [Challenge] The goal of this problem is to give an integral whose evaluation via Riemann sums is actually
easier than most other approaches. Fix a > 1 and consider the integral I, = foﬂ In(a? — 2acosz + 1) du.

2n

a" -1 . .
21 [Hint: Factor in C.]

ne k
(a) Show that []r—; (a® — 2acos LA 1) =
n
k . )
o First observe that a® — 2a cos — + 1 = (a — e27%i/7)(q — e=27F1/7) by direct expansion.
n

n— k e . ,
e Therefore, szll(GQ — 2acos "~ 4 1) = kzll(a — e2mki/m) (g — e 2R/,
n

e If we now multiply this expression by a?> — 1 = (a — "™/")(a — ¢?"™/™), we obtain the product
12" " (a — €2™9i/m), which is the factorization of a2 — 1.

§=0
e k 2n __ 1
e Thus we have ]_[k:ll(a2 — 2acos &+ 1) = (1271 as claimed.
n a? —
(b) Show that the right-endpoint Riemann sum for I, with partition P = {0,7/n,27/n,...,7(n —1)/n, 7}

2n_1
1 + %ln(a—i— 1)2.

. ™
is equal to —In —
n  a?—
. . . . P g—— 9 km
e Since each interval has width 7/n the Riemann sum is — >, _; In(a® — 2acos — + 1).
n n
2n

a" —1 . . .
, S0 since logarithms turn products into sums,

a® —1

a2 —-1"
2n

_ k
e By (a), we have [[}_ (a> — 2acos LA 1) = —;
n a? —

- k n_ k
we see that Y7 In(a® — 2acos WAL 1) = n[[T}Z; (a® — 2acos AL 1)) =In
n n

e Thus after taking out the last term, the Riemann sum simplifies to T in o + T In(a + 1)2.
n a n

(c) Show that the value of the integral I, is 27 Ina.

e Since a? —2acosz+1>a?—2a+1= (a—1)? > 0 the integral is well defined hence equals the limit
of its Riemann sums.

] 1
e The Riemann sum equals T +Z In(a +1)? = T In(a®" — 1) + T2 i from (b).
n a?-1 n n n a-—1
e The limit of the second term is zero, while the limit of the first term we can compute using L’Hopital’s
In(a®" — 1 27 In(a? 2m1
rules T oo T g, TOIIME) g 2T 9t So the limit
a n __ . —zan

n
equals 27 Ina as claimed.




