E. Dummit’s Math 4555 ~ Complex Analysis, Fall 2025 ~ Homework 4 Solutions

1. Find the radius and the disc of convergence for each power series:

(a) Xpzolz —140)™.
e Setting w = 2z —1+1i = z — (1 — i) we get the geometric series ». ~  w™ which has radius of

convergence .

e The center is zgp = 1 — i so the disc is |z — (1 — 7)| < 1.
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e Setting w = z — i we get the exponential series »_~ — which has radius of convergence [co]. So
n!
the disc of convergence is simply .
(©) Xpmyn"(z— 1"

e Setting w = z — 1 we get the series Y -, n"w" which from 1(c) of homework 3 has radius of
convergence @ So the disc of convergence is simply the point .

o (z4+2)"

(d) et —

nn
e Setting w = z+2 we get the series Y | Y which from 1(b) of homework 3 has radius of convergence
nn

00. So the disc of convergence is simply .

(&) Y2222+ 1)".
e Setting w = 2z + 1 we get the geometric series Y - w™ which converges for |w| < 1. This yields

1 1 1
z+ 2‘ < 3 with radius .

|2z + 1] < 1 hence the disc of convergence is

n

() Yoly o (wz + o).

2n 2n
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e Rearranging yields the series > | F(z—i—e/w)". Setting w = z+e/7 yields the series > 7, o "
a2n |t/ 2
e Since lim,, o — =lim,, o T = 72 we see that the series has radius of convergence ,
n n
. . e 1
so the disc of convergence is ‘z + f‘ <=
7r b
(8) >=n=cosh(n) - 2"
— e" te " : /n _ 1 n —n]l/no—1/n _ :
e Note that cosh(n) = — Then lim,, o [cosh(n)|" = lim,, oo [e™ + e "]/ ™2 = e since

the term e™™ — 0.

e So the radius of convergence is and the disc of convergence is | |z| < 1/e|.

0 T G

— Z)n :
N3N \3
e Rearranging yields the geometric series Y7 [(3;—'_2)} which converges for (3;;1) 1.
—1 —1
51/6 51/6
e Equivalently, this is |32 + i| < 5'/¢ which is the disc ||z +14/3| < 3 of radius = |




2. Find power series expansions for each given function f(z) centered at the given point z = zq:

1 i~
(a) f(z) = -5 around z = 0. [Hint: Use =7 = Yomeor™
1
e Using the geometric series expansion : =Yt =1+r+r+r3+... with r = 23 yields
—r
1 . =
T3 =3 23" So we get f = E Bl — T4 2104
n=0

(b) f(z) =1+ 2+ 22+ 2* around z = —2.

e Setting w = z + 2 so that z = w — 2 yields f(z) =1+ (w — 2) + (w — 2)% + (w — 2)* =19 — 35w +
25w? — 8w? + w.
o Sowe get f=|19-35(z +2) +25(: +2)* — 8(z + 2> + (= + 2)* |
e Alternatively, f(—2) = 19, f'(-2) = =35, f"(-2) = 50, f"(-2) = —48, f""(-2) = 24, and
S0(~2) = 0forn > 5. Sousing a, = f)(~2)/nl yields f = |19 - 35(= +2) + 25(z +2)? = 8(z +2)° + (= +2)"

(¢) f(z)=(1+2)/(1 —2) around z = —1.

1
L] Settlng w=2z+1sothat z=w—1 ylelds f(Z) = ﬁ = % . W = % . ZZO:O(’LU/Q)TL =
o WY (41" 241 (z24+1)2 (z+1)
Doy on So we get f = nz::l o = 5 Tt

(d) f(z) = e* around z = i.
e Using the formula a,, = f(")(i)/n!, and the fact that f(")(z) = e*, we see a,, = €' /n!.

o0

e So we get f = Z%(z—i)":1+ei(z—i)+%(z—i)2+%(z—i)?’—i—---

n=0

. 1+41sinl
e Equivalently, noting e’ = cos 1+ ésin 1, this is also Y w(z — )"
n!

3. Find all solutions z € C to each of the following equations:

(a) e** =i.
e Since i = '™/? we have e** = ¢/™/2
for some integer k.

e So this yields 4z — im/2 = 2kni for some integer k, whence z = | (7/8 + kn/2)i | for some integer k.
(b) e = 4.

in/2 . As noted in class we have e* = e* if and only if z — w = 2kmi

e Like in (a) we have ¢ = ¢ 50 iz — In(4) = 2k7i for some integer k.
e This yields z = m for some integer k.

(c) cosh(z) =5/4.

e +e’*

2
e Setting w = e* yields w + w~! = 5/2 so that w? — gw + 1 = 0 yielding w = 2,1/2. This yields
z= w for some integer k.
(d) cos(z) =5/4.

e Note that cos(z) = cosh(iz) so from (c) we have iz = +1n(2) + 2kmi for some integer k. Thus we

get z =| 2kw + i1n(2) | for some integer k.

e By definition we have cosh(z) = so we must have e* + e~ % = 5/2.



(e) sinh(z) = icosh(z).

. . e* —e % ef+e”? . L . 9
e The equation yields 5 =i Setting w = e* and multiplying by 2 yields w* — 1 =

i(w? +1) so w? = i.
e Thus we get €* = i = ¢™/2 50 as in (a) we obtain 2z = 7i/2 + 2kxi hence z = | (/4 + kn)i | for
some integer k.

(f) sinh(z) = cosh(z).

. . —e” e r . . :
e The equation yields c 5 _— 26 which reduces to e™* = 0. This has .

(g) sin(z) = icos(z).
e Since cos(z) = cosh(iz) and sin(z) = isinh(iz) the equation yields isinh(iz) = 4cosh(iz) hence
sinh(iz) = cosh(iz) which by (f) has .

(h) sinh(z) = (1 + 34)/4.

z __ —Z 1 3'
e By definition we have sinh(z) = % so we must have e* —e™* = ; L

1+ 3¢ 1+ 3¢ —141
e Setting w = e? yields w — w™! = J; " 5o that w? — —- Zw—l:()yieldingw:1—i—i, ;LZ,

. 1 .
which in polar form are v/2¢/4 and \ﬁe&“/‘l.

e This yields z =|In(v/2) 4 (7/4 4 2kx)i, —In(V/2) + (37/4 4 2k)i | for some integer k.

4. Prove the following things about the complex exponential and (hyperbolic) trigonometric functions:

(a) Show sin(z + iy) = sin(z) cosh(y) + i cos(z) sinh(y) and cos(z + iy) = cos(z) cosh(y) — isin(z) sinh(y).
e Note that sinh(¢) = ésin(it) and cosh(t) = cos(it).
e From the sine addition formula we have sin(z+1iy) = sin(z) cos(iy) 4 cos(z) sin(iy) = sin(x) cosh(y)+
i cos(x) sinh(y).
¢ From the cosine addition formula we have cos(z+iy) = cos(z) cos(iy) —sin(x) sin(iy) = cos(x) cosh(y)—
isin(x) sinh(y).
(b) Show sinh(z+w) = sinh(z) cosh(w)+cosh(z) sinh(w) and cosh(z+w) = cosh(z) cosh(w)+sinh(z) sinh(w).
e Using the sine addition formula sin(z + w) = sin(z) cos(w) + cos(z) sin(w) yields sinh(z + w) =
isinh(iz + fw) = isin(iz) cos(iw) + i cos(iz) sin(iw) = sinh(z) cosh(w) + cosh(z) sinh(w).
e Using the cosine addition formula cos(z + w) = cos(z) cos(w) — sin(z) sin(w) yields cosh(z + w) =
cos(iz + iw) = cos(iz) cos(iw) — sin(iz) sin(iw) = cosh(z) cosh(w) + sinh(z) sinh(w).
tanh(z) + tanh(w)
1+ tanh(z) tanh(w)
sinh(z +w)  sinh(z) cosh(w) + cosh(z) sinh(w)  tanh(z) + tanh(w)
cosh(z +w)  cosh(z)cosh(w) + sinh(z)sinh(w) 1 + tanh(z) tanh(w)
after dividing the top and bottom by cosh(z) cosh(w).
sinh(im)

. Deduce that tanh(z) is periodic with period im.

(c¢) Show tanh(z + w) =

e By (b) we have tanh(z4w) =

tanh(z) + 0

= 0 yields tanh(z + i7) = 0

e Setting w = im and noting tanh(ir) = = tanh(z),

cosh(im)
so tanh(z) is periodic with period im.
(d) Show e is one-to-one (in other words, that e* = ¢ implies z = w) on any open disc of radius 7.
e As noted in class we have e¢* = ¢% if and only if z — w = 2kmi for some integer k.
e However, if z, w both lie in an open disc of radius 7, then |z — w| < 27. Thus if e* = e® this forces
27 |k| < 27 hence k = 0 hence z = w. Thus e? is one-to-one as claimed.

(e) Show 2cos(Z er)sin(z ; w) = sin(z) — sin(w). Deduce that sin(z) = sin(w) if and only if z + w =

(2k + 1) or z — w = 2kx for an integer k.



e For a = #* and = 25* then sin(z) —sin(w) = sin(a+ ) —sin(a— ) = [sin a cos S+ cos asin ] —

[sin acos B — cos asin B] = 2 cosasin B = 2cos(z —; w) sin(z _2 w) as claimed.

For the second part by the identity we see sin(z) = sin(w) if and only if cos(25%) = 0 or sin(25%).
By the characterization of the complex zeroes of sine and cosine (i.e., just the real zeroes) these
are equivalent to ”2’” = 5 + km and %5 = kr for some integer k, which are in turn equivalent to
z4+w=(2k+1)m and z — w = 2km.

So we see sin(z) = sin(w) if and only if z4+w = (2k+1)7 or z —w = 2kn for an integer k as required.

5. Let F,, be the nth Fibonacci number, defined by Fop =0, Fy = 1, and F,.1 = F, + F,_1 for n > 1. (The
first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, ....) The goal of this problem is to study the power
series f(z) = > 7, F,2", the generating function for the Fibonacci numbers.

(a) Show that (1 — z — 22)f(2) = z as a formal power series and deduce f(z) = TR : 5
—z—z
e We have (1 — 2z — 2%)f(2) = Y0l g Fn2" = >0l g B2t = S (Fo2"2 = Fy + (Fy — Fy)z +
Yoo (Fn = Fog = Fo2)2" =042+ 307, 02" = 2.

e Thus f(z) = as a formal power series.

z
1—2z—22

b
(b) Find complex constants a, a, b, § such that T ZZ_ 27 —aaz + e
a(l —Bz)+b(1 — az)

(1—-az)(1-p82)
2

—1++v5
e Since 1 — z — 22 has roots z = T\[ taking reciprocals yields the factorization 1 — z — 2% =

1+6 1-V5 1+5 1-5

2

e Summing the right-hand side gives ,sowewant (1—az)(1—82)=1—z—2=2

and a(l — fz) + b(1 — az) = z.

(1- ) z)(1— ) z), so we want o = ) and 8 = 5
e We also want a(l — 8z) + b(1 — az) = z which is equivalent to a + b = 0 and fSa + ab = —1. So
1
b=—-aandthena=——=—= withb=——%.
B—a b V5
n—p" 1 1-
(c¢) Prove Binet’s formula for the Fibonacci numbers: F,, = P "% where p = V5 and @ = \/5

2 2

[Hint: Expand the two geometric series from (b) and compare to f(z).]
e} 90” _¢n n

e 1—¢z_ﬁ'z”:°(pz _EZ"ZO“’Z _Zn:OT'Z'

e But from (a) we know that

e From (b)

5 = oo o Fuz™. So comparing coefficients immediately yields
—z—z
the desired formula.

(d) Find the radius of convergence of f(z).
1/n
= @ since ¢ > 1 while —1 < < 0.

—1++5
5 .
e Alternatively, we could use the result of problem 4 of homework 3: the series % Yoo o ¢™z" has

sDn _En

V5

1/n

e We have lim,,_,, | F,| = lim,, 00

e So by the radius-of-convergence formula, the radiusis R =1/p =

radius of convergence 1/¢ while the series —% >0 " 2™ has radius of convergence 1/ ||, so their
sum has radius of convergence the minimum of these, which is 1/¢.

Remark: A similar method to the one in (a)-(c) can be used to solve any linear recurrence with constant
coefficients, of the form a,11 = cpan + -+ + ¢h—ran—x for constants c;. Moreover, the general technique
of considering the generating function f(z) = Y. 7 a,z" for an arbitrary sequence ag,as,... can be
used to find and prove many kinds of combinatorial identities.




6. The goal of this problem is to prove that if p is any polynomial, then the formal power series ZZOZO p(n)z™ is
a rational function in z.
(a) Suppose that f(z) =~ anz". Show that zf'(z) = > 7 na,z".
e This is immediate from the termwise differentiation formula, since f/(z) = Y- na,z""!, so then
multiplying by z gives zf/(z) = > o0 na,z".
(b) Show that for every integer k > 0, Y2 n*z" is a rational function in z. [Hint: Induct on k.|

as shown in class.

e We induct on k. For the base case k =0 we have Y~ 2" = T

e For the inductive step, suppose f(z) =Y .-, n*2" is a rational function in z. Then by (a) we have
o2 ynftlzm = 2 f/(2), which is also a rational function in z, as required.
(¢) Show that >_°7  p(n)z" is a rational function in z for any polynomial p(z) = bgz® + - - - + bo.
o If p(x) = bgad+- - +bo then > o7 (bgn + - +by)2" = 27:0 b [>oo2 o n?2"], which is a finite sum
of rational functions by part (b).

(d) Express Y07 (2n+5)z™ and >_-° (n? + n)z™ as rational functions in z.

e Using the technique suggested by (a)-(c) we first compute Y oo 2" = , so differentiating and
z

1 _
1
then multiplying by z yields ZZO:O nz" = ﬁ and then ZZO:O n?z" = w
n | 53z n 2z

7. [Challenge] The goal of this problem is to study the complex analogue of Newton’s binomial series. Let « be any
ala—1)(a=2)--(a—n+1)

. . . . . o
complex number that is not a nonnegative integer. Define the binomial coefficient ( ) = '
n n!

n=0

for each integer n > 0. Now define the binomial series B, (z) = Y - (04) z™. In 1665, Newton proved that
n

if v is real, then By (z) = (1 +z)® for all real —1 <z < 1.

(a) Show that the radius of convergence of the binomial series equals 1. [Hint: Use the Ratio Test.]|

R R I () B

n (n+1)! n! n+1’
a—n a—n

(20)/ () o i

e Thus by the ratio test, the series has radius of convergence 1.

e Remark: Note that we are implicitly using the fact that « is not a nonnegative integer here because
otherwise the binomial coefficients are eventually zero, in which case the ratio calculation is invalid.

e So lim,, o = lim, oo = |lim,, 00 =|-1]=1.

(b) For a positive integer m, show that (B, (2))™ = 1+ z for all |z| < 1. [Hint: Use Newton’s binomial
theorem and the uniqueness of series expansions.]

e If zisreal, then By, (z) = (142)Y™ for —1 < x < 1. So taking the mth power yields (Bim(x))™ =
1+ z for such «.

e This means that the two power series (B1/,,(2))™ and 1+ z agree for all real x with —1 < 2 < 1. But
by our uniqueness result, since the difference is a power series with positive radius of convergence
(namely, radius 1 by part (a)) with a sequence of zeroes that has limit 0, the difference is identically
zero.

e Thus in fact (By/p(2))™ =1+ 2 for all |2| < 1, as claimed.

(c) Deduce that for |z| < 1, the binomial series By /p,(2) is a holomorphic function of z whose value is an
mth root of 1 + z.
e By (a) the series B/, (2) has radius of convergence 1, so it defines a holomorphic function for [z| < 1.
e Furthermore, by (b) the mth power of this series is 1 + z, so the value is an mth root of 1+ z.




