- 1. Find the radius and the disc of convergence for each power series:
 - (a) $\sum_{n=0}^{\infty} (z-1+i)^n$.
 - Setting w = z 1 + i = z (1 i) we get the geometric series $\sum_{n=0}^{\infty} w^n$ which has radius of convergence 1.
 - The center is $z_0 = 1 i$ so the disc is |z (1 i)| < 1.
 - (b) $\sum_{n=0}^{\infty} \frac{(z-i)^n}{n!}$.
 - Setting w = z i we get the exponential series $\sum_{n=0}^{\infty} \frac{w^n}{n!}$ which has radius of convergence ∞ . So the disc of convergence is simply \mathbb{C} .
 - (c) $\sum_{n=1}^{\infty} n^n (z-1)^n$.
 - Setting w = z 1 we get the series $\sum_{n=1}^{\infty} n^n w^n$ which from 1(c) of homework 3 has radius of convergence $\boxed{0}$. So the disc of convergence is simply the point $\boxed{z=1}$.
 - (d) $\sum_{n=1}^{\infty} \frac{(z+2)^n}{n^n}$.
 - Setting w = z + 2 we get the series $\sum_{n=1}^{\infty} \frac{w^n}{n^n}$ which from 1(b) of homework 3 has radius of convergence ∞ . So the disc of convergence is simply $\boxed{\mathbb{C}}$.
 - (e) $\sum_{n=0}^{\infty} (2z+1)^n$.
 - Setting w = 2z + 1 we get the geometric series $\sum_{n=0}^{\infty} w^n$ which converges for |w| < 1. This yields |2z + 1| < 1 hence the disc of convergence is $|z + \frac{1}{2}| < \frac{1}{2}$ with radius $|z| = \frac{1}{2}$.
 - (f) $\sum_{n=1}^{\infty} \frac{\pi^n}{n^e} (\pi z + e)^n.$
 - Rearranging yields the series $\sum_{n=1}^{\infty} \frac{\pi^{2n}}{n^e} (z + e/\pi)^n$. Setting $w = z + e/\pi$ yields the series $\sum_{n=1}^{\infty} \frac{\pi^{2n}}{n^e} w^n$.
 - Since $\lim_{n\to\infty} \left| \frac{\pi^{2n}}{n^e} \right|^{1/n} = \lim_{n\to\infty} \frac{\pi^2}{n^{e/n}} = \pi^2$ we see that the series has radius of convergence $1/\pi^2$, so the disc of convergence is $\left| z + \frac{e}{\pi} \right| < \frac{1}{\pi^2}$.
 - (g) $\sum_{n=0}^{\infty} \cosh(n) \cdot z^n$
 - Note that $\cosh(n) = \frac{e^n + e^{-n}}{2}$. Then $\lim_{n \to \infty} |\cosh(n)|^{1/n} = \lim_{n \to \infty} [e^n + e^{-n}]^{1/n} 2^{-1/n} = e$ since the term $e^{-n} \to 0$.
 - So the radius of convergence is 1/e and the disc of convergence is |z| < 1/e
 - (h) $\sum_{n=0}^{\infty} \frac{(3z+i)^{3n}}{(2-i)^n}$.
 - Rearranging yields the geometric series $\sum_{n=0}^{\infty} \left[\frac{(3z+i)^3}{2-i} \right]^n$ which converges for $\left| \frac{(3z+i)^3}{2-i} \right| < 1$.
 - Equivalently, this is $|3z+i| < 5^{1/6}$ which is the disc $|z+i/3| < \frac{5^{1/6}}{3}$ of radius $\left[\frac{5^{1/6}}{3}\right]$.

2. Find power series expansions for each given function f(z) centered at the given point $z=z_0$:

(a)
$$f(z) = \frac{z}{1-z^3}$$
 around $z = 0$. [Hint: Use $\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n$.]

• Using the geometric series expansion $\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \cdots$ with $r = z^3$ yields

$$\frac{1}{1-z^3} = \sum_{n=0}^{\infty} z^{3n}. \text{ So we get } f = \left[\sum_{n=0}^{\infty} z^{3n+1} = z + z^4 + z^7 + z^{10} + \cdots\right].$$

- (b) $f(z) = 1 + z + z^2 + z^4$ around z = -2.
 - Setting w = z + 2 so that z = w 2 yields $f(z) = 1 + (w 2) + (w 2)^2 + (w 2)^4 = 19 35w + 25w^2 8w^3 + w^4$.

 - So we get $f = 19 35(z+2) + 25(z+2)^2 8(z+2)^3 + (z+2)^4$. Alternatively, f(-2) = 19, f'(-2) = -35, f''(-2) = 50, f'''(-2) = -48, f''''(-2) = 24, and $f^{(n)}(-2) = 0$ for $n \ge 5$. So using $a_n = f^{(n)}(-2)/n!$ yields $f = 19 35(z+2) + 25(z+2)^2 8(z+2)^3 + (z+2)^4$
- (c) f(z) = (1+z)/(1-z) around z = -1.
 - Setting w = z + 1 so that z = w 1 yields $f(z) = \frac{w}{2 w} = \frac{w}{2} \cdot \frac{1}{1 (w/2)} = \frac{w}{2} \cdot \sum_{n=0}^{\infty} (w/2)^n = \frac{w}{2} \cdot \frac{1}{1 (w/2)} = \frac{w}{2} \cdot$ $\sum_{n=1}^{\infty} \frac{w^n}{2^n}$. So we get $f = \left| \sum_{n=1}^{\infty} \frac{(z+1)^n}{2^n} = \frac{z+1}{2} + \frac{(z+1)^2}{2^2} + \frac{(z+1)^3}{2^3} + \cdots \right|$
- (d) $f(z) = e^z$ around z = i.
 - Using the formula $a_n = f^{(n)}(i)/n!$, and the fact that $f^{(n)}(z) = e^z$, we see $a_n = e^i/n!$.

• So we get
$$f = \left| \sum_{n=0}^{\infty} \frac{e^i}{n!} (z-i)^n = 1 + e^i (z-i) + \frac{e^i}{2!} (z-i)^2 + \frac{e^i}{3!} (z-i)^3 + \cdots \right|$$

- Equivalently, noting $e^i = \cos 1 + i \sin 1$, this is also $\sum_{n=0}^{\infty} \frac{\cos 1 + i \sin 1}{n!} (z i)^n$.
- 3. Find all solutions $z \in \mathbb{C}$ to each of the following equations:

(a)
$$e^{4z} = i$$

- Since $i = e^{i\pi/2}$ we have $e^{4z} = e^{i\pi/2}$. As noted in class we have $e^z = e^w$ if and only if $z w = 2k\pi i$
- So this yields $4z i\pi/2 = 2k\pi i$ for some integer k, whence $z = |(\pi/8 + k\pi/2)i|$ for some integer k.

(b)
$$e^{iz} = 4$$
.

- Like in (a) we have $e^{iz} = e^{\ln(4)}$, so $iz \ln(4) = 2k\pi i$ for some integer k.
- This yields $z = \sqrt{-i \ln(4) + 2k\pi}$ for some integer k.

(c)
$$\cosh(z) = 5/4$$
.

- By definition we have $\cosh(z) = \frac{e^z + e^{-z}}{2}$ so we must have $e^z + e^{-z} = 5/2$.
- Setting $w = e^z$ yields $w + w^{-1} = 5/2$ so that $w^2 \frac{5}{2}w + 1 = 0$ yielding w = 2, 1/2. This yields $z = \boxed{\pm \ln(2) + 2k\pi i}$ for some integer k.

(d)
$$\cos(z) = 5/4$$
.

• Note that $\cos(z) = \cosh(iz)$ so from (c) we have $iz = \pm \ln(2) + 2k\pi i$ for some integer k. Thus we get $z = |2k\pi \pm i \ln(2)|$ for some integer k.

- (e) $\sinh(z) = i \cosh(z)$.
 - The equation yields $\frac{e^z e^{-z}}{2} = i \frac{e^z + e^{-z}}{2}$. Setting $w = e^z$ and multiplying by 2 yields $w^2 1 = i(w^2 + 1)$ so $w^2 = i$.
 - Thus we get $e^{2z} = i = e^{\pi i/2}$ so as in (a) we obtain $2z = \pi i/2 + 2k\pi i$ hence $z = \boxed{(\pi/4 + k\pi)i}$ for some integer k.
- (f) $\sinh(z) = \cosh(z)$.
 - The equation yields $\frac{e^z e^{-z}}{2} = \frac{e^z + e^{-z}}{2}$ which reduces to $e^{-z} = 0$. This has no solutions
- (g) $\sin(z) = i\cos(z)$.
 - Since $\cos(z) = \cosh(iz)$ and $\sin(z) = i \sinh(iz)$ the equation yields $i \sinh(iz) = i \cosh(iz)$ hence $\sinh(iz) = \cosh(iz)$ which by (f) has no solutions.
- (h) $\sinh(z) = (1+3i)/4$.
 - By definition we have $\sinh(z) = \frac{e^z e^{-z}}{2}$ so we must have $e^z e^{-z} = \frac{1+3i}{2}$.
 - Setting $w = e^z$ yields $w w^{-1} = \frac{1+3i}{2}$ so that $w^2 \frac{1+3i}{2}w 1 = 0$ yielding $w = 1+i, \frac{-1+i}{2}$, which in polar form are $\sqrt{2}e^{i\pi/4}$ and $\frac{1}{\sqrt{2}}e^{3i\pi/4}$.
 - This yields $z = \ln(\sqrt{2}) + (\pi/4 + 2k\pi)i$, $-\ln(\sqrt{2}) + (3\pi/4 + 2k\pi)i$ for some integer k.
- 4. Prove the following things about the complex exponential and (hyperbolic) trigonometric functions:
 - (a) Show $\sin(x+iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$ and $\cos(x+iy) = \cos(x)\cosh(y) i\sin(x)\sinh(y)$.
 - Note that sinh(t) = i sin(it) and cosh(t) = cos(it).
 - From the sine addition formula we have $\sin(x+iy) = \sin(x)\cos(iy) + \cos(x)\sin(iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$.
 - From the cosine addition formula we have $\cos(x+iy) = \cos(x)\cos(iy) \sin(x)\sin(iy) = \cos(x)\cosh(y) i\sin(x)\sinh(y)$.
 - (b) Show $\sinh(z+w) = \sinh(z)\cosh(w) + \cosh(z)\sinh(w)$ and $\cosh(z+w) = \cosh(z)\cosh(w) + \sinh(z)\sinh(w)$.
 - Using the sine addition formula $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ yields $\sinh(z+w) = i\sinh(iz+iw) = i\sin(iz)\cos(iw) + i\cos(iz)\sin(iw) = \sinh(z)\cos(iw) + \cosh(z)\sinh(w)$.
 - Using the cosine addition formula $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$ yields $\cosh(z+w) = \cos(iz+iw) = \cos(iz)\cos(iw) \sin(iz)\sin(iw) = \cosh(z)\cos(w) + \sinh(z)\sinh(w)$.
 - (c) Show $\tanh(z+w) = \frac{\tanh(z) + \tanh(w)}{1 + \tanh(z) \tanh(w)}$. Deduce that $\tanh(z)$ is periodic with period $i\pi$.
 - By (b) we have $\tanh(z+w) = \frac{\sinh(z+w)}{\cosh(z+w)} = \frac{\sinh(z)\cosh(w) + \cosh(z)\sinh(w)}{\cosh(z)\cosh(w) + \sinh(z)\sinh(w)} = \frac{\tanh(z) + \tanh(w)}{1 + \tanh(z)\tanh(w)}$ after dividing the top and bottom by $\cosh(z)\cosh(w)$.
 - Setting $w = i\pi$ and noting $\tanh(i\pi) = \frac{\sinh(i\pi)}{\cosh(i\pi)} = 0$ yields $\tanh(z + i\pi) = \frac{\tanh(z) + 0}{1 + 0} = \tanh(z)$, so $\tanh(z)$ is periodic with period $i\pi$.
 - (d) Show e^z is one-to-one (in other words, that $e^z = e^w$ implies z = w) on any open disc of radius π .
 - As noted in class we have $e^z = e^w$ if and only if $z w = 2k\pi i$ for some integer k.
 - However, if z, w both lie in an open disc of radius π , then $|z w| < 2\pi$. Thus if $e^z = e^w$ this forces $2\pi |k| < 2\pi$ hence k = 0 hence z = w. Thus e^z is one-to-one as claimed.
 - (e) Show $2\cos(\frac{z+w}{2})\sin(\frac{z-w}{2}) = \sin(z) \sin(w)$. Deduce that $\sin(z) = \sin(w)$ if and only if $z+w = (2k+1)\pi$ or $z-w = 2k\pi$ for an integer k.

- $[\sin\alpha\cos\beta - \cos\alpha\sin\beta] = 2\cos\alpha\sin\beta = 2\cos(\frac{z+w}{2})\sin(\frac{z-w}{2}) \text{ as claimed.}$
- For the second part by the identity we see $\sin(z) = \sin(w)$ if and only if $\cos(\frac{z+w}{2}) = 0$ or $\sin(\frac{z-w}{2})$.
- By the characterization of the complex zeroes of sine and cosine (i.e., just the real zeroes) these are equivalent to $\frac{z+w}{2} = \frac{\pi}{2} + k\pi$ and $\frac{z-w}{2} = k\pi$ for some integer k, which are in turn equivalent to $z + w = (2k+1)\pi$ and $z - w = 2k\pi$.
- So we see $\sin(z) = \sin(w)$ if and only if $z + w = (2k+1)\pi$ or $z w = 2k\pi$ for an integer k as required.
- 5. Let F_n be the nth Fibonacci number, defined by $F_0 = 0$, $F_1 = 1$, and $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$. (The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34,) The goal of this problem is to study the power series $f(z) = \sum_{n=0}^{\infty} F_n z^n$, the generating function for the Fibonacci numbers.
 - (a) Show that $(1-z-z^2)f(z)=z$ as a formal power series and deduce $f(z)=\frac{z}{1-z-z^2}$.
 - We have $(1-z-z^2)f(z) = \sum_{n=0}^{\infty} F_n z^n \sum_{n=0}^{\infty} F_n z^{n+1} \sum_{n=0}^{\infty} F_n z^{n+2} = F_0 + (F_1 F_0)z + \sum_{n=2}^{\infty} (F_n F_{n-1} F_{n-2})z^n = 0 + z + \sum_{n=2}^{\infty} 0z^n = z.$ Thus $f(z) = \frac{z}{1-z-z^2}$ as a formal power series.
 - (b) Find complex constants a, α, b, β such that $\frac{z}{1-z-z^2} = \frac{a}{1-\alpha z} + \frac{b}{1-\beta z}$
 - Summing the right-hand side gives $\frac{a(1-\beta z)+b(1-\alpha z)}{(1-\alpha z)(1-\beta z)}$, so we want $(1-\alpha z)(1-\beta z)=1-z-z^2$ and $a(1 - \beta z) + b(1 - \alpha z) = z$.
 - Since $1-z-z^2$ has roots $z=\frac{-1\pm\sqrt{5}}{2}$ taking reciprocals yields the factorization $1-z-z^2=$ $(1 - \frac{1 + \sqrt{5}}{2}z)(1 - \frac{1 - \sqrt{5}}{2}z)$, so we want $\alpha = \frac{1 + \sqrt{5}}{2}$ and $\beta = \frac{1 - \sqrt{5}}{2}$.
 - We also want $a(1-\beta z) + b(1-\alpha z) = z$ which is equivalent to a + b = 0 and $\beta a + \alpha b = -1$. So b = -a and then $a = \frac{1}{\beta \alpha} = \frac{1}{\sqrt{5}}$ with $b = -\frac{1}{\sqrt{5}}$.
 - (c) Prove Binet's formula for the Fibonacci numbers: $F_n = \frac{\varphi^n \overline{\varphi}^n}{\sqrt{5}}$ where $\varphi = \frac{1 + \sqrt{5}}{2}$ and $\overline{\varphi} = \frac{1 \sqrt{5}}{2}$. [Hint: Expand the two geometric series from (b) and compare to f(z).]
 - From (b), $\frac{z}{1-z-z^2} = \frac{1/\sqrt{5}}{1-\varphi z} + \frac{-1/\sqrt{5}}{1-\overline{\varphi}z} = \frac{1}{\sqrt{5}} \cdot \sum_{n=0}^{\infty} \varphi^n z^n \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} \overline{\varphi}^n z^n = \sum_{n=0}^{\infty} \frac{\varphi^n \overline{\varphi}^n}{\sqrt{5}} z^n.$
 - But from (a) we know that $\frac{z}{1-z-z^2} = \sum_{n=0}^{\infty} F_n z^n$. So comparing coefficients immediately yields the desired formula.
 - (d) Find the radius of convergence of f(z).
 - We have $\lim_{n\to\infty} |F_n|^{1/n} = \lim_{n\to\infty} \left| \frac{\varphi^n \overline{\varphi}^n}{\sqrt{5}} \right|^{1/n} = \varphi$ since $\varphi > 1$ while $-1 < \overline{\varphi} < 0$.
 - So by the radius-of-convergence formula, the radius is $R = 1/\varphi = \left| \frac{-1 + \sqrt{5}}{2} \right|$
 - Alternatively, we could use the result of problem 4 of homework 3: the series $\frac{1}{\sqrt{5}}\sum_{n=0}^{\infty}\varphi^nz^n$ has radius of convergence $1/\varphi$ while the series $-\frac{1}{\sqrt{5}}\sum_{n=0}^{\infty}\overline{\varphi}^nz^n$ has radius of convergence $1/|\overline{\varphi}|$, so their sum has radius of convergence the minimum of these, which is $1/\varphi$.
 - Remark: A similar method to the one in (a)-(c) can be used to solve any linear recurrence with constant coefficients, of the form $a_{n+1} = c_n a_n + \dots + c_{n-k} a_{n-k}$ for constants c_i . Moreover, the general technique of considering the generating function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for an arbitrary sequence a_0, a_1, \dots can be used to find and prove many kinds of combinatorial identities.

- 6. The goal of this problem is to prove that if p is any polynomial, then the formal power series $\sum_{n=0}^{\infty} p(n)z^n$ is a rational function in z.
 - (a) Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Show that $zf'(z) = \sum_{n=0}^{\infty} n a_n z^n$.
 - This is immediate from the termwise differentiation formula, since $f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$, so then multiplying by z gives $z f'(z) = \sum_{n=0}^{\infty} n a_n z^n$.
 - (b) Show that for every integer $k \ge 0$, $\sum_{n=0}^{\infty} n^k z^n$ is a rational function in z. [Hint: Induct on k.]
 - We induct on k. For the base case k=0 we have $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ as shown in class.
 - For the inductive step, suppose $f(z) = \sum_{n=0}^{\infty} n^k z^n$ is a rational function in z. Then by (a) we have $\sum_{n=0}^{\infty} n^{k+1} z^n = z f'(z)$, which is also a rational function in z, as required.
 - (c) Show that $\sum_{n=0}^{\infty} p(n)z^n$ is a rational function in z for any polynomial $p(x) = b_d x^d + \cdots + b_0$.
 - If $p(x) = b_d x^d + \dots + b_0$ then $\sum_{n=0}^{\infty} (b_d n^d + \dots + b_0) z^n = \sum_{l=0}^{d} b_l \left[\sum_{n=0}^{\infty} n^d z^n \right]$, which is a finite sum of rational functions by part (b).
 - (d) Express $\sum_{n=0}^{\infty} (2n+5)z^n$ and $\sum_{n=0}^{\infty} (n^2+n)z^n$ as rational functions in z.
 - Using the technique suggested by (a)-(c) we first compute $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$, so differentiating and then multiplying by z yields $\sum_{n=0}^{\infty} nz^n = \frac{z}{(1-z)^2}$ and then $\sum_{n=0}^{\infty} n^2 z^n = \frac{z(z+1)}{(1-z)^3}$.
 - Thus $\sum_{n=0}^{\infty} (2n+5)z^n = \boxed{\frac{5-3z}{(1-z)^2}}$ and $\sum_{n=0}^{\infty} (n^2+n)z^n = \boxed{\frac{2z}{(1-z)^3}}$.
- 7. [Challenge] The goal of this problem is to study the complex analogue of Newton's binomial series. Let α be any complex number that is not a nonnegative integer. Define the <u>binomial coefficient</u> $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}$ for each integer $n \ge 0$. Now define the <u>binomial series</u> $B_{\alpha}(z) = \sum_{n=0}^{\infty} {\alpha \choose n} z^n$. In 1665, Newton proved that if α is real, then $B_{\alpha}(x) = (1+x)^{\alpha}$ for all real -1 < x < 1.
 - (a) Show that the radius of convergence of the binomial series equals 1. [Hint: Use the Ratio Test.]
 - We have $\binom{\alpha}{n+1} / \binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n)}{(n+1)!} / \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} = \frac{\alpha-n}{n+1}$ So $\lim_{n\to\infty} \left| \binom{\alpha}{n+1} / \binom{\alpha}{n} \right| = \lim_{n\to\infty} \left| \frac{\alpha-n}{n+1} \right| = \left| \lim_{n\to\infty} \frac{\alpha-n}{n+1} \right| = |-1| = 1.$

 - Thus by the ratio test, the series has radius of convergence 1.
 - Remark: Note that we are implicitly using the fact that α is not a nonnegative integer here because otherwise the binomial coefficients are eventually zero, in which case the ratio calculation is invalid.
 - (b) For a positive integer m, show that $(B_{1/m}(z))^m = 1 + z$ for all |z| < 1. [Hint: Use Newton's binomial theorem and the uniqueness of series expansions.]
 - If x is real, then $B_{1/m}(x) = (1+z)^{1/m}$ for -1 < x < 1. So taking the mth power yields $(B_{1/m}(x))^m =$ 1+x for such x.
 - This means that the two power series $(B_{1/m}(z))^m$ and 1+z agree for all real x with -1 < x < 1. But by our uniqueness result, since the difference is a power series with positive radius of convergence (namely, radius 1 by part (a)) with a sequence of zeroes that has limit 0, the difference is identically zero.
 - Thus in fact $(B_{1/m}(z))^m = 1 + z$ for all |z| < 1, as claimed.
 - (c) Deduce that for |z| < 1, the binomial series $B_{1/m}(z)$ is a holomorphic function of z whose value is an mth root of 1+z.
 - By (a) the series $B_{1/m}(z)$ has radius of convergence 1, so it defines a holomorphic function for |z| < 1.
 - Furthermore, by (b) the mth power of this series is 1+z, so the value is an mth root of 1+z.