
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 4 Solutions

1. Find the radius and the disc of convergence for each power series:

(a)
∑∞
n=0(z − 1 + i)n.

• Setting w = z − 1 + i = z − (1 − i) we get the geometric series
∑∞
n=0 w

n which has radius of

convergence 1 .

• The center is z0 = 1− i so the disc is |z − (1− i)| < 1.

(b)
∑∞
n=0

(z − i)n

n!
.

• Setting w = z − i we get the exponential series
∑∞
n=0

wn

n!
which has radius of convergence ∞ . So

the disc of convergence is simply C .

(c)
∑∞
n=1 n

n(z − 1)n.

• Setting w = z − 1 we get the series
∑∞
n=1 n

nwn which from 1(c) of homework 3 has radius of

convergence 0 . So the disc of convergence is simply the point z = 1 .

(d)
∑∞
n=1

(z + 2)n

nn
.

• Setting w = z+2 we get the series
∑∞
n=1

wn

nn
which from 1(b) of homework 3 has radius of convergence

∞. So the disc of convergence is simply C .

(e)
∑∞
n=0(2z + 1)n.

• Setting w = 2z + 1 we get the geometric series
∑∞
n=0 w

n which converges for |w| < 1. This yields

|2z + 1| < 1 hence the disc of convergence is

∣∣∣∣z + 1

2

∣∣∣∣ < 1

2
with radius

1

2
.

(f)
∑∞
n=1

πn

ne
(πz + e)n.

• Rearranging yields the series
∑∞
n=1

π2n

ne
(z+e/π)n. Setting w = z+e/π yields the series

∑∞
n=1

π2n

ne
wn.

• Since limn→∞

∣∣∣∣π2n

ne

∣∣∣∣1/n = limn→∞
π2

ne/n
= π2 we see that the series has radius of convergence 1/π2 ,

so the disc of convergence is
∣∣∣z + e

π

∣∣∣ < 1

π2
.

(g)
∑∞
n=0 cosh(n) · zn.

• Note that cosh(n) =
en + e−n

2
. Then limn→∞ |cosh(n)|1/n = limn→∞[en + e−n]1/n2−1/n = e since

the term e−n → 0.

• So the radius of convergence is 1/e and the disc of convergence is |z| < 1/e .

(h)
∑∞
n=0

(3z + i)3n

(2− i)n
.

• Rearranging yields the geometric series
∑∞
n=0

[
(3z + i)3

2− i

]n
which converges for

∣∣∣∣ (3z + i)3

2− i

∣∣∣∣ < 1.

• Equivalently, this is |3z + i| < 51/6 which is the disc |z + i/3| < 51/6

3
of radius

51/6

3
.
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2. Find power series expansions for each given function f(z) centered at the given point z = z0:

(a) f(z) =
z

1− z3
around z = 0. [Hint: Use

1

1− r
=
∑∞
n=0 r

n.]

• Using the geometric series expansion
1

1− r
=
∑∞
n=0 r

n = 1 + r + r2 + r3 + · · · with r = z3 yields

1

1− z3
=
∑∞
n=0 z

3n. So we get f =

∞∑
n=0

z3n+1 = z + z4 + z7 + z10 + · · · .

(b) f(z) = 1 + z + z2 + z4 around z = −2.
• Setting w = z + 2 so that z = w − 2 yields f(z) = 1 + (w − 2) + (w − 2)2 + (w − 2)4 = 19− 35w +

25w2 − 8w3 + w4.

• So we get f = 19− 35(z + 2) + 25(z + 2)2 − 8(z + 2)3 + (z + 2)4 .

• Alternatively, f(−2) = 19, f ′(−2) = −35, f ′′(−2) = 50, f ′′′(−2) = −48, f ′′′′(−2) = 24, and

f (n)(−2) = 0 for n ≥ 5. So using an = f (n)(−2)/n! yields f = 19− 35(z + 2) + 25(z + 2)2 − 8(z + 2)3 + (z + 2)4 .

(c) f(z) = (1 + z)/(1− z) around z = −1.

• Setting w = z + 1 so that z = w − 1 yields f(z) =
w

2− w
=
w

2
· 1

1− (w/2)
=
w

2
·
∑∞
n=0(w/2)

n =

∑∞
n=1

wn

2n
. So we get f =

∞∑
n=1

(z + 1)n

2n
=
z + 1

2
+

(z + 1)2

22
+

(z + 1)3

23
+ · · · .

(d) f(z) = ez around z = i.

• Using the formula an = f (n)(i)/n!, and the fact that f (n)(z) = ez, we see an = ei/n!.

• So we get f =

∞∑
n=0

ei

n!
(z − i)n = 1 + ei(z − i) + ei

2!
(z − i)2 + ei

3!
(z − i)3 + · · · .

• Equivalently, noting ei = cos 1 + i sin 1, this is also
∑∞
n=0

cos 1 + i sin 1

n!
(z − i)n.

3. Find all solutions z ∈ C to each of the following equations:

(a) e4z = i.

• Since i = eiπ/2 we have e4z = eiπ/2. As noted in class we have ez = ew if and only if z − w = 2kπi
for some integer k.

• So this yields 4z − iπ/2 = 2kπi for some integer k, whence z = (π/8 + kπ/2)i for some integer k.

(b) eiz = 4.

• Like in (a) we have eiz = eln(4), so iz − ln(4) = 2kπi for some integer k.

• This yields z = −i ln(4) + 2kπ for some integer k.

(c) cosh(z) = 5/4.

• By de�nition we have cosh(z) =
ez + e−z

2
so we must have ez + e−z = 5/2.

• Setting w = ez yields w + w−1 = 5/2 so that w2 − 5

2
w + 1 = 0 yielding w = 2, 1/2. This yields

z = ± ln(2) + 2kπi for some integer k.

(d) cos(z) = 5/4.

• Note that cos(z) = cosh(iz) so from (c) we have iz = ± ln(2) + 2kπi for some integer k. Thus we

get z = 2kπ ± i ln(2) for some integer k.
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(e) sinh(z) = i cosh(z).

• The equation yields
ez − e−z

2
= i

ez + e−z

2
. Setting w = ez and multiplying by 2 yields w2 − 1 =

i(w2 + 1) so w2 = i.

• Thus we get e2z = i = eπi/2 so as in (a) we obtain 2z = πi/2 + 2kπi hence z = (π/4 + kπ)i for

some integer k.

(f) sinh(z) = cosh(z).

• The equation yields
ez − e−z

2
=
ez + e−z

2
which reduces to e−z = 0. This has no solutions .

(g) sin(z) = i cos(z).

• Since cos(z) = cosh(iz) and sin(z) = i sinh(iz) the equation yields i sinh(iz) = i cosh(iz) hence

sinh(iz) = cosh(iz) which by (f) has no solutions .

(h) sinh(z) = (1 + 3i)/4.

• By de�nition we have sinh(z) =
ez − e−z

2
so we must have ez − e−z = 1 + 3i

2
.

• Setting w = ez yields w − w−1 =
1 + 3i

2
so that w2 − 1 + 3i

2
w − 1 = 0 yielding w = 1 + i,

−1 + i

2
,

which in polar form are
√
2eiπ/4 and

1√
2
e3iπ/4.

• This yields z = ln(
√
2) + (π/4 + 2kπ)i, − ln(

√
2) + (3π/4 + 2kπ)i for some integer k.

4. Prove the following things about the complex exponential and (hyperbolic) trigonometric functions:

(a) Show sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y) and cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y).
• Note that sinh(t) = i sin(it) and cosh(t) = cos(it).

• From the sine addition formula we have sin(x+iy) = sin(x) cos(iy)+cos(x) sin(iy) = sin(x) cosh(y)+
i cos(x) sinh(y).

• From the cosine addition formula we have cos(x+iy) = cos(x) cos(iy)−sin(x) sin(iy) = cos(x) cosh(y)−
i sin(x) sinh(y).

(b) Show sinh(z+w) = sinh(z) cosh(w)+cosh(z) sinh(w) and cosh(z+w) = cosh(z) cosh(w)+sinh(z) sinh(w).

• Using the sine addition formula sin(z + w) = sin(z) cos(w) + cos(z) sin(w) yields sinh(z + w) =
i sinh(iz + iw) = i sin(iz) cos(iw) + i cos(iz) sin(iw) = sinh(z) cosh(w) + cosh(z) sinh(w).

• Using the cosine addition formula cos(z + w) = cos(z) cos(w) − sin(z) sin(w) yields cosh(z + w) =
cos(iz + iw) = cos(iz) cos(iw)− sin(iz) sin(iw) = cosh(z) cosh(w) + sinh(z) sinh(w).

(c) Show tanh(z + w) =
tanh(z) + tanh(w)

1 + tanh(z) tanh(w)
. Deduce that tanh(z) is periodic with period iπ.

• By (b) we have tanh(z+w) =
sinh(z + w)

cosh(z + w)
=

sinh(z) cosh(w) + cosh(z) sinh(w)

cosh(z) cosh(w) + sinh(z) sinh(w)
=

tanh(z) + tanh(w)

1 + tanh(z) tanh(w)
after dividing the top and bottom by cosh(z) cosh(w).

• Setting w = iπ and noting tanh(iπ) =
sinh(iπ)

cosh(iπ)
= 0 yields tanh(z + iπ) =

tanh(z) + 0

1 + 0
= tanh(z),

so tanh(z) is periodic with period iπ.

(d) Show ez is one-to-one (in other words, that ez = ew implies z = w) on any open disc of radius π.

• As noted in class we have ez = ew if and only if z − w = 2kπi for some integer k.

• However, if z, w both lie in an open disc of radius π, then |z − w| < 2π. Thus if ez = ew this forces
2π |k| < 2π hence k = 0 hence z = w. Thus ez is one-to-one as claimed.

(e) Show 2 cos(
z + w

2
) sin(

z − w
2

) = sin(z) − sin(w). Deduce that sin(z) = sin(w) if and only if z + w =

(2k + 1)π or z − w = 2kπ for an integer k.
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• For α = z+w
2 and β = z−w

2 then sin(z)−sin(w) = sin(α+β)−sin(α−β) = [sinα cosβ+cosα sinβ]−
[sinα cosβ − cosα sinβ] = 2 cosα sinβ = 2 cos(

z + w

2
) sin(

z − w
2

) as claimed.

• For the second part by the identity we see sin(z) = sin(w) if and only if cos( z+w2 ) = 0 or sin( z−w2 ).

• By the characterization of the complex zeroes of sine and cosine (i.e., just the real zeroes) these
are equivalent to z+w

2 = π
2 + kπ and z−w

2 = kπ for some integer k, which are in turn equivalent to
z + w = (2k + 1)π and z − w = 2kπ.

• So we see sin(z) = sin(w) if and only if z+w = (2k+1)π or z−w = 2kπ for an integer k as required.

5. Let Fn be the nth Fibonacci number, de�ned by F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for n ≥ 1. (The
�rst few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, ....) The goal of this problem is to study the power
series f(z) =

∑∞
n=0 Fnz

n, the generating function for the Fibonacci numbers.

(a) Show that (1− z − z2)f(z) = z as a formal power series and deduce f(z) =
z

1− z − z2
.

• We have (1 − z − z2)f(z) =
∑∞
n=0 Fnz

n −
∑∞
n=0 Fnz

n+1 −
∑∞
n=0 Fnz

n+2 = F0 + (F1 − F0)z +∑∞
n=2(Fn − Fn−1 − Fn−2)zn = 0 + z +

∑∞
n=2 0z

n = z.

• Thus f(z) =
z

1− z − z2
as a formal power series.

(b) Find complex constants a, α, b, β such that
z

1− z − z2
=

a

1− αz
+

b

1− βz
.

• Summing the right-hand side gives
a(1− βz) + b(1− αz)

(1− αz)(1− βz)
, so we want (1−αz)(1− βz) = 1− z− z2

and a(1− βz) + b(1− αz) = z.

• Since 1 − z − z2 has roots z =
−1±

√
5

2
taking reciprocals yields the factorization 1 − z − z2 =

(1− 1 +
√
5

2
z)(1− 1−

√
5

2
z), so we want α =

1 +
√
5

2
and β =

1−
√
5

2
.

• We also want a(1 − βz) + b(1 − αz) = z which is equivalent to a + b = 0 and βa + αb = −1. So

b = −a and then a =
1

β − α
=

1√
5
with b = − 1√

5
.

(c) Prove Binet's formula for the Fibonacci numbers: Fn =
ϕn − ϕn√

5
where ϕ =

1 +
√
5

2
and ϕ =

1−
√
5

2
.

[Hint: Expand the two geometric series from (b) and compare to f(z).]

• From (b),
z

1− z − z2
=

1/
√
5

1− ϕz
+
−1/
√
5

1− ϕz
=

1√
5
·
∑∞
n=0 ϕ

nzn− 1√
5

∑∞
n=0 ϕ

nzn =
∑∞
n=0

ϕn − ϕn√
5

zn.

• But from (a) we know that
z

1− z − z2
=
∑∞
n=0 Fnz

n. So comparing coe�cients immediately yields

the desired formula.

(d) Find the radius of convergence of f(z).

• We have limn→∞ |Fn|1/n = limn→∞

∣∣∣∣ϕn − ϕn√
5

∣∣∣∣1/n = ϕ since ϕ > 1 while −1 < ϕ < 0.

• So by the radius-of-convergence formula, the radius is R = 1/ϕ =
−1 +

√
5

2
.

• Alternatively, we could use the result of problem 4 of homework 3: the series 1√
5

∑∞
n=0 ϕ

nzn has

radius of convergence 1/ϕ while the series − 1√
5

∑∞
n=0 ϕ

nzn has radius of convergence 1/ |ϕ|, so their
sum has radius of convergence the minimum of these, which is 1/ϕ.

Remark: A similar method to the one in (a)-(c) can be used to solve any linear recurrence with constant
coe�cients, of the form an+1 = cnan + · · ·+ cn−kan−k for constants ci. Moreover, the general technique
of considering the generating function f(z) =

∑∞
n=0 anz

n for an arbitrary sequence a0, a1, . . . can be
used to �nd and prove many kinds of combinatorial identities.
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6. The goal of this problem is to prove that if p is any polynomial, then the formal power series
∑∞
n=0 p(n)z

n is
a rational function in z.

(a) Suppose that f(z) =
∑∞
n=0 anz

n. Show that zf ′(z) =
∑∞
n=0 nanz

n.

• This is immediate from the termwise di�erentiation formula, since f ′(z) =
∑∞
n=0 nanz

n−1, so then
multiplying by z gives zf ′(z) =

∑∞
n=0 nanz

n.

(b) Show that for every integer k ≥ 0,
∑∞
n=0 n

kzn is a rational function in z. [Hint: Induct on k.]

• We induct on k. For the base case k = 0 we have
∑∞
n=0 z

n =
1

1− z
as shown in class.

• For the inductive step, suppose f(z) =
∑∞
n=0 n

kzn is a rational function in z. Then by (a) we have∑∞
n=0 n

k+1zn = zf ′(z), which is also a rational function in z, as required.

(c) Show that
∑∞
n=0 p(n)z

n is a rational function in z for any polynomial p(x) = bdx
d + · · ·+ b0.

• If p(x) = bdx
d+ · · ·+ b0 then

∑∞
n=0(bdn

d+ · · ·+ b0)zn =
∑d
l=0 bl

[∑∞
n=0 n

dzn
]
, which is a �nite sum

of rational functions by part (b).

(d) Express
∑∞
n=0(2n+ 5)zn and

∑∞
n=0(n

2 + n)zn as rational functions in z.

• Using the technique suggested by (a)-(c) we �rst compute
∑∞
n=0 z

n =
1

1− z
, so di�erentiating and

then multiplying by z yields
∑∞
n=0 nz

n =
z

(1− z)2
and then

∑∞
n=0 n

2zn =
z(z + 1)

(1− z)3
.

• Thus
∑∞
n=0(2n+ 5)zn =

5− 3z

(1− z)2
and

∑∞
n=0(n

2 + n)zn =
2z

(1− z)3
.

7. [Challenge] The goal of this problem is to study the complex analogue of Newton's binomial series. Let α be any

complex number that is not a nonnegative integer. De�ne the binomial coe�cient

(
α

n

)
=
α(α− 1)(α− 2) · · · (α− n+ 1)

n!

for each integer n ≥ 0. Now de�ne the binomial series Bα(z) =
∑∞
n=0

(
α

n

)
zn. In 1665, Newton proved that

if α is real, then Bα(x) = (1 + x)α for all real −1 < x < 1.

(a) Show that the radius of convergence of the binomial series equals 1. [Hint: Use the Ratio Test.]

• We have

(
α

n+ 1

)/(α
n

)
=
α(α− 1)(α− 2) · · · (α− n)

(n+ 1)!

/ α(α− 1)(α− 2) · · · (α− n+ 1)

n!
=
α− n
n+ 1

.

• So limn→∞

∣∣∣∣( α

n+ 1

)/(α
n

)∣∣∣∣ = limn→∞

∣∣∣∣α− nn+ 1

∣∣∣∣ = ∣∣∣∣limn→∞
α− n
n+ 1

∣∣∣∣ = |−1| = 1.

• Thus by the ratio test, the series has radius of convergence 1.

• Remark: Note that we are implicitly using the fact that α is not a nonnegative integer here because
otherwise the binomial coe�cients are eventually zero, in which case the ratio calculation is invalid.

(b) For a positive integer m, show that (B1/m(z))m = 1 + z for all |z| < 1. [Hint: Use Newton's binomial
theorem and the uniqueness of series expansions.]

• If x is real, then B1/m(x) = (1+z)1/m for −1 < x < 1. So taking themth power yields (B1/m(x))m =
1 + x for such x.

• This means that the two power series (B1/m(z))m and 1+z agree for all real x with −1 < x < 1. But
by our uniqueness result, since the di�erence is a power series with positive radius of convergence
(namely, radius 1 by part (a)) with a sequence of zeroes that has limit 0, the di�erence is identically
zero.

• Thus in fact (B1/m(z))m = 1 + z for all |z| < 1, as claimed.

(c) Deduce that for |z| < 1, the binomial series B1/m(z) is a holomorphic function of z whose value is an
mth root of 1 + z.

• By (a) the series B1/m(z) has radius of convergence 1, so it de�nes a holomorphic function for |z| < 1.

• Furthermore, by (b) the mth power of this series is 1 + z, so the value is an mth root of 1 + z.
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