
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 3 Solutions

1. For f, g, h as below, perform the requested calculations:

f =

∞∑
n=0

n2zn = z + 4z2 + 9z3 + 16z4 + 25z5 + · · ·

g =

∞∑
n=0

(1 + 2n)zn= 1 + 3z + 5z2 + 7z3 + 9z4 + 11z5 + · · ·

h =

∞∑
n=−2

(−1)nzn = z−2 − z−1 + 1− z + z2 − z3 + z4 − · · ·

(a) Find f + 2g up through the terms of order 4.

• Add: f+2g = (z+4z2+9z3+16z4+· · · )+2(1+3z+5z2+7z3+9z4+· · · ) = 2 + 7z + 14z2 + 23z3 + 34z4 + · · · .
(b) Find f + h up through the terms of order 4.

• Add: f + h = (z + 4z2 + 9z3 + 16z4 + · · · ) + (z−2 − z−1 + 1 − z + z2 − z3 + z4 − · · · ) =

z−2 − z−1 + 1 + 5z2 + 8z3 + 17z4 + · · · .
(c) Find fg up through the terms of order 4.

• Multiply: fg = (z+4z2+9z3+16z4+· · · )·(1+3z+5z2+7z3+9z4+· · · ) = z + 7z2 + 26z3 + 70z4 + · · · .
(d) Find fh up through the terms of order 3.

• Multiply: fh = (z + 4z2 + 9z3 + 16z4 + · · · ) · (z−2 − z−1 + 1 − z + z2 − z3 + z4 − · · · ) =

z−1 + 3 + 6z + 10z2 + 15z3 + · · · .
(e) Find f2 up through the terms of order 5.

• Multiply: f2 = (z+4z2+9z3+16z4+· · · )·(z+4z2+9z3+16z4+· · · ) = z2 + 8z3 + 34z4 + 104z5 + · · · .
(f) Find 1/g up through the terms of order 4.

• If g−1 = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + · · · then we get 1 = (1 + 3z + 5z2 + 7z3 + 9z4 + · · · )(b0 +

b1z + b2z
2 + b3z

3 + b4z
4 + · · · ) = b0 + (3b0 + b1)z + (5b0 + 3b1 + b2)z

2 + (7b0 + 5b1 + 3b2 + b3)z
3 +

(9b0 + 7b1 + 5b2 + 3b3 + b4)z
4 + · · · .

• Setting coe�cients equal yields b0 = 1, 3b0 + b1 = 0 so b1 = −3, 5b0 + 3b1 + b2 = 0 so b2 = 4,
7b0 + 5b1 + 3b2 + b3 = 0 so b3 = −4, 9b0 + 7b1 + 5b2 + 3b3 + b4 = 0 so b4 = 4, and so forth.

• So g−1 = 1− 3z + 4z2 − 4z3 + 4z4 + · · · .
(g) Find 1/f up through the terms of order 3.

• Taking out the factor of z, we need to �nd the inverse of f/z = 1 + 4z + 9z2 + 16z3 + 25z4 + · · · .
• If the inverse is b0 + b1z + b2z

2 + b3z
3 + b4z

4 + · · · then we get 1 = (1 + 4z + 9z2 + 16z3 + 25z4 +
· · · )(b0 + b1z+ b2z

2 + b3z
3 + b4z

4 + · · · ) = b0 + (4b0 + b1)z+ (9b0 +4b1 + b2)z
2 + (16b0 +9b1 +4b2 +

b3)z
3 + (25b0 + 16b1 + 9b2 + 4b3 + b4)z

4 + · · · .
• Setting coe�cients equal yields b0 = 1, 4b0 + b1 = 0 so b1 = −4, 9b0 + 4b1 + b2 = 0 so b2 = 7,
16b0 + 9b1 + 4b2 + b3 = 0 so b3 = −8, 25b0 + 16b1 + 9b2 + 4b3 + b4 = 0 so b4 = 8, and so forth.

• So (f/z)−1 = (1−4z+7z2−8z3+8z4+· · · ) and thus f−1 = z−1(f/z)−1 = z−1 − 4 + 7z − 8z2 + 8z3 + · · · .
(h) Find 1/h. [Hint: It is a polynomial.]

• Taking out the factor of z−2 yields that we need to �nd the inverse of z2h = 1+z+z3+z4+z5+ · · · ,
which as we have calculated is 1− z. Then h−1 = z2(z2h)−1 = z2(1− z) = z2 − z3 .

(i) Find f/g up through the terms of order 3.

• We simply evaluate f · g−1 = (z + 4z2 + 9z3 + 16z4 + · · · ) · (1 − 3z + 4z2 − 4z3 + 4z4 + · · · ) =

z + z2 + z3 + z4 + · · · .
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2. Find the radius of convergence for each power series:

(a)
∑∞
n=0

2n

n+ 2
zn.

• We compute limn→∞

∣∣∣∣ 2n

n+ 2

∣∣∣∣1/n = limn→∞
2

(n+ 2)1/n
= 2. Thus, the radius of convergence is 1/2 .

(b)
∑∞
n=1

zn

nn
.

• We compute limn→∞

∣∣∣∣ 1nn
∣∣∣∣1/n = limn→∞

∣∣∣∣ 1n
∣∣∣∣ = 0. Thus, the radius of convergence is 1/0 = ∞ .

(c)
∑∞
n=1 n

nzn.

• We compute limn→∞ |nn|1/n = limn→∞ |n| =∞. Thus, the radius of convergence is 1/∞ = 0 .

(d)
∑∞
n=0

(3 + 2i)n

(1− i)n
zn.

• We compute limn→∞

∣∣∣∣ (3 + 2i)n

(1− i)n

∣∣∣∣1/n = limn→∞

∣∣∣∣3 + 2i

1− i

∣∣∣∣ =
√

13

2
. Thus, the radius of convergence is√

2/13 .

(e)
∑∞
n=0(i−

1

n
)nzn.

• We compute limn→∞

∣∣∣∣(i− 1

n
)n
∣∣∣∣1/n = limn→∞

∣∣∣∣i− 1

n

∣∣∣∣ = 1. Thus, the radius of convergence is 1 .

(f)
∑∞
n=1 n

5zn.

• We compute limn→∞
∣∣n5∣∣1/n = limn→∞

∣∣n5/n∣∣ = 1. Thus, the radius of convergence is 1/1 = 1 .

(g)
∑∞
n=0

2n

3n + 4n
zn.

• We compute limn→∞

∣∣∣∣ 2n

3n + 4n

∣∣∣∣1/n = limn→∞
2

4(1 + (3/4)n)1/n
=

1

2
. Thus, the radius of convergence

is 2 .

(h)
∑∞
n=0

(−1)n

(2n+ 1)!
z2n+1.

• We compute limn→∞

∣∣∣∣ (−1)n

(2n+ 1)!

∣∣∣∣1/n = limn→∞

∣∣∣∣ 1

(2n+ 1)!

∣∣∣∣1/n = 0, since [(2n + 1)!]1/n > (2n/e)2.

Thus, the radius of convergence is 1/0 = ∞ .

(i)
∑∞
n=0 z

2n .

• Note that the coe�cients are all either 0 or 1. Although limn→∞ |an|1/n does not converge since it
oscillates between 0 and 1, the limsup does converge to 1.

• Thus, the radius of convergence is 1 .

3. The goal of this problem is to prove the Ratio Test. So suppose {an}n≥1 is a complex sequence whose terms
are nonzero.

(a) Suppose that there exists a real number ρ < 1 and positive N such that |an+1/an| ≤ ρ for all n ≥ N .
Show that

∑∞
n=1 an converges absolutely. [Hint: Explain why |aN+k| ≤ |aN | ρk for all k ≥ 0 and use this

to show that
∑∞
n=N |an| is �nite.]

• Suppose ρ < 1 and that |an+1/an| ≤ ρ for all n ≥ N . Then by multiplying the inequalities for
n = N,N + 1, . . . , N + k − 1 we see that |aN+k| ≤ |aN | ρk for all k ≥ 0.
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• Then
∑∞
n=N |an| ≤

∑∞
n=N |aN | ρn =

|aN | ρn

1− ρ
. This means

∑∞
n=N |an| converges, and therefore so

does
∑∞
n=1 |an|, since it only has a �nite number of additional terms.

• This means
∑∞
n=1 an converges absolutely as claimed.

(b) Give an example of a series with |an+1/an| < 1 for all n but where Show that if we weaken the hypothesis
of (a) only to require that |an+1/an| < 1 for all n, then

∑∞
n=1 an need not converge absolutely.

• A simple counterexample is to take an =
1

n
: then an+1 < an for all n, but

∑∞
n=1 an =

∑∞
n=1

1

n
does

not converge absolutely (or at all).

• The issue is that even if |an+1/an| < 1, we can still have limn→∞ |an+1/an| = 1, in which case we
don't get the necessary exponential decay in the sizes of the terms.

(c) Suppose that there exists a positive N such that |an+1/an| ≥ 1 for all n ≥ N . Show that
∑∞
n=1 an

diverges. [Hint: The terms cannot go to zero.]

• Suppose that |an+1/an| ≥ 1 for all n ≥ N . Then by a trivial induction we have |aN+k| ≥ |aN | for
all k ≥ 0.

• Then the terms of the series do not tend to zero, since their absolute values are all at least |aN | > 0,
so the series diverges.

(d) Prove the Ratio Test: If limn→∞ |an+1/an| = r exists, then
∑∞
n=1 an converges absolutely if r < 1 and∑∞

n=1 an diverges if r > 1. [Hint: For the convergence, take any ρ with r < ρ < 1 in (a).]

• Suppose that limn→∞ |an+1/an| = ρ.

• If r < 1 then take any ρ with r < ρ < 1. Then by the de�nition of limit there exists N such that for
all n ≥ N we have |an+1/an| < ρ, so using this ρ in (a) immediately yields that

∑∞
n=1 an converges

absolutely.

• If r > 1 then similarly by the de�nition of limit there exists N such that for all n ≥ N we have
|an+1/an| > 1, in which case (c) immediately yields that

∑∞
n=1 an diverges.

(e) Find the radius of convergence of the power series
∑∞
n=0

nn

n!
zn.

• We try using the Ratio Test to analyze the ratios between consecutive terms. With an =
nn

n!
zn, we

see
an+1

an
=

(n+ 1)n+1zn+1/(n+ 1)!

nnzn/n!
=

(n+ 1)n

nn
z = (1 +

1

n
)nz.

• Thus, limn→∞

∣∣∣∣an+1

an

∣∣∣∣ = limn→∞(1 +
1

n
)n |z| = e |z| by the usual limit limn→∞(1 +

1

n
)n = e.

• So by the Ratio Test, if |z| < 1/e we see that limn→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 and so the power series converges,

while if |z| > 1/e then limn→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 so the series diverges.

• Thus, the radius of convergence must be 1/e .

4. Suppose f =
∑∞
n=0 anz

n is a power series with radius of convergence Rf and g =
∑∞
n=0 bnz

n is a power series
with radius of convergence Rg, where Rf ≤ Rg.

(a) Show that f + g has radius of convergence at least Rf .

• As shown in class, f(z) converges absolutely for |z| < Rf and g(z) converges absolutely for |z| < Rg
hence in particular for |z| < Rf .

• Thus the sum f(z) + g(z) also converges absolutely for |z| < Rf , meaning the radius of convergence
is at least Rf .

(b) If Rf < Rg show that f + g has radius of convergence exactly Rf .

• By (a) we just need to show that the radius of convergence cannot be larger than Rf .
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• Since Rf < Rg, suppose z has Rf < |z| < Rg. Then f(z) diverges (as shown in class) but g(z)
converges.

• Then f(z) + g(z) must also diverge, since if it converged, so would [f(z) + g(z)]− g(z) = f(z).

• This means f + g diverges whenever |z| > Rf , and so the radius of convergence of f + g cannot be
larger than Rf .

(c) Find an example of power series f and g with Rf = Rg such that f + g has radius of convergence strictly
greater than Rf .

• A simple example is to take g = −f where f has a �nite radius of convergence (e.g., f =
∑∞
n=0 z

n

with Rf = 1): then g has the same radius of convergence as f , but f+g = 0 has radius of convergence
∞.

• In fact, in any possible example we must have g = −f + h where h has radius of convergence bigger
than f . But in fact, all such examples actually work since by (b) g and f have the same radius of
convergence while f + g = h has a larger radius of convergence.

5. [Challenge] The goal of this problem is to discuss a useful summation technique known as Abel summation
(also called summation by parts), and then use it to derive some series convergence tests. So suppose {an}n≥1
and {bn}n≥1 are two complex sequences, and de�ne Sn =

∑n
k=1 akbk and Bn =

∑n
k=1 bk.

(a) Show the Abel summation formula: that Sn = anBn +
∑n−1
k=1 Bk(ak − ak+1).

• We induct on n. For the base case n = 1 we have S1 = a1B1 + 0 as required.

• For the inductive step suppose that Sn = anBn +
∑n−1
k=1 Bk(ak − ak+1).

• Then

Sn+1 = an+1bn+1 + Sn

= an+1bn+1 + [anBn +

n−1∑
k=1

Bk(ak − ak+1)]

= an+1Bn+1 + (an − an+1)Bn +

n−1∑
k=1

Bk(ak − ak+1)

= an+1Bn+1 +

n∑
k=1

Bk(ak − ak+1)

as required.

(b) Prove Dirichlet's convergence test: if {an}n≥1 is a strictly decreasing sequence of positive real numbers
with limn→∞ an = 0 and the sequence {Bn}n≥1 is bounded, then

∑∞
k=1 akbk converges. [Hint: Suppose

|Bn| ≤M for all n. Use (a) on the partial sum Sn and then show that anBn → 0 and that
∑n−1
k=1 Bk(ak−

ak+1) is absolutely convergent.]

• Suppose that {an}n≥1 is a strictly decreasing sequence of positive real numbers with limn→∞ an = 0
and the sequence {Bn}n≥1 is bounded, say with |Bn| ≤M for all n.

• Following the hint, applying the Abel summation formula from (a) yields Sn = anBn+
∑n−1
k=1 Bk(ak−

ak+1).

• Since |Bn| ≤M for all n, we have |anBn| ≤Man → 0 as n→∞ since an → 0 by hypothesis.

• Furthermore, because ak > ak+1 we have |ak − ak+1| = ak − ak+1.

• Therefore
∑n−1
k=1 |Bk(ak − ak+1)| =

∑n−1
k=1(ak − ak+1) |Bk| ≤

∑n−1
k=1(ak − ak+1)M = M(a1 − an), so

taking the limit as n → ∞ yields Ma1, which is �nite. This means
∑∞
k=1Bk(ak − ak+1) converges

absolutely, hence converges.

• Putting this together we see that limn→∞ Sn = limn→∞ anBn +
∑∞
k=1Bk(ak − ak+1) converges, as

required.

(c) Deduce the Alternating Series Test: if {an}n≥1 is a strictly decreasing sequence of positive real numbers
with limn→∞ an = 0, then the alternating series

∑∞
k=1(−1)kak converges.

4



• This follows immediately from Dirichlet's convergence test applied with bk = (−1)k: clearly the sums
Bn =

∑n
k=1(−1)k are bounded since they alternate between −1 and 0, and so all of the hypotheses

are satis�ed.

• We conclude that
∑∞
k=1 akbk =

∑∞
k=1(−1)kak converges, as desired.

• Remark: The summation formula in part (a) is the discrete analogue of integration by parts, whence
its name �summation by parts�. Speci�cally, the sum

∑n
k=1 f(k) is the analogue of the antiderivative´

f(x) dx while the di�erence f(k + 1) − f(k) is the analogue of the derivative f ′(x). The formula in
(a) is then the analogue of the integration by parts formula

´
f(x)g(x) dx = f(x)G(x)−

´
f ′(x)G(x) dx

where G is an antiderivative of g (the minus sign arises because the di�erences in (a) are ak−ak+1 rather
than ak+1 − ak).

6. The goal of this problem is to study the convergence of the power series f =
∑∞
n=1

1

n
zn.

(a) Show that f has radius of convergence 1 and explain why f does not converge for z = 1.

• We have limn→∞ |an|1/n = limn→∞ n−1/n = 1 so the radius of convergence is 1 as claimed.

• Additionally, if z = 1 then the series becomes
∑∞
n=1

1

n
, which diverges: it is the usual harmonic

series, which goes to ∞ by the integral estimate
∑t
n=1

1

n
>
´ t
1

1

t
dt = ln(t).

(b) Show that if 0 < θ < 2π, then
∣∣∑n

k=0 e
ikθ
∣∣ ≤ 2

|eiθ − 1|
. [Hint: Use problem 6(d) of homework 1.]

• In problem 6(d) of homework 1, we showed that 1 + eix + e2ix + · · ·+ einx =
e(n+1)ix − 1

eix − 1
.

• Taking the absolute value and writing θ in place of x yields
∣∣∑n

k=0 e
iθ
∣∣ = ∣∣e(n+1)iθ − 1

∣∣
|eiθ − 1|

.

• Since

∣∣e(n+1)iθ − 1
∣∣

|eiθ − 1|
≤
∣∣e(n+1)iθ

∣∣+ |−1|
|eiθ − 1|

=
2

|eiθ − 1|
by the triangle inequality, the result follows

immediately.

(c) Show that f does converge if |z| = 1 but z 6= 1. [Hint: Use (b) with z = eiθ in Dirichlet's convergence
test from problem 5(b); you just need to verify all of the hypotheses hold.]

• Suppose |z| = 1 so that z = eiθ. Then z 6= 1 allows us to assume 0 < θ < 2π.

• Per the hint we will apply Dirichlet's convergence test with an =
1

n
and bn = zn = eniθ, so we need

to check the hypotheses.

• Clearly {an}n≥1 is a strictly decreasing sequence of positive real numbers with limn→∞ an = 0.

• Additionally, by part (b), the sums Bn =
∑n
k=0 z

n =
∑n
k=0 e

kiθ are all bounded in absolute value

by
2

|eiθ − 1|
.

• Therefore, by Dirichlet's convergence test, the sum
∑∞
n=1 anbn =

∑∞
n=1

1

n
zn converges, as claimed.

• Combining with the result of (a) we deduce that f converges absolutely for all |z| < 1 and also when
|z| = 1 except at the point z = 1 where it diverges.

(d) Determine all z for which f =
∑∞
n=0

zn

n
converges.

• From (a) since the radius of convergence is 1 we know that f converges for all |z| < 1 and diverges
for all |z| > 1. Also from (a) we know f diverges for z = 1.

• From (c) we know f converges for all |z| = 1 with z 6= 1.

• Thus, f converges for all |z| ≤ 1 except for z = 1, and it diverges for all |z| > 1 along with z = 1.
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