1. For f, g, h as below, perform the requested calculations:

$$f = \sum_{n=0}^{\infty} n^2 z^n = z + 4z^2 + 9z^3 + 16z^4 + 25z^5 + \cdots$$

$$g = \sum_{n=0}^{\infty} (1+2n)z^n = 1 + 3z + 5z^2 + 7z^3 + 9z^4 + 11z^5 + \cdots$$

$$h = \sum_{n=-2}^{\infty} (-1)^n z^n = z^{-2} - z^{-1} + 1 - z + z^2 - z^3 + z^4 - \cdots$$

- (a) Find f + 2g up through the terms of order 4.
 - Add: $f+2g = (z+4z^2+9z^3+16z^4+\cdots)+2(1+3z+5z^2+7z^3+9z^4+\cdots) = 2+7z+14z^2+23z^3+34z^4+\cdots$
- (b) Find f + h up through the terms of order 4.
 - Add: $f + h = (z + 4z^2 + 9z^3 + 16z^4 + \cdots) + (z^{-2} z^{-1} + 1 z + z^2 z^3 + z^4 \cdots) = z^{-2} z^{-1} + 1 + 5z^2 + 8z^3 + 17z^4 + \cdots$
- (c) Find fg up through the terms of order 4.
 - Multiply: $fg = (z+4z^2+9z^3+16z^4+\cdots)\cdot(1+3z+5z^2+7z^3+9z^4+\cdots) = \boxed{z+7z^2+26z^3+70z^4+\cdots}$
- (d) Find fh up through the terms of order 3.
 - Multiply: $fh = (z + 4z^2 + 9z^3 + 16z^4 + \cdots) \cdot (z^{-2} z^{-1} + 1 z + z^2 z^3 + z^4 \cdots) = z^{-1} + 3 + 6z + 10z^2 + 15z^3 + \cdots$
- (e) Find f^2 up through the terms of order 5.
 - Multiply: $f^2 = (z+4z^2+9z^3+16z^4+\cdots)\cdot(z+4z^2+9z^3+16z^4+\cdots) = \boxed{z^2+8z^3+34z^4+104z^5+\cdots}$
- (f) Find 1/g up through the terms of order 4.
 - If $g^{-1} = b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + \cdots$ then we get $1 = (1 + 3z + 5z^2 + 7z^3 + 9z^4 + \cdots)(b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + \cdots) = b_0 + (3b_0 + b_1)z + (5b_0 + 3b_1 + b_2)z^2 + (7b_0 + 5b_1 + 3b_2 + b_3)z^3 + (9b_0 + 7b_1 + 5b_2 + 3b_3 + b_4)z^4 + \cdots$
 - Setting coefficients equal yields $b_0 = 1$, $3b_0 + b_1 = 0$ so $b_1 = -3$, $5b_0 + 3b_1 + b_2 = 0$ so $b_2 = 4$, $7b_0 + 5b_1 + 3b_2 + b_3 = 0$ so $b_3 = -4$, $9b_0 + 7b_1 + 5b_2 + 3b_3 + b_4 = 0$ so $b_4 = 4$, and so forth.
 - So $g^{-1} = 1 3z + 4z^2 4z^3 + 4z^4 + \cdots$
- (g) Find 1/f up through the terms of order 3.
 - Taking out the factor of z, we need to find the inverse of $f/z = 1 + 4z + 9z^2 + 16z^3 + 25z^4 + \cdots$
 - If the inverse is $b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + \cdots$ then we get $1 = (1 + 4z + 9z^2 + 16z^3 + 25z^4 + \cdots)(b_0 + b_1 z + b_2 z^2 + b_3 z^3 + b_4 z^4 + \cdots) = b_0 + (4b_0 + b_1)z + (9b_0 + 4b_1 + b_2)z^2 + (16b_0 + 9b_1 + 4b_2 + b_3)z^3 + (25b_0 + 16b_1 + 9b_2 + 4b_3 + b_4)z^4 + \cdots$
 - Setting coefficients equal yields $b_0 = 1$, $4b_0 + b_1 = 0$ so $b_1 = -4$, $9b_0 + 4b_1 + b_2 = 0$ so $b_2 = 7$, $16b_0 + 9b_1 + 4b_2 + b_3 = 0$ so $b_3 = -8$, $25b_0 + 16b_1 + 9b_2 + 4b_3 + b_4 = 0$ so $b_4 = 8$, and so forth.
 - So $(f/z)^{-1} = (1 4z + 7z^2 8z^3 + 8z^4 + \cdots)$ and thus $f^{-1} = z^{-1}(f/z)^{-1} = \boxed{z^{-1} 4 + 7z 8z^2 + 8z^3 + \cdots}$
- (h) Find 1/h. [Hint: It is a polynomial.]
 - Taking out the factor of z^{-2} yields that we need to find the inverse of $z^2h = 1 + z + z^3 + z^4 + z^5 + \cdots$, which as we have calculated is 1 z. Then $h^{-1} = z^2(z^2h)^{-1} = z^2(1-z) = \boxed{z^2 z^3}$.
- (i) Find f/g up through the terms of order 3.
 - We simply evaluate $f \cdot g^{-1} = (z + 4z^2 + 9z^3 + 16z^4 + \cdots) \cdot (1 3z + 4z^2 4z^3 + 4z^4 + \cdots) = z + z^2 + z^3 + z^4 + \cdots$.

- 2. Find the radius of convergence for each power series:
 - (a) $\sum_{n=0}^{\infty} \frac{2^n}{n+2} z^n$.
 - We compute $\lim_{n\to\infty} \left| \frac{2^n}{n+2} \right|^{1/n} = \lim_{n\to\infty} \frac{2}{(n+2)^{1/n}} = 2$. Thus, the radius of convergence is 1/2.
 - (b) $\sum_{n=1}^{\infty} \frac{z^n}{n^n}.$
 - We compute $\lim_{n\to\infty} \left| \frac{1}{n^n} \right|^{1/n} = \lim_{n\to\infty} \left| \frac{1}{n} \right| = 0$. Thus, the radius of convergence is $1/0 = \infty$.
 - (c) $\sum_{n=1}^{\infty} n^n z^n$.
 - We compute $\lim_{n\to\infty} |n^n|^{1/n} = \lim_{n\to\infty} |n| = \infty$. Thus, the radius of convergence is $1/\infty = \boxed{0}$.
 - (d) $\sum_{n=0}^{\infty} \frac{(3+2i)^n}{(1-i)^n} z^n$.
 - We compute $\lim_{n\to\infty} \left| \frac{(3+2i)^n}{(1-i)^n} \right|^{1/n} = \lim_{n\to\infty} \left| \frac{3+2i}{1-i} \right| = \sqrt{\frac{13}{2}}$. Thus, the radius of convergence is $\sqrt{2/13}$.
 - (e) $\sum_{n=0}^{\infty} (i \frac{1}{n})^n z^n$.
 - We compute $\lim_{n\to\infty}\left|(i-\frac{1}{n})^n\right|^{1/n}=\lim_{n\to\infty}\left|i-\frac{1}{n}\right|=1$. Thus, the radius of convergence is $\boxed{1}$.
 - (f) $\sum_{n=1}^{\infty} n^5 z^n$.
 - We compute $\lim_{n\to\infty} \left|n^5\right|^{1/n} = \lim_{n\to\infty} \left|n^{5/n}\right| = 1$. Thus, the radius of convergence is $1/1 = \boxed{1}$.
 - (g) $\sum_{n=0}^{\infty} \frac{2^n}{3^n + 4^n} z^n$.
 - We compute $\lim_{n\to\infty} \left| \frac{2^n}{3^n + 4^n} \right|^{1/n} = \lim_{n\to\infty} \frac{2}{4(1 + (3/4)^n)^{1/n}} = \frac{1}{2}$. Thus, the radius of convergence is $\boxed{2}$.
 - (h) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$.
 - We compute $\lim_{n\to\infty} \left| \frac{(-1)^n}{(2n+1)!} \right|^{1/n} = \lim_{n\to\infty} \left| \frac{1}{(2n+1)!} \right|^{1/n} = 0$, since $[(2n+1)!]^{1/n} > (2n/e)^2$. Thus, the radius of convergence is $1/0 = \infty$.
 - (i) $\sum_{n=0}^{\infty} z^{2^n}.$
 - Note that the coefficients are all either 0 or 1. Although $\lim_{n\to\infty} |a_n|^{1/n}$ does not converge since it oscillates between 0 and 1, the limsup does converge to 1.
 - Thus, the radius of convergence is 1.
- 3. The goal of this problem is to prove the Ratio Test. So suppose $\{a_n\}_{n\geq 1}$ is a complex sequence whose terms are nonzero.
 - (a) Suppose that there exists a real number $\rho < 1$ and positive N such that $|a_{n+1}/a_n| \le \rho$ for all $n \ge N$. Show that $\sum_{n=1}^{\infty} a_n$ converges absolutely. [Hint: Explain why $|a_{N+k}| \le |a_N| \, \rho^k$ for all $k \ge 0$ and use this to show that $\sum_{n=N}^{\infty} |a_n|$ is finite.]
 - Suppose $\rho < 1$ and that $|a_{n+1}/a_n| \le \rho$ for all $n \ge N$. Then by multiplying the inequalities for $n = N, N+1, \ldots, N+k-1$ we see that $|a_{N+k}| \le |a_N| \rho^k$ for all $k \ge 0$.

- Then $\sum_{n=N}^{\infty} |a_n| \leq \sum_{n=N}^{\infty} |a_N| \rho^n = \frac{|a_N| \rho^n}{1-\rho}$. This means $\sum_{n=N}^{\infty} |a_n|$ converges, and therefore so does $\sum_{n=1}^{\infty} |a_n|$, since it only has a finite number of additional terms.
- This means $\sum_{n=1}^{\infty} a_n$ converges absolutely as claimed.
- (b) Give an example of a series with $|a_{n+1}/a_n| < 1$ for all n but where Show that if we weaken the hypothesis of (a) only to require that $|a_{n+1}/a_n| < 1$ for all n, then $\sum_{n=1}^{\infty} a_n$ need not converge absolutely.
 - A simple counterexample is to take $a_n = \frac{1}{n}$: then $a_{n+1} < a_n$ for all n, but $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ does not converge absolutely (or at all).
 - The issue is that even if $|a_{n+1}/a_n| < 1$, we can still have $\lim_{n\to\infty} |a_{n+1}/a_n| = 1$, in which case we don't get the necessary exponential decay in the sizes of the terms.
- (c) Suppose that there exists a positive N such that $|a_{n+1}/a_n| \ge 1$ for all $n \ge N$. Show that $\sum_{n=1}^{\infty} a_n$ diverges. [Hint: The terms cannot go to zero.]
 - Suppose that $|a_{n+1}/a_n| \ge 1$ for all $n \ge N$. Then by a trivial induction we have $|a_{N+k}| \ge |a_N|$ for all $k \ge 0$.
 - Then the terms of the series do not tend to zero, since their absolute values are all at least $|a_N| > 0$, so the series diverges.
- (d) Prove the Ratio Test: If $\lim_{n\to\infty} |a_{n+1}/a_n| = r$ exists, then $\sum_{n=1}^{\infty} a_n$ converges absolutely if r < 1 and $\sum_{n=1}^{\infty} a_n$ diverges if r > 1. [Hint: For the convergence, take any ρ with $r < \rho < 1$ in (a).]
 - Suppose that $\lim_{n\to\infty} |a_{n+1}/a_n| = \rho$.
 - If r < 1 then take any ρ with $r < \rho < 1$. Then by the definition of limit there exists N such that for all $n \ge N$ we have $|a_{n+1}/a_n| < \rho$, so using this ρ in (a) immediately yields that $\sum_{n=1}^{\infty} a_n$ converges absolutely.
 - If r > 1 then similarly by the definition of limit there exists N such that for all $n \ge N$ we have $|a_{n+1}/a_n| > 1$, in which case (c) immediately yields that $\sum_{n=1}^{\infty} a_n$ diverges.
- (e) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^n}{n!} z^n$.
 - We try using the Ratio Test to analyze the ratios between consecutive terms. With $a_n = \frac{n^n}{n!}z^n$, we see $\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}z^{n+1}/(n+1)!}{n^nz^n/n!} = \frac{(n+1)^n}{n^n}z = (1+\frac{1}{n})^nz$.
 - Thus, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} (1+\frac{1}{n})^n |z| = e|z|$ by the usual limit $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$.
 - So by the Ratio Test, if |z| < 1/e we see that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ and so the power series converges, while if |z| > 1/e then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ so the series diverges.
 - Thus, the radius of convergence must be 1/e
- 4. Suppose $f = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence R_f and $g = \sum_{n=0}^{\infty} b_n z^n$ is a power series with radius of convergence R_g , where $R_f \leq R_g$.
 - (a) Show that f + g has radius of convergence at least R_f .
 - As shown in class, f(z) converges absolutely for $|z| < R_f$ and g(z) converges absolutely for $|z| < R_g$ hence in particular for $|z| < R_f$.
 - Thus the sum f(z) + g(z) also converges absolutely for $|z| < R_f$, meaning the radius of convergence is at least R_f .
 - (b) If $R_f < R_g$ show that f + g has radius of convergence exactly R_f .
 - By (a) we just need to show that the radius of convergence cannot be larger than R_f .

- Since $R_f < R_g$, suppose z has $R_f < |z| < R_g$. Then f(z) diverges (as shown in class) but g(z) converges.
- Then f(z) + g(z) must also diverge, since if it converged, so would [f(z) + g(z)] g(z) = f(z).
- This means f + g diverges whenever $|z| > R_f$, and so the radius of convergence of f + g cannot be larger than R_f .
- (c) Find an example of power series f and g with $R_f = R_g$ such that f + g has radius of convergence strictly greater than R_f .
 - A simple example is to take g=-f where f has a finite radius of convergence (e.g., $f=\sum_{n=0}^{\infty}z^n$ with $R_f=1$): then g has the same radius of convergence as f, but f+g=0 has radius of convergence ∞ .
 - In fact, in any possible example we must have g = -f + h where h has radius of convergence bigger than f. But in fact, all such examples actually work since by (b) g and f have the same radius of convergence while f + g = h has a larger radius of convergence.
- 5. [Challenge] The goal of this problem is to discuss a useful summation technique known as Abel summation (also called <u>summation by parts</u>), and then use it to derive some series convergence tests. So suppose $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ are two complex sequences, and define $S_n = \sum_{k=1}^n a_k b_k$ and $B_n = \sum_{k=1}^n b_k$.
 - (a) Show the Abel summation formula: that $S_n = a_n B_n + \sum_{k=1}^{n-1} B_k (a_k a_{k+1})$.
 - We induct on n. For the base case n = 1 we have $S_1 = a_1B_1 + 0$ as required.
 - For the inductive step suppose that $S_n = a_n B_n + \sum_{k=1}^{n-1} B_k (a_k a_{k+1})$.
 - Then

$$S_{n+1} = a_{n+1}b_{n+1} + S_n$$

$$= a_{n+1}b_{n+1} + [a_nB_n + \sum_{k=1}^{n-1} B_k(a_k - a_{k+1})]$$

$$= a_{n+1}B_{n+1} + (a_n - a_{n+1})B_n + \sum_{k=1}^{n-1} B_k(a_k - a_{k+1})$$

$$= a_{n+1}B_{n+1} + \sum_{k=1}^{n} B_k(a_k - a_{k+1})$$

as required.

- (b) Prove <u>Dirichlet's convergence test</u>: if $\{a_n\}_{n\geq 1}$ is a strictly decreasing sequence of positive real numbers with $\lim_{n\to\infty}a_n=0$ and the sequence $\{B_n\}_{n\geq 1}$ is bounded, then $\sum_{k=1}^{\infty}a_kb_k$ converges. [Hint: Suppose $|B_n|\leq M$ for all n. Use (a) on the partial sum S_n and then show that $a_nB_n\to 0$ and that $\sum_{k=1}^{n-1}B_k(a_k-a_{k+1})$ is absolutely convergent.]
 - Suppose that $\{a_n\}_{n\geq 1}$ is a strictly decreasing sequence of positive real numbers with $\lim_{n\to\infty} a_n = 0$ and the sequence $\{B_n\}_{n\geq 1}$ is bounded, say with $|B_n|\leq M$ for all n.
 - Following the hint, applying the Abel summation formula from (a) yields $S_n = a_n B_n + \sum_{k=1}^{n-1} B_k (a_k a_{k+1})$.
 - Since $|B_n| \leq M$ for all n, we have $|a_n B_n| \leq M a_n \to 0$ as $n \to \infty$ since $a_n \to 0$ by hypothesis.
 - Furthermore, because $a_k > a_{k+1}$ we have $|a_k a_{k+1}| = a_k a_{k+1}$.
 - Therefore $\sum_{k=1}^{n-1} |B_k(a_k a_{k+1})| = \sum_{k=1}^{n-1} (a_k a_{k+1}) |B_k| \le \sum_{k=1}^{n-1} (a_k a_{k+1}) M = M(a_1 a_n)$, so taking the limit as $n \to \infty$ yields Ma_1 , which is finite. This means $\sum_{k=1}^{\infty} B_k(a_k a_{k+1})$ converges absolutely, hence converges.
 - Putting this together we see that $\lim_{n\to\infty} S_n = \lim_{n\to\infty} a_n B_n + \sum_{k=1}^{\infty} B_k (a_k a_{k+1})$ converges, as required.
- (c) Deduce the Alternating Series Test: if $\{a_n\}_{n\geq 1}$ is a strictly decreasing sequence of positive real numbers with $\lim_{n\to\infty}a_n=0$, then the alternating series $\sum_{k=1}^{\infty}(-1)^ka_k$ converges.

- This follows immediately from Dirichlet's convergence test applied with $b_k = (-1)^k$: clearly the sums $B_n = \sum_{k=1}^n (-1)^k$ are bounded since they alternate between -1 and 0, and so all of the hypotheses are satisfied.
- We conclude that $\sum_{k=1}^{\infty} a_k b_k = \sum_{k=1}^{\infty} (-1)^k a_k$ converges, as desired.
- Remark: The summation formula in part (a) is the discrete analogue of integration by parts, whence its name "summation by parts". Specifically, the sum $\sum_{k=1}^{n} f(k)$ is the analogue of the antiderivative $\int f(x) dx$ while the difference f(k+1) f(k) is the analogue of the derivative f'(x). The formula in (a) is then the analogue of the integration by parts formula $\int f(x)g(x) dx = f(x)G(x) \int f'(x)G(x) dx$ where G is an antiderivative of g (the minus sign arises because the differences in (a) are $a_k a_{k+1}$ rather than $a_{k+1} a_k$).
- 6. The goal of this problem is to study the convergence of the power series $f = \sum_{n=1}^{\infty} \frac{1}{n} z^n$.
 - (a) Show that f has radius of convergence 1 and explain why f does not converge for z=1.
 - We have $\lim_{n\to\infty} |a_n|^{1/n} = \lim_{n\to\infty} n^{-1/n} = 1$ so the radius of convergence is 1 as claimed.
 - Additionally, if z=1 then the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges: it is the usual harmonic series, which goes to ∞ by the integral estimate $\sum_{n=1}^{t} \frac{1}{n} > \int_{1}^{t} \frac{1}{t} dt = \ln(t)$.
 - (b) Show that if $0 < \theta < 2\pi$, then $\left| \sum_{k=0}^{n} e^{ik\theta} \right| \le \frac{2}{|e^{i\theta} 1|}$. [Hint: Use problem 6(d) of homework 1.]
 - In problem 6(d) of homework 1, we showed that $1 + e^{ix} + e^{2ix} + \dots + e^{inx} = \frac{e^{(n+1)ix} 1}{e^{ix} 1}$.
 - Taking the absolute value and writing θ in place of x yields $\left|\sum_{k=0}^{n} e^{i\theta}\right| = \frac{\left|e^{(n+1)i\theta} 1\right|}{\left|e^{i\theta} 1\right|}$.
 - Since $\frac{\left|e^{(n+1)i\theta}-1\right|}{\left|e^{i\theta}-1\right|} \le \frac{\left|e^{(n+1)i\theta}\right|+\left|-1\right|}{\left|e^{i\theta}-1\right|} = \frac{2}{\left|e^{i\theta}-1\right|}$ by the triangle inequality, the result follows immediately.
 - (c) Show that f does converge if |z| = 1 but $z \neq 1$. [Hint: Use (b) with $z = e^{i\theta}$ in Dirichlet's convergence test from problem 5(b); you just need to verify all of the hypotheses hold.]
 - Suppose |z|=1 so that $z=e^{i\theta}$. Then $z\neq 1$ allows us to assume $0<\theta<2\pi$.
 - Per the hint we will apply Dirichlet's convergence test with $a_n = \frac{1}{n}$ and $b_n = z^n = e^{ni\theta}$, so we need to check the hypotheses.
 - Clearly $\{a_n\}_{n\geq 1}$ is a strictly decreasing sequence of positive real numbers with $\lim_{n\to\infty} a_n = 0$.
 - Additionally, by part (b), the sums $B_n = \sum_{k=0}^n z^n = \sum_{k=0}^n e^{ki\theta}$ are all bounded in absolute value by $\frac{2}{|e^{i\theta} 1|}$.
 - Therefore, by Dirichlet's convergence test, the sum $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{1}{n} z^n$ converges, as claimed.
 - Combining with the result of (a) we deduce that f converges absolutely for all |z| < 1 and also when |z| = 1 except at the point z = 1 where it diverges.
 - (d) Determine all z for which $f = \sum_{n=0}^{\infty} \frac{z^n}{n}$ converges.
 - From (a) since the radius of convergence is 1 we know that f converges for all |z| < 1 and diverges for all |z| > 1. Also from (a) we know f diverges for z = 1.
 - From (c) we know f converges for all |z| = 1 with $z \neq 1$.
 - Thus, f converges for all |z| < 1 except for z = 1, and it diverges for all |z| > 1 along with z = 1.