
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 2 Solutions

1. For each complex function, calculate its partial derivatives
∂f

∂z
and

∂f

∂z
, and determine whether the complex

derivative f ′ exists on any open region R.

(a) f(z) = z4 + z.

• We have
∂f

∂z
= 4z3 + 1 and

∂f

∂z
= 0 . The complex derivative f ′ exists everywhere since

∂f

∂z
= 0.

(b) f(z) = z4 + z.

• We have
∂f

∂z
= 0 and

∂f

∂z
= 4z3 + z . The complex derivative f ′ does not exist except possibly

when 4z3 + z = 0, which only occurs for three values of z (namely, z = 0,±i/2). Any open region
contains more than these points, so f ′ does not exist on any open region.

(c) f(z) = 3zz2 + z4.

• We have
∂f

∂z
= 3z2 + 4z3 and

∂f

∂z
= 6zz . The complex derivative f ′ does not exist except possibly

when z = 0. Since this is just a single point, f ′ does not exist on any open region.

(d) f(z) =
ez

z − 1
.

• We have
∂f

∂z
=

ez

z − 1
and

∂f

∂z
= − ez

(z − 1)2
. The complex derivative f ′ does not exist anywhere

since
∂f

∂z
is never zero.

2. For each complex function, calculate its partial derivatives
∂f

∂x
and

∂f

∂y
, and determine whether the complex

derivative f ′ exists using the Cauchy-Riemann equations.

(a) f(x+ iy) = (2x2 + y) + (2y2 − x)i.

• We have
∂f

∂x
= 4x− i and

∂f

∂y
= 1 + 4yi . Since

∂f

∂z
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
is not zero, we see f ′

does not exist .

(b) f(x+ iy) = 4xy + (2y2 − 2x2)i.

• We have
∂f

∂x
= 4y − 4xi and

∂f

∂y
= 4x+ 4yi . Since

∂f

∂z
=

1

2
[(4y − 4xi) + i(4x+ 4yi)] = 0, we see

f ′ does exist everywhere.

(c) f(x+ iy) = (3 + ey sinx)− (ey cosx)i.

• We have
∂f

∂x
= ey cosx+ iey sinx and

∂f

∂y
= ey sinx− iey cosx . Since

∂f

∂z
=

1

2
[(ey cosx+ iey sinx) + i(ey sinx− iey cosx)]

is not zero, we see f ′ does not exist . (In fact, the imaginary term is o� by a factor of −1.)

(d) f(x+ iy) = sinx cos y − i cosx sin y.

• We have
∂f

∂x
= cosx cos y + i sinx sin y and

∂f

∂y
= − sinx sin y − i cosx cos y . Since

∂f

∂z
=

1

2
[(cosx cos y + i sinx sin y) + i(− sinx sin y − i cosx cos y)] = 2 cosx cos y is not zero, we see f ′ does not exist .
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3. Suppose f : R2 → R is twice di�erentiable. We de�ne the Laplacian of f to be ∆f = ∇2 · f =
∂2f

∂x2
+
∂2f

∂y2
=

fxx + fyy, and we say f is harmonic if ∆f = 0 on the entire domain of f .

(a) Find the Laplacians of 3x − y, x2 − y2, ex+y, ex cos y, ey cosx,
1

x2 + y2
, ln(x2 + y2), and tan−1(y/x).

Which of these are harmonic?

• ∆(3x− y) = 0 + 0 = 0.

• ∆(x2 − y2) = 2− 2 = 0.

• ∆(ex+y) = ex+y + ex+y = 2ex+y.

• ∆(ex cos y) = ex cos y − ex cos y = 0.

• ∆(ey cosx) = −ey cosx+ ey cosx = 0.

• ∆(
1

x2 + y2
) =

6x2 − 2y2

(x2 + y2)3
+

6y2 − 2x2

(x2 + y2)3
=

4

(x2 + y2)2
.

• ∆(ln(x2 + y2)) =
2y2 − 2x2

(x2 + y2)2
+

2x2 − 2y2

(x2 + y2)2
= 0.

• ∆(tan−1(y/x)) =
2xy

(x2 + y2)2
+

−2xy

(x2 + y2)2
= 0.

• We see that 3x− y, x2 − y2, ex cos y, ey cosx, ln(x2 + y2), and tan−1(y/x) are harmonic.

(b) Suppose h(z) = f(x, y) + ig(x, y) is a function of z = x + iy where f and g are both twice continu-

ously di�erentiable. Show that 4
∂2f

∂z∂z
= ∆f . [Hint: Partial derivatives can be interchanged for twice

continuously di�erentiable functions.]

• As noted in the hint, since f and g are both twice continuously di�erentiable, we may arbitrarily
interchange the order of partial derivatives.

• Then 4
∂2

∂z∂z
= 4 · 1

2

[
∂

∂x
− i ∂

∂y

]
· 1
2

[
∂

∂x
+ i

∂

∂y

]
=

∂2

∂x2
− i ∂2

∂y∂x
+ i

∂2

∂x∂y
+

∂2

∂y2
=
∂2f

∂x2
+
∂2f

∂y2
= ∆.

(c) Suppose h(z) = f(x, y) + ig(x, y) is a holomorphic function of z = x+ iy on the region R. Show that f
and g are harmonic on R.

• Since h is holomorphic we have the Cauchy-Riemann equations
∂f

∂x
= −∂g

∂y
and

∂f

∂y
=
∂g

∂x
.

• Taking the x-derivative of the �rst and the y-derivative of the second and adding yields
∂2f

∂x2
+
∂2f

∂y2
=

− ∂2g

∂y∂x
+

∂2g

∂x∂y
= 0 by interchanging the order of the derivatives (which we may do because f, g are

C2 because h is holomorphic). Thus f is harmonic.

• Similarly, taking the x-derivative of the second and subtracting the y-derivative of the �rst yields
∂2g

∂x2
+
∂2g

∂y2
= − ∂2f

∂y∂x
+

∂2f

∂x∂y
= 0 again by interchanging the order of the derivatives. Thus g is

also harmonic.

Remark: Part (c) shows that the real and imaginary parts of a holomorphic function are harmonic. As
we will show later in the semester, the converse is also broadly true: a harmonic function de�ned on a
su�ciently nice region is necessarily the real (or imaginary) part of a holomorphic function.
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4. Suppose that we de�ne two di�erential operators L = a
∂

∂x
+ b

∂

∂y
and M = c

∂

∂x
+ d

∂

∂y
for some constants

a, b, c, d ∈ C, meaning that Lf = a
∂f

∂x
+ b

∂f

∂y
and similarly Mf = c

∂f

∂x
+ d

∂f

∂y
for a function f . Show that if

Lz = 1, Lz = 0, Mz = 0, and Mz = 1 for all z, z, then in fact we must have a =
1

2
, b = − i

2
, c =

1

2
, d =

i

2
so

that L =
∂

∂z
and M =

∂

∂z
.

• Since z = x+ iy we have
∂z

∂x
= 1 and

∂z

∂y
= i, so Lz = a+ bi and Mz = c+ di.

• Likewise, since z = x− iy we have
∂z

∂x
= 1 and

∂z

∂y
= −i, so Lz = a− bi and Mz = c− di.

• So the given conditions yield a + bi = 1, a − bi = 0, c + di = 0, c − di = 1. Solving this easy system

yields a =
1

2
, b = − i

2
, c =

1

2
, d =

i

2
, and thus L =

1

2

[
∂

∂x
− i ∂

∂y

]
=

∂

∂z
and M =

1

2

[
∂

∂x
+ i

∂

∂y

]
=

∂

∂z
,

as claimed.

Remark: The point of this calculation is that our de�nitions of L =
∂

∂z
and M =

∂

∂z
are forced to be the

ones we selected if we want them to act on z and z in the expected way.

5. We have already discussed how to convert between the �rectangular� di�erential operators
∂

∂x
,
∂

∂y
and the

�complex� di�erential operators
∂

∂z
,
∂

∂z
. The goal of this problem is to write down the �polar� di�erential

operators
∂

∂r
and

∂

∂θ
.

(a) Suppose f(z) is di�erentiable where z = reiθ. Show that
∂f

∂r
=

1

r

[
z
∂f

∂z
+ z

∂f

∂z

]
and

∂f

∂θ
= i

[
z
∂f

∂z
− z ∂f

∂z

]
.

[Hint: Note that z = re−iθ and then use the chain rule.]

• Noting that z = reiθ and z = re−iθ, di�erentiating yields
∂z

∂r
= eiθ,

∂z

∂θ
= ireiθ,

∂z

∂r
= e−iθ, and

∂z

∂θ
= −ireiθ.

• Then by the multivariable chain rule we have
∂f

∂r
=

∂f

∂z
· ∂z
∂r

+
∂f

∂z
· ∂z
∂r

= eiθ
∂f

∂z
+ e−iθ

∂f

∂z
=

1

r

[
z
∂f

∂z
+ z

∂f

∂z

]
as claimed.

• Likewise,
∂f

∂θ
=
∂f

∂z
· ∂z
∂θ

+
∂f

∂z
· ∂z
∂θ

= ireiθ
∂f

∂z
− ire−iθ ∂f

∂z
= i

[
z
∂f

∂z
− z ∂f

∂z

]
.

(b) Find
∂f

∂r
and

∂f

∂θ
for f(z) = z2 and for f(z) = z3z3. Do these agree with the expected expressions for

∂f

∂r
and

∂f

∂θ
when f is written in terms of r and θ?

• For f(z) = z2 we see
∂f

∂r
=

1

r
[z ·2z+z ·0] =

2z2

r
= 2re2iθ and

∂f

∂θ
= i [z · 2z − z · 0] = 2iz2 = 2ir2e2iθ.

• If we write f in terms of r and θ we have f(z) = r2e2iθ which would lead to partial derivatives
∂f

∂r
= 2re2iθ and

∂f

∂θ
= 2ir2e2iθ, which is exactly as obtained.

• For f(z) = z3z3 we see
∂f

∂r
=

1

r
[z·3z2z3+z·3z3z2] =

6z3z3

r
= 6r5 and

∂f

∂θ
= i
[
z · 3z2z3 − z · 3z3z2

]
=

0.

• If we write f in terms of r and θ we have f(z) = r6 which would lead to partial derivatives
∂f

∂r
= 6r5

and
∂f

∂θ
= 0, which is exactly as obtained.

3



6. Recall that for a positive integer n, the nth roots of unity are the solutions to the equation zn = 1, and are
given explicitly by {1, e2πi/n, e4πi/n, . . . , e2(n−1)πi/n} = {1, ζn, ζ2n, . . . , ζn−1n } where ζn = e2πi/n = cos 2π

n +
i sin 2π

n for shorthand. The goal of this problem is to explore some results about these numbers.

(a) Give, in explicit a+ bi form, the 3rd, 6th, and 8th roots of unity.

• The 3rd roots: cos 2πk
3 + i sin 2πk

3 for k = 0, 1, 2: 1,− 1
2 +

√
3
2 i,−

1
2 −

√
3
2 i .

• The 6th roots: cos 2πk
6 + i sin 2πk

6 for k = 0, 1, . . . , 5: 1, 12 +
√
3
2 i,−

1
2 +

√
3
2 i,−1,− 1

2 −
√
3
2 i,

1
2 −

√
3
2 i .

• The 8th roots: cos 2πk
8 +i sin 2πk

8 for k = 0, 1, . . . , 7: 1,
√
2
2 +

√
2
2 i, i,−

√
2
2 +

√
2
2 i,−1,−

√
2
2 −

√
2
2 i,−i,

√
2
2 −

√
2
2 i .

(b) Show that 1/ζn = ζn−1n = ζn.

• We have ζnn = 1 so dividing by ζn yields ζn−1n = 1/ζn.

• But also since |ζn| = 1 squaring yields |ζn|2 = ζnζn = 1 so ζn = 1/ζn also.

(c) Show that ζn−1n + ζn−2n + · · ·+ ζn = −1. [Hint: What are the roots of p(z) = (zn − 1)/(z − 1)?]

• Per the hint we observe that ζn is a root of the polynomial p(z) = (zn− 1)/(z− 1) = zn−1 + zn−2 +
· · ·+ z + 1, since it makes the numerator zero but not the denominator.

• Thus, p(ζn) = 0, which is to say, ζn−1n + ζn−2n + · · ·+ ζn + 1 = 0 so that ζn−1n + ζn−2n + · · ·+ ζn = −1.

(d) Let α = ζ5 + ζ45 and β = ζ25 + ζ35 . Show that α + β = −1 and αβ = −1 and deduce that α and β are
the roots of the quadratic p(z) = z2 + z − 1. Use this along with the fact that α > 0 to �nd α and β
explicitly.

• We have α+ β = ζ5 + ζ45 + ζ25 + ζ35 = ζ5 + ζ25 + ζ35 + ζ45 = −1 by the identity in (c).

• Likewise, αβ = (ζ5 + ζ45 )(ζ25 + ζ35 ) = ζ35 + ζ45 + ζ65 + ζ75 = ζ5 + ζ25 + ζ35 + ζ45 = −1 again by (c) and the
fact that ζ65 = ζ5 and ζ75 = ζ25 .

• Then for p(z) = (z−α)(z−β) = z2− (α+β)z+αβ plugging these values in shows p(z) = z2 +z−1.

• By the quadratic formula, the roots of p(z) are
−1±

√
5

2
, and so α, β must equal these values in

some order. Since α > 0, that means α =
−1 +

√
5

2
and β =

−1−
√

5

2
.

(e) Show that cos 2π
5 =

√
5−1
4 and use this to give an explicit formula for the 5th root of unity ζ5. [Hint: Use

(d) and ζ5 = ζ45 .]

• By part 7(b) we have ζ5 = ζ45 so then (d) gives
−1 +

√
5

2
= α = ζ5+ζ45 = ζ5+ζ5 = 2Re(ζ5) = 2 cos 2π

5

and so cos 2π
5 =

√
5−1
4 as claimed.

• Then sin 2π
5 =

√
1− cos2 2π

5 = 1
4

√
10 + 2

√
5, and �nally ζ5 = cos 2π

5 +i sin 2π
5 =

√
5−1
4 +

√
10+2

√
5

4 i .

(f) Prove that cos 2π
7 +cos 4π

7 +cos 8π
7 = − 1

2 and that sin 2π
7 +sin 4π

7 +sin 8π
7 = 1

2

√
7. [Hint: Let α = ζ7+ζ27+ζ47

and β = ζ37 + ζ57 + ζ67 and use a method similar to (d).]

• Let α = ζ7 + ζ27 + ζ47 and β = ζ67 + ζ57 + ζ37 . Then α + β = ζ7 + ζ27 + ζ37 + ζ47 + ζ57 + ζ67 = −1 and
αα = (ζ7 + ζ27 + ζ47 )(ζ67 + ζ57 + ζ37 ) = ζ47 + ζ57 + ζ67 + 3ζ77 + ζ87 + ζ97 + ζ107 = 2 using the identity
1 + ζ7 + ζ27 + ζ37 + ζ47 + ζ57 + ζ67 = 0 from part (b).

• Thus α and β are the two roots of the polynomial p(z) = z2 + z + 2, so by the quadratic formula

we see α, β =
−1± i

√
7

2
. Since the imaginary part of α is clearly positive, we have α =

−1 + i
√

7

2
.

Since Re(α) = cos 2π
7 + cos 4π

7 + cos 8π
7 and Im(α) = sin 2π

7 + sin 4π
7 + sin 8π

7 , setting the real and
imaginary parts equal yields the claimed identities.
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7. Suppose z and w are complex numbers. The goal of this problem is to study some properties of the rational

function fw(z) =
z − w
1− zw

, which when |w| < 1 is called a Möbius transformation.

(a) Show that fw(z) =
z − w
1− zw

is an invertible function with inverse function f−w(z) =
z + w

1 + zw
.

• Note that fw(f−w(z)) = fw(
z + w

1− zw
) =

z + w

1− zw
− w

1− z + w

1− zw
w

=
z + w − w(1− zw)

(1− zw)− (z + w)w
=
z(1 + ww)

1 + ww
= z and

likewise f−w(fw(z)) = z by a similar calculation, so f is invertible with inverse as claimed.

• Alternatively, solving z′ =
z − w
1− zw

for z yields z−w = z′−zz′w so z(1+z′w) = z′+w so z =
z′ + w

1 + z′w
.

This shows f−1w (z) =
z + w

1 + zw
= f−w(z) once again.

(b) If zw 6= 1, show that 1−
∣∣∣∣ z − w1− zw

∣∣∣∣2 =
(1− |z|2)(1− |w|2)

|1− zw|2
.

• We have 1−
∣∣∣∣ z − w1− zw

∣∣∣∣2 = 1− z − w
1− zw

· z − w
1− zw

= 1− zz − wz − wz + ww

1− wz − wz + zzww
=

1− zz − ww + zzww

(1− zw)(1− zw)
=

(1− |z|2)(1− |w|2)

|1− zw|2
as required.

(c) Suppose that |w| < 1. Show that if |z| = 1 then |fw(z)| = |f−w(z)| = 1 and deduce that fw is a bijection
from the unit circle |z| = 1 to itself.

• Suppose that |z| = 1. Then since |w| < 1 we see zw 6= 1, so by part (b) we have 1 − |fw(z)|2 =

(1− |z|2)(1− |w|2)

|1− zw|2
= 0, and thus |fw(z)| = 1. By the same calculation we see that |f−w(z)| = 1

also.

• By (a) since fw and f−w are inverses, this means |z| = 1 is equivalent to |fw(z)| = 1 and so f is a
bijection from the unit circle |z| = 1 to itself.

(d) Suppose that |w| < 1. Show that if |z| < 1 then |fw(z)| < 1 and |f−w(z)| < 1 and deduce that fw is a
bijection on the interior of the unit disc |z| < 1.

• Similarly to (c), if |w| < 1 and |z| < 1 then |zw| < 1 so zw 6= 0 hence |1− zw| > 0.

• Then by (b), we have 1− |fw(z)|2 =
(1− |z|2)(1− |w|2)

|1− zw|2
> 0 since the numerator and denominator

are both positive. This means |fw(z)| < 1, so f maps the interior of the unit disc to itself. Since
f−1w (z) has the same form, we see that

∣∣f−1(z)
∣∣ < 1 as well and so f−1 also maps the interior of the

unit disc to itself.

• Putting these two together shows that f is a bijection on the interior of the unit disc.

Remark: Parts (c) and (d) show that the function f maps the interior of the unit disc to itself, and also
maps the disc's boundary to itself. As we will see, this phenomenon of mapping open regions to open
regions, and boundaries to boundaries, are both general properties of holomorphic functions.
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8. [Challenge] Suppose that p(z) = a(z−r1)(z−r2) · · · (z−rn) is a complex polynomial with roots r1, . . . rn ∈ C.
The goal of this problem is to prove the Gauss-Lucas theorem: that the roots of the derivative p′(z) all lie
inside of the smallest convex polygon that contains all of the roots r1, . . . , rn of p(z).

(a) Show that
p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
.

• By the product rule we have p′(z) = a · 1 · (z− r2)(z− r3) · · · (z− rn) + a(z− r1) · 1 · (z− r3) · · · (z−
rn) + · · ·+ a(z − r1)(z − r2) · · · (z − rn−1) · 1.

• Each product is simply p(z) with one of the terms z − ri replaced with 1, so dividing yields
p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
.

(b) Suppose that the imaginary parts of r1, . . . , rn are positive while the imaginary part of z0 is negative.
Show that p′(z0) 6= 0.

• Suppose that the imaginary parts of r1, . . . , rn are positive while the imaginary part of z0 is negative.

• Then from
p′(z0)

p(z0)
=

1

z0 − r1
+

1

z0 − r2
+ · · · + 1

z0 − rn
, we see that each of the terms z0 − ri has a

negative imaginary part. Since
1

a+ bi
=

a− bi
a2 + b2

and the denominator is positive, this means each

of the terms
1

z0 − ri
has a positive imaginary part, so their sum does as well.

• We conclude that
p′(z0)

p(z0)
has a positive imaginary part: thus, it is not zero, hence the numerator

p′(z0) is not zero.

(c) Show that if all zeroes of p(z) lie on one side of a line in C, then all zeroes of p′(z) also lie on the same
side of that line. Deduce the Gauss-Lucas theorem. [Hint: Use (b) and observe that the result still holds
if you translate or rotate the complex plane.]

• If we translate z0 and the roots ri by a �xed constant α = it, then the expression
p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
is left unchanged, but the real axis is shifted vertically to the line Im(z) = it.

• Applying (b), we see that if the imaginary parts of r1, . . . , rn lie above the line while z0 lies below
the line, then p′(z0) 6= 0.

• We conclude that the result of (b) holds for any horizontal line Im(z) = it: if the roots lie above the
line while z0 lies below, then p′(z0) 6= 0.

• Now, starting with any horizontal line, if we scale z0 and the roots ri by a rotation constant α = eiθ

then the expression
p′(z)

p(z)
is scaled by e−iθ. Thus, if the roots lie on one side of the line and z0 lies

on the other side, then p′(z0) is still nonzero, since scaling by e−iθ does not a�ect being equal to
zero.

• Since we may obtain any line from the real axis by a translation and rotation, we conclude that if
all zeroes of p(z) lie on one side of a line in C, then any zero of p′(z) must also lie on the same side
of that line.

• Finally, applying this fact to each of the lines formed by the sides of the smallest convex polygon
containing all of the roots r1, . . . , rn, we see that since each of the roots all lie on the same side
of each of these lines, so do the roots of p′(z), and thus the roots of p′(z) lie inside the resulting
polygon.
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