
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 2, due Fri Sep 19th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly and submit via Gradescope, making sure to select page submissions for each problem.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. For each complex function, calculate its partial derivatives
∂f

∂z
and

∂f

∂z
, and determine whether the complex

derivative f ′ exists on any open region R.

(a) f(z) = z4 + z.

(b) f(z) = z4 + z.

(c) f(z) = 3zz2 + z4.

(d) f(z) =
ez

z − 1
.

2. For each complex function, calculate its partial derivatives
∂f

∂x
and

∂f

∂y
, and determine whether the complex

derivative f ′ exists using the Cauchy-Riemann equations.

(a) f(x+ iy) = (2x2 + y) + (2y2 − x)i.

(b) f(x+ iy) = 4xy + (2y2 − 2x2)i.

(c) f(x+ iy) = (3 + ey sinx)− (ey cosx)i.

(d) f(x+ iy) = sinx cos y − i cosx sin y.

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

3. Suppose f : R2 → R is twice di�erentiable. We de�ne the Laplacian of f to be ∆f = ∇2 · f =
∂2f

∂x2
+
∂2f

∂y2
=

fxx + fyy, and we say f is harmonic if ∆f = 0 on the entire domain of f .

(a) Find the Laplacians of 3x − y, x2 − y2, ex+y, ex cos y, ey cosx,
1

x2 + y2
, ln(x2 + y2), and tan−1(y/x).

Which of these are harmonic?

(b) Suppose h(z) = f(x, y) + ig(x, y) is a function of z = x + iy where f and g are both twice continu-

ously di�erentiable. Show that 4
∂2f

∂z∂z
= ∆f . [Hint: Partial derivatives can be interchanged for twice

continuously di�erentiable functions.]

(c) Suppose h(z) = f(x, y) + ig(x, y) is a holomorphic function of z = x+ iy on the region R. Show that f
and g are harmonic on R.

Remark: Part (c) shows that the real and imaginary parts of a holomorphic function are harmonic. As
we will show later in the semester, the converse is also broadly true: a harmonic function de�ned on a
su�ciently nice region is necessarily the real (or imaginary) part of a holomorphic function.

4. Suppose that we de�ne two di�erential operators L = a
∂

∂x
+ b

∂

∂y
and M = c

∂

∂x
+ d

∂

∂y
for some constants

a, b, c, d ∈ C, meaning that Lf = a
∂f

∂x
+ b

∂f

∂y
and similarly Mf = c

∂f

∂x
+ d

∂f

∂y
for a function f . Show that if

Lz = 1, Lz = 0, Mz = 0, and Mz = 1 for all z, z, then in fact we must have a =
1

2
, b = − i

2
, c =

1

2
, d =

i

2
so

that L =
∂

∂z
and M =

∂

∂z
.

Remark: The point of this calculation is that our de�nitions of L =
∂

∂z
and M =

∂

∂z
are forced to be the

ones we selected if we want them to act on z and z in the expected way.
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5. The goal of this problem is to express the �polar� di�erential operators
∂

∂r
and

∂

∂θ
in terms of

∂

∂z
and

∂

∂z
.

(a) Suppose f(z) is di�erentiable where z = reiθ. Show that
∂f

∂r
=

1

r

[
z
∂f

∂z
+ z

∂f

∂z

]
and

∂f

∂θ
= i

[
z
∂f

∂z
− z ∂f

∂z

]
.

[Hint: Note that z = re−iθ and then use the chain rule.]

(b) Find
∂f

∂r
and

∂f

∂θ
for f(z) = z2 and for f(z) = z3z3. Do these agree with the expected expressions for

∂f

∂r
and

∂f

∂θ
when f is written in terms of r and θ?

6. Recall that for a positive integer n, the nth roots of unity are the solutions to the equation zn = 1, and are
given explicitly by {1, e2πi/n, e4πi/n, . . . , e2(n−1)πi/n} = {1, ζn, ζ2n, . . . , ζn−1n } where ζn = e2πi/n = cos 2π

n +
i sin 2π

n for shorthand. The goal of this problem is to explore some results about these numbers.

(a) Give, in explicit a+ bi form, the 3rd, 6th, and 8th roots of unity.

(b) Show that 1/ζn = ζn−1n = ζn.

(c) Show that ζn−1n + ζn−2n + · · ·+ ζn = −1. [Hint: What are the roots of p(z) = (zn − 1)/(z − 1)?]

(d) Let α = ζ5 + ζ45 and β = ζ25 + ζ35 . Show that α+ β = −1 and αβ = −1 and deduce that α and β are the
roots of the quadratic p(z) = z2 + z − 1. Use this along with α > 0 to �nd α and β explicitly.

(e) Show that cos 2π
5 =

√
5−1
4 and use this to give an explicit formula for the 5th root of unity ζ5.

(f) Prove that cos 2π
7 +cos 4π

7 +cos 8π
7 = − 1

2 and that sin 2π
7 +sin 4π

7 +sin 8π
7 = 1

2

√
7. [Hint: Let α = ζ7+ζ27+ζ47

and β = ζ37 + ζ57 + ζ67 and use a method similar to (d).]

7. Suppose z and w are complex numbers. The goal of this problem is to study some properties of the rational

function fw(z) =
z − w
1− zw

, which when |w| < 1 is called a Möbius transformation.

(a) Show that fw(z) =
z − w
1− zw

is an invertible function with inverse function f−w(z) =
z + w

1 + zw
.

(b) If zw 6= 1, show that 1−
∣∣∣∣ z − w1− zw

∣∣∣∣2 =
(1− |z|2)(1− |w|2)

|1− zw|2
.

(c) Suppose that |w| < 1. Show that if |z| = 1 then |fw(z)| = |f−w(z)| = 1 and deduce that fw is a bijection
from the unit circle |z| = 1 to itself.

(d) Suppose that |w| < 1. Show that if |z| < 1 then |fw(z)| < 1 and |f−w(z)| < 1 and deduce that fw is a
bijection on the interior of the unit disc |z| < 1.

Remark: Parts (c) and (d) show that the function f maps the interior of the unit disc to itself, and also
maps the disc's boundary to itself. As we will see, this phenomenon of mapping open regions to open
regions, and boundaries to boundaries, are both general properties of holomorphic functions.

8. [Challenge] Suppose that p(z) = a(z−r1)(z−r2) · · · (z−rn) is a complex polynomial with roots r1, . . . rn ∈ C.
The goal of this problem is to prove the Gauss-Lucas theorem: that the roots of the derivative p′(z) all lie
inside of the smallest convex polygon that contains all of the roots r1, . . . , rn of p(z).

(a) Show that
p′(z)

p(z)
=

1

z − r1
+

1

z − r2
+ · · ·+ 1

z − rn
.

(b) Suppose that the imaginary parts of r1, . . . , rn are positive while the imaginary part of z0 is negative.
Show that p′(z0) 6= 0.

(c) Show that if all zeroes of p(z) lie on one side of a line in C, then all zeroes of p′(z) also lie on the same
side of that line. Deduce the Gauss-Lucas theorem. [Hint: Use (b) and observe that the result still holds
if you translate or rotate the complex plane.]
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