
E. Dummit's Math 4555 ∼ Complex Analysis, Fall 2025 ∼ Homework 1 Solutions

1. Express the following complex numbers in rectangular a+ bi form:

(a) (3 + i)− (4− 2i)(1− i).

• We have (3 + i)− (4− 2i)(1− i) = (3 + i)− (2− 6i) = 1 + 7i .

(b) (4 + 3i)/(5− i).

• We have (4 + 3i)/(5− i) = (4+3i)(5+i)
(5−i)(5+i) = 17

26 + 19
26 i .

(c) 4e7iπ/6.

• We have 4e7iπ/6 = 4 cos(7π/6) + 4i sin(7π/6) = −2
√

3− 2i .

(d) eiπ/4 + 3e3iπ/4.

• We have eiπ/4 + 3e3iπ/4 = [cos(π/4) + 3 cos(3π/4)] + i[sin(π/4) + 3 sin(3π/4)] = −
√

2 + 2
√

2i .

(e) e2025iπ/3.

• We have e2025iπ/3 = cos(2025π/3) + i sin(2025π/3) = −1 + 0i .

(f) (1 + i)2024.

• We have (1 + i)2024 = (
√

2eiπ/4)2024 = 21012e506iπ = 21012 + 0i .

2. Express the following complex numbers in exponential reiθ form:

(a) 3i.

• We have 3i = 3eiπ/2 .

(b) −2− 2i
√

3.

• We have −2− 2i
√

3 = 4e4iπ/3 .

(c) −1 + i.

• We have −1 + i =
√

2e3iπ/4 .

(d) π + ei.

• We have π + ei =
√
π2 + e2ei·arctan(e/π) .

3. Find all z ∈ C satisfying the following equations:

(a) z2 + 2z + 2 = 0.

• The quadratic formula yields z = −2±
√
22−4·2
2 = −1± i .

(b) z2 = 3 + 4i.

• Using the square root formula from the notes yields z = ±(2 + i) .

(c) z2 − (2− i)z − 2i = 0.

• The quadratic formula yields z = (2−i)±(3+4i)
2 = (2−i)±(2+i)

2 = 2,−i .

(d) z3 = −1.

• The root formula yields z = eiπ/3, e3iπ/3, e5iπ/3 = { 1+i
√
3

2 ,−1, 1−i
√
3

2 }.
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(e) z8 = 1.

• The root formula yields z = e2kiπ/8 for 0 ≤ k ≤ 7 = {1, 1+i√
2
, i, −1+i√

2
,−1, −1−i√

2
,−i, 1−i√

2
}.

(f) z4 = 3.

• The root formula yields z = 31/4e2kiπ/4 for 0 ≤ k ≤ 3 = {31/4, 31/4i,−31/4,−31/4i}.
(g) ez = 1.

• By periodicity we have z = 2kπi for integers k .

(h) ez = 1− i
√

3.

• Converting to polar yields ez = 2e−iπ/3 so z = ln(2)− iπ
3 + 2kπi for integers k .

4. Plot each of the given regions in the complex plane (you may want to use a computer). For each region,
identify whether it is (i) open, (ii) closed, (iii) connected, and (iv) bounded.

(a) |z − 1| < 1.

• |z − 1| < 1 is open, not closed, connected, bounded.

(b) 1 ≤ |z| ≤ 3.

• 1 ≤ |z + 1| ≤ 2 is not open, closed, connected, bounded.

(c) |z| > |z − 1|.
• |z| > |z − 1| is open, not closed, connected, not bounded.

(d) 0 < Im(z) ≤ 1.

• 0 < Im(z) ≤ 1 is not open, not closed, connected, not bounded.

(e) Re(z) ≤ Im(z).

• Re(z) ≤ Im(z) is not open, closed, connected, not bounded.

(f) Re(z) · Im(z) > 1.

• Re(z) · Im(z) > 1 is open, not closed, not connected, not bounded.

(g) |z(z − 2)| ≤ 1.

• |z(z − 2)| ≤ 1 is not open, closed, connected, bounded.

(h) |z(z − 4)| ≤ 1.

• |z(z − 4)| ≤ 1 is not open, closed, not connected, bounded.
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5. Compute the following complex limits or show they do not exist:

(a) limz→1
z3 − 1

z − 1
.

• We have limz→1
z3 − 1

z − 1
= limz→1

(z − 1)(z2 + z + 1)

z − 1
= limz→1(z2 + z + 1) = 3 .

(b) limz→i
z3 − 1

z − 1
.

• We have limz→1
z3 − 1

z − 1
=
i3 − 1

i− 1
= i .

(c) limz→0
z

|z|
.

• This limit does not exist . In fact, it does not even exist along the real axis, since limt→0
t

|t|
is −1

along the negative real axis and +1 along the positive real axis.

(d) limz→0
z3

|z|2
.

• Note that

∣∣∣∣∣ z3|z|2
∣∣∣∣∣ =
|z|3

|z|2
= |z|, so limz→0 |f(z)| = limz→0 |z| = 0.

• It is not hard to see using the de�nition of limit that if limz→0 |f(z)| = 0 then limz→0 f(z) exists

and equals zero as well. So the limit exists and is 0 .

(e) limz→1
z2 − 1

z2 + z − 2z
.

• This limit does not exist .

• Along a horizontal line with z = 1 + t as t → 0 we have limt→0
(1 + t)2 − 1

(1 + t)2 + (1 + t)− 2(1 + t)
=

limt→0
t(t+ 2)

t(t+ 1)
= limt→0

t+ 2

t+ 1
= 2, while along a vertical line with z = 1 + it as t → 0 we have

limt→0
(1 + it)2 − 1

(1 + it)2 + (1 + it)− 2(1− it)
= limt→0

t(−t+ 2i)

t(−t+ 5i)
= limt→0

−t+ 2i

−t+ 5i
=

2

5
.

(f) limz→0
z720

|z|720
.

• This limit does not exist . Along the line z = eiθt for an arbitrary angle θ we obtain limz→0
e720iθt720

t720
=

e720iθ which for di�erent values of θ (e.g., θ = 0 and θ = π/720) can take di�erent values.

(g) limz→0
Re(z) · Im(z)2

Re(z)2 + Im(z)4
. [Hint: Try the path z = t2 + it as t→ 0.]

• This limit does not exist . Along the real axis z = t + 0i as t → 0 the limit is limt→0
0

t2
= 0 while

along the path z = t2 + it as t→ 0 the limit is limt→0
t4

2t4
=

1

2
.

6. The goal of this problem is to illustrate some uses of complex exponentials for trigonometry. You may
assume in this problem that inde�nite integrals involving complex parameters behave the same way as if the
parameters were real (we will later prove this), and you may use Euler's identity eix = cosx+ i sinx.

(a) If x is real, show that cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2i
.

• From Euler's identity we have eix = cosx+ i sinx and so e−ix = cosx− i sinx.
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• Adding and subtracting the equations gives eix + e−ix = 2 cosx and eix − e−ix = 2i sinx, and then
rescaling yields the desired formulas.

(b) Compute
´

cos4 x dx and

ˆ
sin4 x dx. [Hint: Use (a).]

• We have cos4 x =

[
eix + e−ix

2

]4
=

1

16

[
e4ix + 4e2ix + 6 + 4e−2ix + e−4ix

]
=

1

8
[cos 4x+ 4 cos 2x+ 6].

Integrating then yields
´

cos4 x dx =
´ 1

8
(cos 4x+ 4 cos 2x+ 6) dx =

1

32
sin 4x+

1

4
sin 2x+

3

4
x+ C .

• Likewise, sin4 x =

[
eix − e−ix

2i

]4
=

1

16

[
e4ix − 4e2ix + 6− 4e−2ix + e−4ix

]
=

1

8
[cos 4x− 4 cos 2x+ 6].

Integrating then yields
´

sin4 x dx =
´ 1

8
(cos 4x− 4 cos 2x+ 6) dx =

1

32
sin 4x− 1

4
sin 2x+

3

4
x+ C .

(c) Compute

ˆ
eax cos bx dx and

ˆ
eax sin bx dx. [Hint: Take real and imaginary parts of

ˆ
e(a+bi)x dx.]

• Note
´
e(a+bi)x dx =

e(a+bi)x

a+ bi
+ C =

(a− bi)eax(cos bx+ i sin bx)

a2 + b2
+ C =

a cos bx+ b sin bx

a2 + b2
eax +

−b cos bx+ a sin bx

a2 + b2
eaxi+ C.

• The real part is Re[
´
e(a+bi)x dx] =

´
Re[e(a+bi)x] dx =

´
eax cos bx dx and similarly the imaginary

part is
´
eax sin bx dx.

• Thus,

ˆ
eax cos bx dx =

a cos bx+ b sin bx

a2 + b2
eax + C while

ˆ
eax sin bx dx =

−b cos bx+ a sin bx

a2 + b2
eax + C .

(d) Prove that 1 + eix + e2ix + · · ·+ einx =
e(n+1)ix − 1

eix − 1
= e(n/2)ix

sin[n+1
2 x]

sin(x/2)
for any positive integer n and

any 0 < x < 2π.

• First, note that 1 + eix + e2ix + · · · + einx is a geometric series with r = eix, and that r 6= 1 since

0 < x < 2π. So by the usual formula, the sum is 1 + r + r2 + · · · + rn =
rn+1 − 1

r − 1
=
e(n+1)ix − 1

eix − 1
.

(For completeness, the formula follows immediately from the di�erence-of-powers identity 1−rn+1 =
(1− r)(1 + r + r2 + · · ·+ rn).)

• For the second formula, observe that
e(n+1)ix − 1

eix − 1
=
e[(n+1)/2]ix

eix/2
[e[(n+1)/2]ix − e−[(n+1)/2]ix]/(2i)

[eix/2 − e−ix/2]/(2i)
=

e(n/2)ix
sin[n+1

2 x]

sin(x/2)
using (a).

(e) Deduce that 1 + cosx + cos 2x + · · · + cosnx =
sin[n+1

2 x] cos[n2x]

sin(x/2)
and sinx + sin 2x + · · · + sinnx =

sin[n+1
2 x] sin[n2x]

sin(x/2)
for any positive integer n and any 0 < x < 2π.

• Simply take the real and imaginary parts of the identity from (d): the real part of the LHS is

1+cosx+cos 2x+ · · ·+cosnx while the real part of the RHS is
sin[n+1

2 x] cos[n2x]

sin(x/2)
, and the imaginary

part of the LHS is sinx+sin 2x+· · ·+sinnx while the imaginary part of the RHS is
sin[n+1

2 x] sin[n2x]

sin(x/2)
.

7. The real numbers are an example of an ordered �eld, which is a �eld containing a subset P (the �positive�
elements) such that (i) P is closed under addition, (ii) P is closed under multiplication, and (iii) every nonzero
element of the �eld is either in P or its additive inverse is in P but not both. Prove that C is not an ordered
�eld for any possible choice of P . [Hint: Consider i.]

• Suppose C is an ordered �eld. By (iii), since i 6= 0, either i ∈ P or −i ∈ P .
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• If i ∈ P then since i3 = −i by (ii) we would have −i ∈ P , which contradicts (iii).

• But if −i ∈ P then since (−i)3 = i by (ii) we would have i ∈ P , which also contradicts (iii).

• In either case we have a contradiction, so C cannot be an ordered �eld.

8. The goal of this problem is to illustrate one of the original historical applications of the complex numbers:
that of solving the cubic equation.

(a) Suppose that z3 + az2 + bz + c = 0. Show that t = z + a/3 has t3 + pt+ q = 0 where p = b− a2/3 and
q = (2/27)a3 − ab/3 + c. Thus, it su�ces to solve cubics of the form t3 + pt+ q = 0.

• We have

t3 + pt+ q = (z + a/3)2 + (b− a2/3)(z + a/3) + [(2/27)a3 − ab/3 + c]

= [z3 + az2 + (a2/3)z + (a3/27)] + [bz − (a2/3)z + ab/c− a3/9] + [(2/27)a3 − ab/3 + c]

= z3 + az2 + bz + c = 0

as claimed.

(b) Suppose that t3 + pt + q = 0. De�ne new variables x and y such that x + y = t and 3xy = −p. Show
that x3 + y3 = −q and then solve for x3 and y3.

• First, we have x3 + y3 = (x+ y)3 − 3xy(x+ y) = t3 + pt = −q.
• The equation 3xy = −p implies y = −p/(3x), and then x3 + y3 = −q becomes x3− p3/(27x3) = −q,

whence x6 + qx3 − p3

27
= 0.

• This is a quadratic in x3, so solving yields x3 = −q
2
±
√
q2

4
+
p3

27
and then y3 = −q − x3 =

−q
2
∓
√
q2

4
+
p3

27
.

(c) Conclude that the solutions to the cubic t3 + pt + q = 0 are the three numbers of the form t = A + B,

with A =
3

√
−q

2
+

√
q2

4
+
p3

27
and B =

3

√
−q

2
−
√
q2

4
+
p3

27
, where the cube roots are selected so that

AB = −p/3. These formulas are known as Cardano's formulas.

• Combining (b) and (c) shows that t = x + y where 3xy = −p, x3 = −q
2
±
√
q2

4
+
p3

27
, and y3 =

−q
2
∓
√
q2

4
+
p3

27
.

• Letting A3 be the term with the plus sign, we obtain t = A + B where AB = −p/3 and A3 =

−q
2

+

√
q2

4
+
p3

27
and B3 = −q

2
−
√
q2

4
+
p3

27
.

• Taking cube roots yields the desired t = A+B, withA =
3

√
−q

2
+

√
q2

4
+
p3

27
andB =

3

√
−q

2
−
√
q2

4
+
p3

27
where AB = −p/3. Since there are three possible choices of cube root for A (and then B is deter-
mined uniquely) these yield the three possible roots of the cubic.

(d) Verify that the cubic f(t) = t3 − 15t− 4 has three real roots and that they are 4 and −2±
√

3.

• We have f(4) = 43 − 15 · 4− 4 = 0 so 4 is a root. Factoring yields t3 − 15t− 4 = (t− 4)(t2 + 4t+ 1)
and the quadratic has roots −2±

√
3 by the quadratic formula.

• Since a cubic cannot have more than three roots, f(t) has only the three given roots, which are
clearly real.

(e) Use Cardano's formulas to �nd the roots of f(t) = t3 − 15t− 4, and then show that they do simplify to
yield the same answers in (d) using the calculation (2 + i)3 = 2 + 11i.

• Plugging into Cardano's formulas yields the roots t = A + B where A3 = 2 +
√
−121 and B3 =

2−
√
−121 and AB = 5.
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• Noting that (2 + i)3 = 2 + 11i, we see that one possible cube root of 2 +
√
−121 is A = 2 + i, which

yields a corresponding value B =
5

2 + i
= 2− i, in which case t = (2 + i) + (2− i) = 4.

• Another possible cube root is A = (2 + i)e2πi/3 = −
√
3−2
2 + 2

√
3−1
2 i which has a corresponding

B = (2−i)e−2πi/3 = −
√
3−2
2 − 2

√
3−1
2 i, in which case t = (−

√
3−2
2 +

√
3−2
2 i)+−

√
3−2
2 −

√
3−2
2 i = −2−

√
3.

• The third possible cube root is A = (2 + i)e4πi/3 =
√
3−2
2 + −2

√
3−1
2 i which has a corresponding B =

(2− i)e−2πi/3 =
√
3−2
2 − −2

√
3−1
2 i, in which case t = (

√
3−2
2 + −2

√
3−1
2 i)+

√
3−2
2 − −2

√
3−1
2 i = −2+

√
3.

• We do obtain the same three roots as in (d), as claimed.

• Remark: The calculation in (e) was performed by Bombelli in 1572. This rather perplexing appearance
of square roots of negative numbers in the formulas for real solutions to cubic equations was the original
impetus that led to the development and acceptance of complex numbers in mathematics (although
unsurprisingly, it did take a while!).

9. [Challenge] The goal of this problem is to justify the remark following problem 8 by showing that for any

cubic polynomial whose roots are real, Cardano's formulas necessarily involve non-real radicals. Suppose
f(z) = z3 + az2 + bz + c = (z − r1)(z − r2)(z − r3) is a cubic polynomial with real coe�cients a, b, c ∈ R and
complex roots r1, r2, r3 ∈ C. De�ne its discriminant as ∆ = (r1− r2)2(r1− r3)2(r2− r3)2 and let p = b− a2/3
and q = (2/27)a3 − ab/3 + c.

(a) Show that ∆ = 0 when f has a repeated root, that ∆ > 0 when f has three distinct real roots, and that
∆ < 0 when f has a pair of nonreal complex-conjugate roots.

• Clearly ∆ = 0 occurs if and only if one of the terms r1 − r2, r1 − r3, r2 − r3 is zero, which happens
precisely when two of the roots of f are equal.

• If f has three distinct real roots, then each of the squares (ri − rj)2 is positive so their product ∆
is also positive.

• Finally, suppose f has a real root r and two complex-conjugate roots x ± yi. Then ∆ = (r − x −
yi)2(r − x+ yi)2(2yi)2 = −4y2[(r − x)2 + y2] which is negative because y 6= 0.

(b) Show that the discriminant of f(t) is the same as that of g(t) = t3 + pt + q where p = b − a2/3 and
q = (2/27)a3 − ab/3 + c.

• Note that adding a constant to all three roots does not change ∆, since it is a product of di�erences
of the roots. Thus, using the translation in 8(b) does not change the discriminant, but shifts f(t) to
g(t), so their discriminants are equal.

(c) Show that the discriminant of f(t) equals −27p3 − 4q2. [Hint: ∆is a symmetric function in r1, r2, r3
and must therefore be a polynomial in the three functions r1 + r2 + r3 = 0, r1r2 + r1r3 + r2r3 = p, and
r1r2r3 = −q. Since it has degree 6, it must be of the form Xp3 +Y q2. Plug in values for r1, r2, r3 subject
to r1 + r2 + r3 = 0 to �nd the coe�cients.]

• Following the hint, because ∆is a symmetric function in r1, r2, r3 of degree 6, it is a polynomial of
total degree 6 in the three elementary symmetric functions σ1 = r1 +r2 +r3, σ2 = r1r2 +r1r3 +r2r3,
and σ3 = r1r2r3.

• By using the translation in (b), we may shift to make σ1 = 0. Then since σ2 has degree 2 and σ3 has
degree 3, the only terms of degree 6 are σ3

2 and σ2
3 . Since σ2 = p and σ3 = −q by Vieta's formulas,

that means we must have ∆ = Xp3 + Y q2 for some coe�cients X and Y .

• Setting r1 = 0, r2 = 1, r3 = −1 yields p = −1, q = 0, ∆ = 4, so 4 = −X.

• Setting r1 = r2 = 1 and r3 = −2 yields p = −3, q = 2, ∆ = 0, so 0 = −27X + 4Y hence Y = −27.

• We deduce that ∆ = −27p3 − 4q2 as claimed.

(d) Show that if f has three distinct real roots, then Cardano's formulas require computing cube roots of
non-real complex numbers.

• By part (c) above, the term under the square root in the −q
2

+

√
q2

4
+
p3

27
expression in Cardano's

formulas from 8(c) is −∆/108. By (a), if the polynomial f has three real roots, then the discriminant
∆ is positive, so the square root

√
−∆/108 is nonreal, as claimed.
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