
Algebraic Number Theory - Notes (by Evan Dummit, 2024, v. 0.82)

Contents

0 Algebraic Number Theory 2

0.1 (Sep 4) Overview, Number Fields and Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 (Sep 5) Rings of Integers, Trace and Norm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.3 (Sep 9) Complex Embeddings, Trace and Norm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.4 (Sep 11) The Group Structure of OK , Discriminants 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.5 (Sep 12) Discriminants 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

0.6 (Sep 16) Constructing Integral Bases for OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.7 (Sep 18) Some Examples of Integral Bases for OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0.8 (Sep 19) The Ring of Integers in Q(ζn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.9 (Sep 23) Student Presentations of HW1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

0.10 (Sep 25) Unique Factorization in OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

0.11 (Sep 26) Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

0.12 (Sep 30) Ideal Factorization in Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

0.13 (Oct 2) Ideal Divisibility in Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

0.14 (Oct 3) Ideal Norms, Primes in Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

0.15 (Oct 7) Rami�cation Index and Inertial Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

0.16 (Oct 9) Computing Prime Ideal Factorizations, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

0.17 (Oct 10) Student Presentations of HW2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

0.18 (Oct 16) Computing Prime Ideal Factorizations, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

0.19 (Oct 17) Factorizations and Rami�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

0.20 (Oct 21) Rami�cation and Di�erents, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

0.21 (Oct 23) Rami�cation and Di�erents, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

0.22 (Oct 24) The Ideal Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

0.23 (Oct 28) Real and Complex Embeddings, Minkowski's Lattice Theorems . . . . . . . . . . . . . . . . 53

0.24 (Oct 30) Student Presentations of HW3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

0.25 (Oct 31) The Minkowski Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

0.26 (Nov 4) Computing More Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

0.27 (Nov 6) Dirichlet's Unit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

0.28 (Nov 7) Examples of Unit Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

0.29 (Nov 13) Galois Actions, Decomposition and Inertia Groups . . . . . . . . . . . . . . . . . . . . . . . 70

0.30 (Nov 14) Decomposition and Inertia, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

0.31 (Nov 18) Student Presentations of HW4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

0.32 (Nov 20) Applications of Decomposition and Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

0.33 (Nov 21) Frobenius Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

0.34 (Nov 25) Higher Rami�cation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1



0 Algebraic Number Theory

These are lecture notes for the graduate course Math 7315: Algebraic Number Theory, taught at Northeastern in
Fall 2024.

0.1 (Sep 4) Overview, Number Fields and Algebraic Integers

• The goal of this course is to provide an introduction to algebraic number theory, which (broadly speaking)
uses the language and tools of abstract algebra to study number theory.

◦ To illustrate, here are some fundamental things from classical number theory: primes, unique factoriza-
tions, congruences and modular arithmetic, Fermat's and Euler's theorems, the prime number theorem,
quadratic reciprocity (and higher reciprocity), and the prime number theorem.

◦ It was observed in the 1700s and early 1800s that many of these same ideas extend in fundamentally
similar ways to other kinds of numbers beyond the integers � various natural examples being the Gaussian
integers, other kinds of algebraic numbers such as the nth roots of unity, and polynomials with coe�cients
in the �eld Fp.
◦ However, it was not until some of the fundamental constructions from abstract algebra were better
understood that these ideas coalesced into an understandable form � precisely, the central ideas are
the closely-related notions of a ring, a module, and of an integral extension � which arose between the
1860s and 1880s in the work of Dedekind and Kronecker, and were extended greatly over the subsequent
decades by Noether, Hilbert, Krull, and others.

◦ As a matter of history, the questions we will study about unique factorization and algebraic number
�elds motivated the development of a great deal of abstract algebra, but we will reverse the historical
trend and start by developing the needed algebraic facts before applying them to study number theory.

• Our general goal is to study the problem of unique factorization (and quite often its failure!) in the ring of
integers of a number �eld.

◦ Now, one may certainly adopt the position that the existence or nonexistence of unique factorization in
an integral domain is already an intrinsically interesting question by itself, but the question is rather
trivialized simply by noting that such rings are, by de�nition, unique factorization domains.

◦ The more speci�c question of whether we can tell if a particular ring has unique factorization is more
interesting, but still, we are really interested only in rings of interest for their utility in answering questions
about number theory.

◦ So let us �rst formulate the proper class of rings that we will study.

• De�nition: A number �eld is a �eld extension K/Q whose vector space dimension over Q is �nite.

◦ Equivalently, a number �eld is a �nite-degree extension of Q.
◦ Since the complex �eld C is algebraically closed and contains Q, by standard facts about algebraic �eld
extensions, K can be embedded into C.
◦ As such, we may equivalently think of a number �eld as a sub�eld of C that has �nite degree over Q.

• Example: The quadratic �eld Q(
√
D) = {a + b

√
D : a, b ∈ Q} for any squarefree integer D 6= 1 is a number

�eld of degree 2 over Q.

◦ For positive D the �eld Q(
√
D) is a real quadratic �eld, while for negative D the �eld Q(

√
D) is an

imaginary quadratic �eld.

◦ We could spend a tremendous amount of time just studying properties of factorization in quadratic
�elds, since even by themselves they already provide interesting examples of unique and non-unique
factorization.

◦ As is well known (and which we will prove properly later), the ring Z[i] of Gaussian integers, which is a
subring of the quadratic �eld Q(i), has unique factorization.
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◦ On the other hand, in Z[
√
−3], a subring of Q(

√
−3), we have 4 = 2 · 2 = (1 +

√
−3) · (1 −

√
−3), and

these two factorizations are inequivalent because the terms are all irreducible but are not associates of
one another.

◦ However, this �example� is not really so interesting, because inside the corresponding �eld Q(
√
−3) there

does exist a subring where these two factorizations are equivalent up to unit factors: namely, the subring

Z[ω] = Z[
−1 +

√
−3

2
].

◦ More interestingly, in the ring Z[
√
−5], a subring of Q(

√
−5), we have a similar lack of unique factor-

ization: 6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5). Yet as we will see, there is no similar way to �enlarge� this

subring (while still maintaining the desired kind of integrality of the elements) in order to salvage unique
factorization of elements.

• Example: For a primitive nth root of unity ζn such as ζn = e2πi/n, the cyclotomic �eld Q(ζn) is a number
�eld of degree ϕ(n) over Q, since the minimal polynomial of ζn over Q is the nth cyclotomic polynomial which
has degree ϕ(n).

◦ There are many properties of the roots of unity, and some simple ones lead to relations among the
cyclotomic �elds.

◦ Exercise: If a and b are relatively prime, show that Q(ζab) = Q(ζa, ζb). Deduce that Q(ζ2n) = Q(ζn) for
odd integers n. Do there exist distinct even integers 2m and 2n such that Q(ζ2m) = Q(ζ2n)?

• We can generalize the two examples above rather substantially:

• Example: For any irreducible polynomial p(x) ∈ Q[x] of degree n with a complex root α, the �eld Q(α) =
{c0α+ · · ·+ cn−1α

n−1 : ci ∈ Q} generated by α over Q is a number �eld of degree n.

◦ In fact, every number �eld is really of this form:

◦ Exercise: Suppose K/Q is a number �eld. Show that K = Q(α) for some complex number α. [Hint:
Apply the primitive element theorem.]

• Now, in order to discuss unique factorization fruitfully, we need to identify the analogue of the integers Z
inside our number �eld K, which will give us (in a very strong sense) the �proper� subring of K in which to
consider factorizations:

• De�nition: For a number �eld K, an algebraic number α ∈ K is an algebraic integer if there exists a monic
polynomial p(x) with integer coe�cients such that p(α) = 0.

◦ Examples: Integers are algebraic integers, as are
√

2 and i, and more generally a1/n for any integer a
and positive integer n. The roots of x3 − x− 1 = 0 are algebraic integers.

◦ Indeed, it is not so trivial to show that a given complex number is not an algebraic integer using this
de�nition, since it would require showing that there is no monic polynomial with integer coe�cients of
which it is a root.

◦ Let us give a better way to determine whether an algebraic number is an algebraic integer, while also
reviewing some properties of algebraic numbers in general:

• Proposition (Algebraic Integers I): Suppose α is an algebraic number, so that α is the root of some nonzero
polynomial q(x) ∈ Q[x].

1. The set of all polynomials p(x) ∈ Q[x] for which p(α) = 0 is an ideal of Q[x]. The unique monic generator
m(x) of this ideal is the minimal polynomial of α, and is the unique monic polynomial in Q[x] of smallest
degree having α as a root.

◦ Proof: It is easy to see that the set of p(x) with p(α) = 0 is an ideal. Since Q[x] is a principal ideal
domain, this ideal is principal, and therefore has a unique monic generator.

◦ Since m(x) divides all elements of this ideal, its degree is smallest among all nonzero elements of the
ideal.

◦ Exercise: Show that the minimal polynomial m(x) is irreducible in Q[x].
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2. The algebraic number α is an algebraic integer if and only if its minimal polynomial (over Q) has integer
coe�cients.

◦ Proof: If the minimal polynomialm(x) has integer coe�cients, thenm(x) itself is a monic polynomial
with integer coe�cients of which α is a root, so obviously α is an algebraic integer.

◦ Conversely, suppose α is an algebraic integer. Let p(x) be the monic polynomial of minimal degree
such that p(α) = 0 and p(x) has integer coe�cients. If p(x) were reducible in Q[x], then by Gauss's
lemma1 p(x) would have a factorization in Z[x]: say p(x) = f(x)g(x). But then at least one of f
and g would have α as a root, contradicting the minimality of p.

◦ Thus p is irreducible. Now, since p(α) = 0, we see that m(x) divides p(x), so since p is irreducible
we must have p(x) = c ·m(x) for some c ∈ Q, but as both p and m are monic, we have c = 1. Thus,
m(x) ∈ Z[x] as claimed.

0.2 (Sep 5) Rings of Integers, Trace and Norm 1

• Using the criterion in (2) above allows us to compute the algebraic integers in a number �eld K by �nding
the elements of K whose minimal polynomials have integer coe�cients.

◦ Exercise: Show that the set of algebraic integers of Q is Z.
◦ Exercise: Suppose D is squarefree. Show that the set of algebraic integers of Q(

√
D) is Z[

√
D] when

D ≡ 2, 3 (mod 4) and that it is Z[
1 +
√
D

2
] when D ≡ 1 (mod 4). [Hint: First verify that for b 6= 0 the

minimal polynomial of a+ b
√
D is m(x) = x2 − 2a+ (a2 −Db2), and then classify when the coe�cients

are integers.]

• In the examples above note that the algebraic integers in these number �elds both form rings. In fact, the
algebraic numbers in any number �eld always form a ring, as we will now show.

◦ After noting rather obviously that 0 is an algebraic integer and the negative of an algebraic integer is
an algebraic integer, the claimed fact is equivalent to proving that the set of algebraic integers is closed
under addition and multiplication.

◦ This fact can be proven directly from the de�nition using rather tedious polynomial elimination: the
idea is that if α and β are algebraic integers with integer polynomials p, q with p(α) = q(β) = 0, then
one may do polynomial elimination on the sets {p(x), q(y), z − x− y} and {p(x), q(y), z − xy} to obtain
a single monic polynomial in z with integer coe�cients in each case, which then establishes that α + β
and αβ are algebraic integers.

◦ But this approach is very tedious to implement in practice, and is not particularly enlightening. Let us
give a much more natural approach using modules.

• Proposition (Rings of Integers): Suppose K is a number �eld.

1. For α ∈ K, the following are equivalent:

(a) α is an algebraic integer.

(b) The ring Z[α] is �nitely generated as an additive group (i.e., as a Z-module).

(c) α is an element of some subring of C that is �nitely generated as an additive group.

(d) There exists some �nitely generated additive subgroup G of C with αG ⊆ G.
◦ Proof: (a) ⇒ (b): If the minimal polynomial of α is m(x) = xn + cnx

n−1 + · · · + c1x + c0 then we
claim {1, α, . . . , αn−1} generates Z[α] as an additive group. To see this it su�ces to observe that each
power of α is an integral linear combination of {1, α, . . . , αn−1}, which follows by an easy induction
relying on the fact that αn = −c0 − c1α− · · · − cnαn−1.

◦ (b)⇒ (c): Obvious, since α ∈ Z[α].

◦ (c)⇒ (d): Obvious by taking L to be the given subring.

1The formulation of Gauss's lemma we use here is that if a polynomial with integer coe�cients factors in Q[x], then in fact it factors
in Z[x].
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◦ (d) ⇒ (a): Suppose G is generated by β1, . . . , βn. Then αβ1, . . . , αβn are all elements of G hence

can be expressed as integral linear combinations of β1, . . . , βn: thus, α

 β1

...
βn

 = M

 β1

...
βn

 for an

appropriateM ∈Mn×n(Z). This means α is an eigenvalue of the matrixM , and so the characteristic
polynomial p(x) = det(xI −M) has α as a root; as M has integer entries, p(x) is then a monic
polynomial with integer coe�cients having α as a root.

2. The set of all algebraic integers forms a ring. The set of algebraic integers in K also forms a ring, which
is called the ring of integers of K and is denoted OK .
◦ Proof: Suppose α and β are algebraic integers. Then Z[α] and Z[β] are �nitely-generated Z-modules,
hence so is Z[α, β] since it is generated by the pairwise products of the generating sets. Hence so are
the submodules Z[α− β] and Z[αβ].

◦ We deduce that the set of all algebraic integers is closed under subtraction and multiplication, so it
is ring. The intersection of it with K is therefore also a ring.

◦ Remark: All of the argument above can be made completely explicit: if Z[α] has basis {1, α, . . . , αn−1}
and Z[β] has basis {1, β, . . . , βm−1} then Z[α, β] is spanned by {αiβj}1≤i≤n,1≤j≤mn. Then to com-
pute a polynomial with, say, α + β as a root, simply compute the coe�cients of multiplication by
α+ β on this spanning set, and evaluate the appropriate determinant.

◦ Exercise: Use the procedure described above to �nd a monic integer polynomial satis�ed by
√

2+ 3
√

3
and by

√
2 · ( 3
√

3− 1).

3. For every element α ∈ K there is some nonzero d ∈ Z such that dα is an algebraic integer.

◦ Proof: Suppose that the minimal polynomial of α is m(x) = xn + cnx
n−1 + · · · + c1x + c0 ∈ Q[x]

and let d be the lcm of the denominators appearing in m.

◦ Then 0 = dnm(α) = (dα)n + cnd(dα)n−1 + · · ·+ c1d
n−1(dα) + c0d

n, so for m̃(x) = xn + cndx
n−1 +

· · · + c1d
n−1x + c0d

n we see m̃(dα) = 0. Since m̃ has integer coe�cients, we see dα is an algebraic
integer, as claimed.

◦ Exercise: Show that K is the fraction �eld of its ring of integers OK .

• We would like now to study further the structure of the ring of integers OK , both additively and multiplica-
tively. In order to do this e�ciently, we require a few additional tools from the basic theory of algebraic �eld
extensions, the �rst two of which are the trace and norm maps. We will give a few di�erent approaches for
these constructions.

◦ The most natural is for Galois extensions, so suppose K/F is a Galois extension with Galois group G.
For an element α ∈ K, we de�ne the trace of α to be trK/F (α) =

∑
g∈G g(α) and the norm to be

NK/F (α) =
∏
g∈G g(α). In other words, the trace is the sum of all the Galois conjugates of α, while the

norm is the product of all the Galois conjugates of α.

◦ It is easy to see that both the trace and norm are Galois-invariant (simply reindex the sum), so the trace
and norm are in fact both elements of the base �eld F .

◦ The main reason we are interested in these maps is that the trace is additive and F -linear, while
the norm is multiplicative: trK/F (α + cβ) = trK/F (α) + ctrK/F (β) for any c ∈ F , and NK/F (αβ) =
NK/F (α)NK/F (β), as is easily seen by the de�nitions (note g(c) = c since c ∈ F ).
◦ Thus, the trace and norm give us convenient ways to relate the respective multiplicative and additive
structures of the larger �eld K to the smaller �eld F .

◦ Example: For K = Q(
√
D) and L = Q, which is Galois with Galois group G ∼= Z/2Z generated by the

conjugation map σ(a+ b
√
D) = a− b

√
D, we have tr(a+ b

√
D) = 2a and N(a+ b

√
D) = a2 −Db2.

• However, not all extensions are Galois (including many number �eld extensions we will be interested in, such
as Q( 3

√
2)/Q). To extend our de�nitions to this more general situation, suppose now we only have a separable

�nite-degree extension K/F and suppose K̂/F is its Galois closure (i.e., the smallest Galois extension of F
containing K) now with Galois group G.
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◦ By the Galois correspondence, the intermediate �eld K of K̂/F corresponds to a subgroup H of G
(namely, the subgroup of G that �xes K). Letting S be a set of coset representatives for H in G,
for an element α ∈ K, we de�ne the trace of α to be trK/F (α) =

∑
g∈S g(α) and the norm to be

NK/F (α) =
∏
g∈S g(α).

◦ The trace and norm are well de�ned because the value g(α) is independent of which coset representative
is used: if g1 and g2 represent the same coset, then g−1

1 g2 ∈ H hence g−1
1 g2 �xes all elements of K; then

g−1
1 g2(α) = α so g1(α) = g2(α).

◦ Exercise: For a separable extension K/F , show that the trace and norm as de�ned above are still
Galois-invariant, that the trace is additive and F -linear, and that the norm is multiplicative.

◦ Example: Consider K = Q( 3
√

2) and L = Q, whose Galois closure is K̂ = Q( 3
√

2, ζ3) with Galois group
isomorphic to S3 with generators σ, τ with σ( 3

√
2, ζ3) = (ζ3

3
√

2, ζ3) and τ( 3
√

2, ζ3) = ( 3
√

2, ζ2
3 ). Then K

is the �xed �eld of the subgroup H = 〈τ〉 so we can take coset representatives {1, σ, σ2} for H in K.
Then for any α ∈ K we have tr(α) = α + σ(α) + σ2(α) and N(α) = α · σ(α) · σ2(α). Explicitly, for
α = a + b 3

√
2 + c 3

√
4 we see σ(α) = a + bζ3

3
√

2 + cζ2
3

3
√

4 and σ2(α) = a + bζ2
3

3
√

2 + cζ3
3
√

4, so tr(α) = 3a
and N(α) = a3 + 2b3 + 4c3 − 6abc after some simpli�cation.

◦ In the example above, notice that the three Galois conjugates α, σ(α), σ2(α) correspond to the three
di�erent complex embeddings of α (this is more obvious with the speci�c choice α = 3

√
2, where σ(α) =

ζ3
3
√

2 and σ2(α) = ζ2
3

3
√

2 are the other two complex cube roots of 2).

0.3 (Sep 9) Complex Embeddings, Trace and Norm 2

• We will now give another approach to the trace and norm that is more amenable to explicit calculations, in
terms of the complex embeddings of the number �eld K.

◦ Let us review some of the basic properties of complex embeddings, which are the nonzero ring homo-
morphisms from a �eld to C.
◦ The connection to our previous discussion is that the various complex embeddings of K are simply the
images of K under the Galois group of the Galois closure of K.

• Proposition (Complex Embeddings): Suppose K/F is an extension of number �elds of degree n, with K and
F explicitly considered as sub�elds of C.

1. For a �xed embedding σ : F → C, there exist exactly n embeddings τ : K → C extending σ (i.e., with
τ |K = σ).

◦ Proof: For n = 1 the result is trivial so now assume n > 1.

◦ For an embedding τ : K → C, since we know the value of τ on F and since K = F (α), the choice of
τ(α) determines τ uniquely, so we just have to determine the possible values of τ(α).

◦ Let K = F (α), let m(x) be the minimal polynomial of α over F (which necessarily has degree
n), and let m̃(x) be the polynomial obtained by applying σ to all the coe�cients of m(x). Then
m̃(x) ∈ σK[x] is the minimal polynomial of σ(α), as it is clearly irreducible and has σ(α) as a root.

◦ Any embedding τ : K → C restricting to σ on F must map m(x) to m̃(x), and so τ must map the
root α of m(x) to some root β of m̃(x).

◦ On the other hand, for any root β of m̃(x), there is a unique isomorphism from F (α) to σF (β)
that restricts to σ on F and that sends α to β; such a map must take c0α + · · · + cn−1α

n−1 to
σ(c0)β + · · · + σ(cn−1)βn−1), but this determines it uniquely, and we can see it is well de�ned

by noting that it is obtained as the composition of the isomorphisms F (α)
α7→x→ F [x]/(m(x))

σ→
σF [x]/(m̃(x))

x 7→β→ σF (β).

◦ Since the degree of m̃(x) is the same as the degree of m(x), namely n, the degree of the extension
L/K, we conclude that there are exactly n embeddings τ : K → C extending σ.

2. For any number �eld K/Q of degree n, there are exactly n complex embeddings τ : K → C.

◦ Proof: Apply (1) with F = Q, noting that there is only one embedding of Q into C (as 0 must map
to 0 and 1 must map to 1).
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3. If σ1, . . . σn denote the n complex embeddings of K �xing F , then for α ∈ K we have trK/F (α) =∑n
i=1 σi(α) and NK/F (α) =

∏n
i=1 σi(α).

◦ Proof: Consider the Galois closure K̂/F as a sub�eld of C, and consider the action of the Galois
group G = Gal(K̂/F ) on K.

◦ For any σ ∈ G we see that σ(K) is a sub�eld of C isomorphic to K (as the inverse isomorphism is
simply σ−1), and so σ : K → C yields a complex embedding of K.

◦ Conversely, by (1), any complex embedding of K extends to one of K̂ but since K̂ is Galois, any
complex embedding is an automorphism of K̂: thus, all of the complex embeddings ofK are obtained
as σ(K) for some σ ∈ G.

◦ Two complex embeddings σ1 and σ2 of K are equal when σ1(α) = σ2(α) for α ∈ K ⇐⇒ σ−1
1 σ2(α) =

α for all α ∈ K ⇐⇒ σ−1
1 σ2 �xes K ⇐⇒ σ−1

1 σ2 lies in the subgroup H of G �xing K ⇐⇒ σ1

and σ2 represent the same coset of H in G.

◦ Thus, the n possible complex embeddings σi ofK are given precisely by a set of a coset representatives
for H in G. The claimed formulas for the trace and norm then reduce immediately to our earlier
de�nition.

• Example: The quadratic �eld K = Q(
√
D) has two complex embeddings: the identity embedding σ1(a +

b
√
D) = a+ b

√
D, and the conjugate embedding with σ2(a+ b

√
D) = a− b

√
D.

◦ Here, we can see that both embeddings represent �eld automorphisms of Q(
√
D); that is because Q(

√
D)

is Galois over Q.
◦ We then have trK/Q(a+b

√
D) = 2a and NK/Q(a+b

√
D) = a2−Db2, just as we computed in our example

earlier.

• Example: The cubic �eld K = Q( 3
√

2) has three complex embeddings: the identity embedding and the two
embeddings obtained by mapping 3

√
2 to the other roots of its minimal polynomial p(x) = x3 − 2: namely,

ζ3
3
√

2 and ζ2
3

3
√

2, the other two complex cube roots of 2.

◦ Explicitly, these maps σ1, σ2, σ3 send a+b 3
√

2+c 3
√

4 respectively to a+b 3
√

2+c 3
√

4, to a+bζ3
3
√

2+cζ2
3

3
√

4,
and to a+ bζ2

3
3
√

2 + cζ3
3
√

4.

◦ Here, we can see that only the identity embedding maps K back to itself, illustrating that K is not
Galois over Q. The other two embeddings map K to its Galois conjugates σ2(K) = Q(ζ3

3
√

2) and
σ3(K) = Q(ζ2

3
3
√

2), the �elds generated by the other two roots of the minimal polynomial.

◦ We can as before compute the trace and norm trK/Q(a+ b 3
√

2 + c 3
√

4) = 3a and NK/Q(a+ b 3
√

2 + c 3
√

4) =

(a+ b 3
√

2 + c 3
√

4)(a+ bζ3
3
√

2 + cζ2
3

3
√

4)(a+ bζ2
3

3
√

2 + cζ3
3
√

4) = a3 + 2b3 + 4c3 − 6abc.

• Example: The cyclotomic �eld Q(ζn) has ϕ(n) complex embeddings, obtained by mapping ζn to the ϕ(n)
roots of its minimal polynomial2, which are ζan for a ∈ (Z/nZ)× (i.e., relatively prime to n).

◦ Writing these maps in general is rather cumbersome, so we will just give a few examples for speci�c n.

◦ For n = 8, we see that Q(ζ8) = Q(i,
√

2) has ϕ(8) = 4 complex embeddings obtained by mapping
ζ8 = (

√
2+i
√

2)/2 to the roots ζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 = (±

√
2±i
√

2)/2 of the cyclotomic polynomial Φ8(x) = x4+1
over Q.
◦ Noting that Q(ζ8) has a basis {1, ζ8, ζ2

8 , ζ
3
8} over Q, we may compute the embeddings σ1, σ2, σ3, σ4

explicitly as the maps sending a+bζ8 +cζ2
8 +dζ3

8 respectively to a+bζ8 +cζ2
8 +dζ3

8 , to a+bζ3
8 +cζ6

8 +dζ8,
to a+ bζ5

8 + cζ2
8 + dζ7

8 , and to a+ bζ7
8 + cζ6

8 + dζ5
8 .

◦ Then we have trK/Q(a+ bζ8 + cζ2
8 + dζ3

8 ) = 4a and NK/Q(a+ bζ8 + cζ2
8 + dζ3

8 ) = (a2 + c2)2 + (b2 + d2)2−
4(ab+ cd)(ad− bc) after some simpli�cation.

◦ Exercise: Compute the four complex embeddings ofQ(ζ8) = Q(i,
√

2) instead using theQ-basis {1,
√

2, i, i
√

2},
and �nd the trace and norm of p+ q

√
2 + ri+ si

√
2.

2As we will prove along the way later, the nth cyclotomic polynomial Φn(x), which is the minimal polynomial of ζn, factors in C as
Φn(x) =

∏
z∈(Z/nZ)× (x− ζan). In particular, its degree is ϕ(n).
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• These de�nitions of trace and norm also have a convenient, and in some sense even more natural, interpretation
in terms of the linear transformation given by multiplication by α, which also explains the linearity of the
trace (and its name) and the multiplicativity of the norm:

• Exercise: Let K/F be an extension of number �elds with α ∈ K and de�ne Tα : K → K to be the F -linear
transformation of multiplication by α, namely with Tα(x) = αx for all x ∈ K.

1. Show that the minimal polynomial of the linear transformation Tα is the minimal polynomial of the
algebraic number α. [Hint: Show that F [Tα] is ring-isomorphic to F [α].]

2. Show that the eigenvalues of Tα in C are the elements σi(α), where σ1, . . . , σn are the complex embeddings
of K �xing F .

3. Show that the characteristic polynomial p(x) = det(xI − Tα) of Tα is m(x)[K:F (α)] where m(x) is the
minimal polynomial of α over F .

4. Show that tr(Tα) = trK/F (α) and that det(Tα) = NK/F (α).

5. Use (a) and (d) to compute the trace, norm, and minimal polynomial of α = 3
√

2 +
√

7 from K =
Q( 3
√

2,
√

7) toQ. [Suggestion: Compute the matrix Tα with respect to the basis {1, 3
√

2, 3
√

4,
√

7, 3
√

2
√

7, 3
√

4
√

7}.]

• Let us now prove a few other basic properties of the trace and norm:

• Proposition (Trace and Norm): Let K/F be an extension of number �elds of degree n. Then the following
hold:

1. For any r ∈ Q and α ∈ K we have trK/F (r) = nr, trK/F (rα) = rtrK/F (α), NK/F (r) = rn, and
NK/F (rα) = rnNK/F (α).

◦ Proof: The complex embeddings of K all �x Q, so σi(r) = r for each 1 ≤ i ≤ n. The claimed
formulas then follow immediately from the linearity of the trace and multiplicativity of the norm.

2. (Transitivity) If L/K is another extension of number �elds and α ∈ L, we have trL/F (α) = trK/F (trL/K(α))
and NL/F (α) = NK/F (NL/K(α)).

◦ Proof: Consider the Galois closure L̂ of L/F with Galois group G. Let HK be the subgroup of G
�xing K and HL be the subgroup of G �xing L.

◦ Let σ1, . . . , σn be a set of coset representatives for HK in G (these represent the complex embeddings
of K �xing F ) and τ1, . . . τm be a set of coset representatives for HL in HK (these represent the
complex embeddings of L �xing K). Then the set of pairwise products {σiτj}1≤i≤n,1≤j≤m is a set
of coset representatives for HL in G.

◦ Thus trL/F (α) =
∑
i,j σiτj(α) =

∑n
i=1

∑m
j=1 σi(τj(α)) =

∑n
i=1 σi[

∑m
j=1 τj(α)] =

∑n
i=1 σi(trL/K(α)) =

trK/F (trL/K(α)), and �nally the norm formula is the same with sums replaced by products.

3. If α has minimal polynomial m(x) = xd + cn−1x
n−1 + · · · + c0 over F , then trK/F (α) = −n

d
cn−1 and

NK/F (α) = (−1)nc
n/d
0 .

◦ Proof: The possible Galois conjugates of α are the d di�erent roots of its minimal polynomial over
F .

◦ By our earlier result on extensions of embeddings, for any other root β of m(x), there is a unique
embedding of F (α) �xing F that maps α to β. Then applying the result again, there are exactly
[K : F (α)] = n/d embeddings of K �xing F that map α to β.

◦ We conclude that in the list of values σi(α) for 1 ≤ i ≤ n, the value β occurs exactly n/d times, and
this holds for all d possible roots β.

◦ Then trK/F (α) =
∑n
i=1 σi(α) is n/d times the sum of the roots ofm(x) while NK/F (α) =

∏n
i=1 σi(α)

is the product of the roots of m(x) to the n/dth power. The formulas follow immediately.

4. If α is an algebraic integer, then trK/F (α) and NK/F (α) are both algebraic integers in F . In particular,
trK/Q(α) and NK/Q(α) are both integers.

◦ Proof: If α is an algebraic integer, its Galois conjugates are also algebraic integers, hence so too are
the sum and product of all these conjugates.
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◦ By the argument in (3) above, trK/F (α) is an integer times the sum of the Galois conjugates of α
while NK/F (α) is an integer power of the product of the Galois conjugates of α. The result follows
immediately.

5. The units in the ring of integers OK are precisely the elements of norm ±1 (i.e., the α ∈ OK with
NK/Q(α) = ±1).

◦ Proof: If α ∈ OK is a unit with multiplicative inverse β ∈ OK , then αβ = 1 so taking norms yields
NK/Q(α)NK/Q(β) = NK/Q(αβ) = NK/Q(1) = 1 by multiplicativity and (1).

◦ But now by (4), both NK/Q(α) and NK/Q(β) are integers, so we must have NK/Q(α) = ±1.

◦ Conversely, if NK/Q(α) = ±1, then this says α times a product of its Galois conjugates β1 · · ·βn
equals ±1. But then ±β1 · · ·βn is an algebraic integer that is a multiplicative inverse of α, so it lies
in OK and thus α is a unit in OK .

0.4 (Sep 11) The Group Structure of OK, Discriminants 1

• Using this convenient characterization of units in OK we can easily test whether speci�c elements of OK are
in fact units, and in some simple cases we can characterize all of the units.

◦ Example: In the quadratic �eld K = Q(
√
D) with D ≡ 2, 3 (mod 4) so that OK = Z[

√
D], we see that

N(a+ b
√
D) = a2 −Db2, so the element a+ b

√
D is a unit if and only if a2 −Db2 = ±1. When D ≡ 1

(mod 4) so that OK = Z[ 1+
√
D

2 ], we see that N(a+ b 1+
√
D

2 ) = a2 + ab+ 1−D
4 b2, so the element a+ b

√
D

is a unit if and only if a2 + ab+ 1−D
4 b2 = ±1.

◦ The unit behavior actually is quite di�erent for real and imaginary quadratic �elds. Imaginary quadratic
�elds have only �nitely many units:

◦ Exercise: Show that when D < 0, the only units of OQ(
√
D) are ±1, except in the case D = −1 with

units ±1,±i and in the case D = −3 with units ±1,±ζ3,±ζ2
3 .

◦ However, real quadratic �elds always have in�nitely many units: we will show more general results later,
but this claim follows from the fact that Pell's equation3 a2 −Db2 = 1 always has a nontrivial solution
(i.e., one with b > 0) for any squarefree positive integer D. If u = a + b

√
D represents such a solution,

then since u > 1 we see easily that the powers un yield in�nitely many distinct units in OQ(
√
D).

• We now exploit the trace and norm maps to establish some other basic information about the structure of
OK as an additive abeliam group and as a module.

◦ Recall in particular that we showed earlier that for every element α ∈ K there is some nonzero d ∈ Z
such that dα is an algebraic integer.

• Proposition (Additive Structure of OK): Suppose K is a number �eld.

1. The ring of integers OK is a torsion-free, �nitely generated abelian group.

◦ Proof: Clearly OK is torsion-free since it is a subset of C; it remains to show �nite generation.

◦ Suppose K/Q has degree n and let α1, . . . , αn be a Q-basis for K; by scaling these basis elements
by integers as needed, we may assume the αi are elements of OK .
◦ For each nonzero β ∈ K, consider the map ϕβ : K → Q given by ϕβ(α) = TrK/Q(βα). This map is
Q-linear and nonzero since ϕβ(β−1) = TrK/Q(1) = n, and so the map from the vector space K to its

dual space K̂ = HomQ(K,Q) sending β to ϕβ is injective. However, because both vector spaces are
n-dimensional, it is in fact an isomorphism.

◦ Therefore, we see that every linear functional on K is of the form ϕβ for some β ∈ K.

3To summarize this argument: �rst one shows (via the pigeonhole principle or via continued fractions) that for any real number x

there are in�nitely many p/q ∈ Q with |x− p/q| < 1/q2. Taking x =
√
D yields in�nitely many positive (p, q) with

∣∣∣√D − p/q∣∣∣ < 1/q2

whence
∣∣p2 −Dq2∣∣ < 2

√
D + 1. Picking some r for which p2 −Dq2 = r has in�nitely many solutions, if (p, q) and (p′, q′) are solutions

congruent mod r then (a, b) = (pp′ −Dqq′, |pq′ − p′q|)/r has a2 −Db2 = 1 and b > 0.
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◦ Consider the elements α′1, . . . , α
′
n ∈ K giving the dual basis to α1, . . . , αn: in other words, with

TrK/Q(α′iαj) = 1 for i = j and 0 otherwise. (Such elements exist because any linear functional, such
as the one mapping all of the basis elements α1, . . . , αn to zero except for αi which is mapped to 1,
is of the form ϕα′i for some α′i.)

◦ Since α′1, . . . α
′
n are then clearly linearly independent, they are a Q-basis for K.

◦ Now suppose β is some element of OK : since {α′1, . . . α′n} is a basis for K, there exist some ci ∈ Q
with β = c1α

′
1 + · · ·+ cnα

′
n.

◦ Multiplying by αi and taking the trace then yields TrK/Q(βαi) = c1TrK/Q(αiα
′
1)+· · ·+cnTrK/Q(αiα

′
n).

But all of the traces are 0 except for the trace of αiα
′
i which equals 1, so the trace is simply ci. But

because βαi is an algebraic integer, its trace is an integer, so we see each ci ∈ Z.
◦ We conclude that β ∈ Zα′1 +Zα′2 + · · ·+Zα′n, so OK ⊆ Zα′1 +Zα′2 + · · ·+Zα′n. Thus OK is contained
in a �nitely generated abelian group, hence is itself a �nitely generated abelian group.

2. If K/F is an extension of number �elds of degree n, then OK is a torsion-free OF -module of rank n.

◦ Note here that the OF -module structure of OK is inherited from the ring structure of OK .
◦ Proof: To show that it has rank n, suppose that K = F (α), where (by rescaling) we may assume α
is an algebraic integer.

◦ Then the set {1, α, . . . , αn−1} is F -linearly independent and consists of elements of OK , so it yields
an OF -linearly independent set in OK . Thus OK has rank at least n.

◦ On the other hand, if β1, . . . , βn+1 are any elements of OK , then there exists some F -linear depen-
dence c1β1 + · · ·+ cn+1βn+1 = 0 for ci ∈ F .
◦ Scaling by an appropriate integer d such that dci ∈ OF for all i yields an OF -linear dependence of
these βi. Thus the maximal size of an OF -linearly independent set in OK is n, so since by (1) OK
is �nitely generated, we see that OK has rank n.

3. If K is a number �eld of degree n over Q, then OK is a free abelian group of rank n: in other words,
there exist β1, β2, . . . , βn ∈ OK such that OK = Zβ1 ⊕ Zβ2 ⊕ · · · ⊕ Zβn.

◦ Proof: By (1) we know that OK is a torsion-free �nitely generated abelian group, and by (2) we
know it has rank n. by the structure theorem for �nitely generated abelian groups, such an abelian
group is free of rank n.

◦ The second statement is then simply the de�nition of a free rank-n abelian group.

◦ Exercise: Show more generally that if OF is a PID, and K/F has degree n, then OK is a free
OF -module of rank n.

◦ Remark: In general, OK need not be a free OF -module. (In other words, although there exist
OF -linearly independent sets of size n, none of them span OK , but rather, will give some proper
submodule.) Later, once we study the multiplicative structure of rings of integers further, we will
be able to give explicit examples, which (per the exercise above) can only happen when OF is not a
PID.

4. The ring OK is Noetherian (i.e., every ideal is �nitely generated).

◦ Proof: Any ideal I of OK is (a fortiori) an additive subgroup of OK , which per (3) is a free abelian
group of rank n. Then I is also a free abelian group of rank at most n, and a set of additive-group
generators for I certainly also generates I as an ideal.

◦ Hence every ideal I is generated by at most n elements, so OK is Noetherian.

◦ Remark: This bound of n generators is not sharp: in fact, as we will show later, every ideal of OK is
generated by at most two elements. (And of course, saying that OK is a PID is the same as saying
every ideal is generated by just one element.)

• While the general results we have just shown are useful in understanding the abstract structure of OK as
an abelian group (and to some extent as a ring), they are not su�ciently explicit to allow us to compute an
actual integral basis for OK . In order to make calculations, we require one more tool: the discriminant.

• De�nition: Let K/F be an extension of number �elds of degree n, and let σ1, . . . , σn : K → C be the
complex embeddings of K �xing F . For an ordered n-tuple (α1, . . . , αn) ∈ K, we de�ne the discriminant
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discK/F (α1, . . . , αn) of the tuple (α1, . . . , αn) to be discK/F (α1, . . . , αn) =

∣∣∣∣∣∣∣∣∣
σ1(αi) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) · · · σn(αn)

∣∣∣∣∣∣∣∣∣
2

,

the square of the determinant of the n× n matrix whose (i, j)-entry is σi(αj).

◦ We note immediately that taking the square of the determinant means that the ordering of the em-
beddings σi and of the elements αj is irrelevant, since swapping rows or columns will not a�ect the
value.

◦ Example: For K = Q(
√

2) we have discK/Q(1,
√

2) =

∣∣∣∣ 1
√

2

1 −
√

2

∣∣∣∣2 = 8 and discK/Q(1 + 2
√

2, 3) =∣∣∣∣ 1 + 2
√

2 3

1− 2
√

2 3

∣∣∣∣2 = 288.

◦ Example: For K = Q( 3
√

2) we have discK/Q(1, 3
√

2, 3
√

4) =

∣∣∣∣∣∣
1 3

√
2 3

√
4

1 ζ3
3
√

2 ζ2
3

3
√

4

1 ζ2
3

3
√

2 ζ3
3
√

4

∣∣∣∣∣∣
2

= −108.

• Here are some basic properties of the discriminant:

• Proposition (Properties of Discriminants): Let K/F be a degree-n extension of number �elds.

1. discK/F (α1, . . . , αn) is equal to the determinant of the n × n matrix whose (i, j)-entry is trK/F (αiαj).
In particular, discK/F (α1, . . . , αn) ∈ F .
◦ Proof: Let M be the matrix whose (i, j)-entry is σi(αj), so that discK/F (α1, . . . , αn) = det(M)2.

◦ Then the (i, j)-entry of the product MTM is
∑n
k=1 σk(αi)σk(αj) =

∑n
k=1 σk(αiαj) = trK/F (αiαj).

The result follows immediately by taking determinants.

◦ The second statement follows immediately from the fact that the discriminant is the determinant of
a matrix with entries in F (since the traces are all in F ).

2. If α1, . . . , αn ∈ OK , then discK/F (α1, . . . , αn) ∈ OF . In particular, discK/Q(α1, . . . , αn) is always an
integer.

◦ Proof: From (1) we see that discK/F (α1, . . . , αn) ∈ F . Furthermore, if all of the αi are algebraic
integers, then so are all of the entries in the determinant expression (either the one from the de�nition
or the one in (1)), so the discriminant is also an algebraic integer.

3. The discriminant discK/F (α1, . . . , αn) = 0 if and only if the αi are F -linearly dependent.

◦ Proof: Clearly if the αj are F -linearly dependent, then so are the columns of the matrix with
entries σi(αj), since the embeddings σi preserve F -linear dependence, and so the determinant (hence
discriminant) will be zero.

◦ Conversely, suppose discK/F (α1, . . . , αn) = 0: then the rows of the matrix {trK/F (αiαj)}1≤i,j≤n
are F -linearly dependent, so there exist some ci ∈ F , not all zero, with c1trK/F (α1αj) + · · · +
cntrK/F (αnαj) = 0 for each 1 ≤ j ≤ n.
◦ But by linearity of the trace, for β = c1α1 + · · · + cnαn this means trK/F (βαj) = 0 for each

1 ≤ j ≤ n. However, this implies β = 0, since as we noted earlier, the linear map ϕβ : K → F given
by ϕβ(α) = TrK/F (βα) is nonzero for β 6= 0.

◦ This means there exists some ci ∈ F , not all zero, with c1α1+· · ·+cnαn = 0 , so the αi are F -linearly
dependent.

4. If α1, . . . , αn ∈ OK and discK/F (α1, . . . , αn) 6= 0, then OFα1⊕OFα2⊕ · · · ⊕OFαn is an OF -submodule
of OK of �nite index (as an additive group).

◦ Proof: By (3), if discK/F (α1, . . . , αn) 6= 0 then α1, . . . , αn are F -linearly independent (hence OF -
linearly independent, so they generate a free submodule M = OFα1⊕OFα2⊕ · · · ⊕OFαn of OK of
rank n.

◦ But as we proved earlier OK is �nitely generated and has rank n, so the quotient OK/M is �nitely
generated and has rank 0: in other words, it is �nite.
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5. Suppose that α1, . . . , αn ∈ OK and β1, . . . , βn ∈ OK span the same additive subgroup of OK : Zα1 ⊕
· · · ⊕ Zαn = Zβ1 ⊕ · · · ⊕ Zβn. Then discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

◦ Proof: If the subgroup has rank less than n, both discriminants are zero by (3). So now assume
both subgroups have rank n. By hypothesis, there exist n × n integer matrices A and B with β1

...
βn

 = A

 α1

...
αn

,
 α1

...
αn

 = B

 β1

...
βn

.
◦ Then since each set is an F -basis of K (since the rank is n) we see AB = In and so det(A) =

det(B) = ±1 since both matrices have integer determinant.

◦ Applying σi to each side of the �rst matrix equation yields

 σi(β1)
...

σi(βn)

 = A

 σi(α1)
...

σi(αn)

.
◦ Thus, discK/Q(β1, . . . , βn) = det[{σi(βj)}1≤i,j≤n]2 = det[A{σi(αj)}1≤i,j≤n]2 = det(A)2discK/Q(α1, . . . , αn),
and since det(A) = ±1 the result follows.

6. Suppose α1, . . . , αn and β1, . . . , βn are two integral bases forOK . Then discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

◦ Proof: Immediate from (5).

0.5 (Sep 12) Discriminants 2

• From (6) above we see that the discriminants for any two integral bases of the ring of integers OK are the
same, and more generally (5) says that the same is true for any rank-n subgroup of OK . We may therefore
view the discriminant as an invariant of the ring of integers (or, as is exceedingly common) the number �eld
K itself:

• De�nition: For a number �eld K, the discriminant of K (or of its ring of integers OK) is de�ned to be the
discriminant of any integral basis of OK . The discriminant is variously denoted disc(K), disc(OK), or DK ,
or ∆K . When S is a subgroup of �nite index in OK , we likewise de�ne disc(S) to be the discriminant of any
integral basis of S.

◦ We will mention here that we can also de�ne the discriminant for a relative extension K/F , but it is
more complicated because OK need not possess an OF -basis. Instead, the approach is to consider the
discriminant ideal DK/F , an ideal of OF , generated by the discriminants of all n-tuples of elements of
OK .

• Example: For K = Q(
√
D), we have an integral basis for OK given by {1,

√
D} when D ≡ 2, 3 (mod 4) and

by {1, 1 +
√
D

2
} when D ≡ 1 (mod 4).

◦ For D ≡ 2, 3 (mod 4) we have disc(K) = disc(1,
√
D) =

∣∣∣∣ 1
√
D

1 −
√
D

∣∣∣∣2 = 4D.

◦ For D ≡ 1 (mod 4) we have disc(K) = disc(1,
1 +
√
D

2
) =

∣∣∣∣ 1 (1 +
√
D)/2

1 (1−
√
D)/2

∣∣∣∣2 = D.

• We would now like to use discriminants to construct integral bases for additional rings of integers OK . To do
this, it is useful to broaden our focus to the wider array of rank-n subgroups of OK .

• De�nition: Suppose K is a number �eld of degree n over Q with ring of integers OK . An order of OK is a
rank-n subgroup S of OK .

◦ Since OK is also free abelian of rank n, orders in OK are necessarily free abelian groups of rank n, hence
are of the form Zα1⊕· · ·⊕Zαn for some (necessarily linearly-independent) α1, . . . , αn ∈ OK ; conversely,
any such subgroup is an order of OK .
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◦ We can also see easily that for any order S, the quotient group OK/S is �nite, since it is a quotient of
two �nitely-generated abelian groups of the same rank, and as we will see, the index [OK : S] is closely
related to the discriminant.

• Let us now illustrate further how discriminants arise in the context of an integral basis for OK :

• Proposition (Discriminants and Bases): Let K be a number �eld of degree n over Q.

1. Suppose that α1, . . . , αn ∈ OK are Q-linearly independent. Then any β ∈ OK can be written in the form

β =
1

d
(c1α1 + · · · + cnαn) where d = discK/Q(α1, . . . , αn) and each ci ∈ Z, where furthermore d|c2i for

each i.

◦ Proof: Since α1, . . . , αn are a Q-basis for K, we may write β = e1α1 + · · ·+ enαn for unique ei ∈ Q.
◦ Now let σ1, . . . , σn be the complex embeddings of K, and observe that applying each σi to the
equation above yields a system of n linear equations of the form σi(β) = e1σ1(α1) + · · · + enσi(αi)
for 1 ≤ i ≤ n.

◦ Solving this system using Cramer's rule yields ei =
det(Mi)

det(M)
whereM =


σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) · · · σn(αn)


and Mi is the matrix obtained by replacing the ith column of M by the vector [σ1(β), . . . , σn(β)]T .

◦ Multiplying numerator and denominator by det(M) yields ei =
det(M) det(Mi)

d
where d = discK/Q(α1, . . . , αn).

◦ Observe now that since the entries inM andMi are algebraic integers, det(M) det(Mi) is an algebraic
integer, and since ei and d are both rational, det(M) det(Mi) must also be rational, hence it is some
integer ci.

◦ Finally, for the last statement, observe that c2i /d = det(Mi)
2 is both rational and an algebraic

integer, hence is also an integer.

◦ Remark: We can see in this argument that the discriminant naturally arises in this context of trying
to express β ∈ OK as a Q-linear combination of the αi, and speci�cally in attempting to compute
the denominators of these expressions. The point is that the initial denominator det(M) is not
necessarily rational, but (as we showed) its square is, and this gives a convenient uniform choice for
all of the denominators we need to use.

◦ Exercise: Use the result above to prove directly that OK is a free Z-module of rank n.

2. If S is any order of OK , then discK/Q(S) = [OK : S]2discK/Q(OK).

◦ Exercise: Suppose G is isomorphic to Zn and H is a subgroup of rank n. Show that G/H is
isomorphic to a direct sum of n �nite cyclic groups. [Hint: How many generators does it have?]

◦ Proof 1: By the exercise, we see that OK/S is isomorphic to a group of the form (Z/d1Z) ⊕ · · · ⊕
(Z/dnZ).

◦ Letting β1, . . . , βn ∈ OK be preimages of the generators of each component, we see that β1, . . . , βn
is an integral basis for OK while d1β1, . . . , dnβn is an integral basis for S.

◦ Then discK/Q(S) =

∣∣∣∣∣∣∣
σ1(d1β1) · · · σ1(dnβn)

...
. . .

...
σn(d1β1) · · · σn(dnβn)

∣∣∣∣∣∣∣
2

= (d1d2 · · · dn)2

∣∣∣∣∣∣∣
σ1(β1) · · · σ1(βn)

...
. . .

...
σn(β1) · · · σn(βn)

∣∣∣∣∣∣∣
2

=

[OK : S]2discK/Q(OK), as desired.

◦ Proof 2: Let α1, . . . , αn be an integral basis for S and β1, . . . , βn be an integral basis for OK . Since

β1, . . . , βn is an integral basis forOK , there exists an integer matrix T such that

 α1

...
αn

 = T

 β1

...
βn

.
By the volume-transforming property of the determinant, we then see that [OK : S] = |detT |.
◦ Applying each of the complex embeddings σ1, . . . σn to each side and combining into a matrix then

yields

 σ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)

 = T

 σ1(β1) · · · σ1(βn)
...

. . .
...

σn(β1) · · · σn(βn)

.
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◦ Taking determinants and squaring then yields discK/Q(S) = (detT )2discK/Q(OK) = [OK : S]2discK/Q(OK),
as claimed.

3. If S is any order of OK , we have S = OK if and only if discK/Q(S) = discK/Q(OK). Equivalently, a set
α1, . . . , αn ∈ OK is an integral basis for OK if and only if discK/Q(α1, . . . , αn) = discK/Q(OK).

◦ Proof: Immediate from (2), since S = OK if and only if [OK : S] = 1.

◦ Exercise: Show that for α1, . . . , αn ∈ OK , if discK/Q(α1, . . . , αn) is squarefree, then OK = Zα1 ⊕
· · · ⊕ Zαn.

• Let us now try to construct a convenient integral basis for OK . If K = F (α) where by rescaling we can take
α ∈ OK , then certainly the �power basis� 1, α, α2, . . . , αn−1 is a (�eld) basis for K/Q and generates an order
S = Z⊕ Zα⊕ · · · ⊕ Zαn−1.

◦ We might hope that we can always �nd a basis for OK of this form, but (unfortunately) that is not
always the case.

◦ Nonetheless, we can use this order as a starting point to try to �nd an integral basis. Obviously, we can
certainly �nd one where each element is a rational polynomial in α, for entirely silly reasons: namely,
because every element of K is a polynomial in α because K = Q(α).

◦ What we would like is to have more control on what these polynomials look like.

◦ It seems plausible that we should be able to do some sort of �replacement argument� (similar to Gram-
Schmidt), starting with the set of powers 1, α, . . . , αn−1 that constructs an integral basis one polynomial
at a time by dividing αk by some integer di (necessarily dividing disc(OK), since these are the worst
denominators needed per (1) above), and then taking a linear combination of the previous basis elements
to obtain another algebraic integer.

0.6 (Sep 16) Constructing Integral Bases for OK
• Our �rst order of business is to compute the discriminant for the order obtained from a power basis, and then
to modify it by introducing appropriate denominators to obtain an integral basis for OK :

• Proposition (Discriminants and Bases): Suppose K = Q(α) for an algebraic integer α and let S be the order
of OK generated by α, so that S = Z⊕ Zα⊕ · · · ⊕ Zαn−1.

1. Suppose α has minimal polynomial m(x) ∈ Z[x] with roots α1, . . . , αn ∈ C. Then discK/Q(S) =∏
1≤i<j≤n(αi − αj)2 = (−1)n(n−1)/2NK/Q[m′(α)].

◦ Note that
∏

1≤i<j≤n(αi−αj)2 is the polynomial discriminant of m(x), so we see that our use of the
same word for both quantities is consistent.

◦ Proof: Label the roots αi so that αi = σi(α). Then discK/Q(S) = discK/Q(1, α, . . . , αn−1) is the

square of the Vandermonde determinant

∣∣∣∣∣∣∣∣∣
1 α1 · · · αn−1

1

1 α2 · · · αn−1
2

...
...

. . .
...

1 αn · · · αn−1
n

∣∣∣∣∣∣∣∣∣, whose value is
∏

1≤i<j≤n(αi−αj),

yielding the �rst part of the formula.

◦ For the second part, switch the order on half of the terms (a total of n(n−1)/2) to see discK/Q(S) =

(−1)n(n−1)/2
∏n
i=1

∏
j 6=i(αi − αj).

◦ Factoring m(x) = (x − αi)qi(x) where qi(x) =
∏
j 6=i(x − αj), now di�erentiate to see m′(x) =

qi(x) + (x− αi)q′i(x): thus setting x = αi yields m
′(αi) = qi(αi) =

∏
j 6=i(αi − αj).

◦ Therefore we see
∏n
i=1

∏
j 6=i(αi−αj) =

∏n
i=1m

′(αi) = NK/Q[m′(α)], whence the second part of the
formula.

◦ Exercise: If α3 + α + 1 = 0, show that the ring of integers of Q(α) is Z[α]. [Hint: Compute the
discriminant of {1, α, α2}.]

2. There exists an integral basis for OK of the form
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fn−1(α)

dn−1
where each fi(x) ∈

Z[x] is monic of degree i and where the di are positive integers with 1 = d0|d1|d2| · · · |dn−1|d.
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◦ Proof: Let d = discK/Q(1, α, . . . , αn−1). For each 0 ≤ k ≤ n− 1, let Fk =
1

d
[Z⊕Zα⊕ · · ·⊕Zαk] and

observe that Fk is a free abelian group of rank k + 1. Also let Rk = OK ∩ Fk be the additive group
of algebraic integers in Fk.

◦ We now show by induction that we can select di and fi so that
f0(α)

d0
,
f1(α)

d1
, . . . ,

fk(α)

dk
is an integral

basis for Rk.

◦ For the base case n = 0, start with β0 = 1.

◦ Now suppose we have selected β0, . . . , βk−1 that is an integral basis for Rk−1, where βi =
fi(α)

di
for

integers 1 = d0|d1| · · · |dk−1 and monic polynomials fi(x) ∈ Z[x] of degree i.

◦ Consider the linear functional Tk : K → Q mapping an element β = c0 + · · ·+ cn−1α
n−1 ∈ K (with

the ci ∈ Q) to its basis coe�cient ck of αk. The image Tk(Rk) lies inside Tk(Fk) =
1

d
Z, which is an

in�nite cyclic group. Furthermore, since αk−1 ∈ Rk, the image contains 1, so the image is itself an

in�nite cyclic group of the form
1

dk
Z for some dk|d.

◦ We claim that we can choose any βk ∈ Rk such that Tk(βk) =
1

dk
, and it will have the desired

properties.

◦ We can see that for any x ∈ Rk, if Tk(x) =
ck
dk

then Tk(x − ckβk) = 0 whence the αk-coe�cient of

x is zero. But then x − ckβk ∈ Rk−1 so by the induction hypothesis we see x − ckβk is an integer
linear combination of β0, . . . , βk−1, whence x is an integer linear combination of β0, . . . , βk−1, βk.

◦ Thus β0, . . . , βk−1, βk is an integral basis for Rk. Now we just have to show β =
fk(α)

dk
for some

monic fk ∈ Z[x] of degree k, and that dk−1|dk.

◦ For the second statement, observe that α
fk−1(α)

dk−1
is an algebraic integer and in Fk, hence in Rk. Then

since fk−1 is monic of degree k−1 we see Tk(
αfk−1(α)

dk−1
) =

1

dk−1
: this means

1

dk−1
∈ Tk(Rk) =

1

dk
Z

and thus dk−1|dk.

◦ Now, observe that β
dk
dk−1

is an algebraic integer and is in Fk hence is in Rk, as is α
fk−1(α)

dk−1
as noted

above, hence so is their di�erence γ =
dkβ − αfk−1(α)

dk−1
.

◦ But since Tk [γ] =
dk
dk−1

Tk[β] − 1

dk−1
Tk[αfk−1(α)] =

1

dk−1
− 1

dk−1
= 0, the αk-coe�cient of γ is

zero, so in fact γ ∈ Rk−1.

◦ Thus, by hypothesis γ is a Z−linear combination of
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk−1(α)

dk−1
, which since

d0|d1| · · · |dk−1, is of the form
g(α)

dk−1
for some g(x) ∈ Z[x] of degree at most k − 1.

◦ This (�nally) means we may take fk(x) = xfk−1(x) + g(x) ∈ Z[x]; since β =
1

dk
[αfk−1(α) + g(α)]

and fk(x) is monic of degree k, we have shown all of the required properties.

◦ Remark: The integers di are uniquely determined, but in fact there is a great deal of latitude to
choose the polynomials fi: in fact since the choice of β ∈ Rk was arbitrary aside from requiring its
αk-coe�cient to be 1/dk, we may take fi to be any monic polynomial in Z[x] of degree i such that
fi(α)/di is an algebraic integer.

• In principle, the construction given in (2) above can be made mostly e�ective.

◦ To convert (2) to an algorithm clearly requires a way of computing coe�cients with respect to an integral
basis: that is simply a special case of computing coe�cients with respect to a Q-basis, which we can do
with linear algebra.
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◦ We also require a way of computing what the terms dk are: in principle this could be done by searching
for algebraic integers with the desired properties and computing the denominators obtained, since we
know the worst possible denominators are the discriminant d. However, it would be more convenient if
we could calculate the terms dk directly, or at least describe them more explicitly.

• Proposition (Polynomial Bases): Suppose K is a degree-n number �eld, let α ∈ OK , and suppose OK
has an integral basis of the form

f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fn−1(α)

dn−1
where each fi(x) ∈ Z[x] is monic of

degree i and where the di are positive integers with 1 = d0|d1|d2| · · · |dn−1|d = disc(K). Also let Rk =

OK ∩
1

d
[Z⊕ Zα⊕ · · · ⊕ Zαk].

1. The set
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk(α)

dk
is an integral basis of Rk for each 0 ≤ k ≤ n− 1.

◦ Proof: Since
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk(α)

dk
is clearly linearly independent, it su�ces to show that

it spans Rk. So let β ∈ Rk: then because β ∈ OK we may write β = c0
f0(α)

d0
+ c1

f1(α)

d1
+

· · · + cn−1
fn−1(α)

dn−1
for unique ci ∈ Z, and because β ∈ spanQ(1, α, . . . , αk) we may also write

β = e0
f0(α)

d0
+ e1

f1(α)

d1
+ · · ·+ ek

fk(α)

dk
for unique ei ∈ Q.

◦ Comparing the two expressions shows immediately that ci = ei for each i ≤ k (and ci = 0 for i > k)
hence all of the ei are integers. The conclusion follows.

2. For each k, dk is the smallest positive integer such that dkRk ⊆ Z[α]. In particular, for �xed α, all of
the dk are uniquely determined.

◦ Exercise: Suppose α is algebraic of degree n over Q. If f(x), g(x) ∈ Q[x] are such that f(α) = g(α)
and both f, g have degree less than n, show that f(x) = g(x).

◦ Proof: Multiplying any element of Rk by dk clears all of the denominators di from the integral basis
expression (thus yielding an integer polynomial in α), so certainly dkRk ⊆ Z[α].

◦ On the other hand, since fk(α)/dk ∈ Rk by (1) and because fk is monic, no smaller multiple of
fk(α) can yield a polynomial with integer coe�cients in α (which by reducing modulo its minimal
polynomial we can assume is of degree less than n) by the exercise above.

◦ Thus, dk is the smallest positive integer such that dkRk ⊆ Z[α].

3. For S = Z⊕ Zα⊕ · · · ⊕ Zαk−1, we have d1 · · · dn−1 = [OK : S].

◦ Proof: Since fi is monic of degree i, it is easy to see that f0(α), f1(α), . . . , fn(α) is an integral
basis for S (the change-of-basis matrix is triangular with 1s on its diagonal). We can then see that
OK/S ∼= (Z/d1Z)× · · · × (Z/dnZ); taking cardinalities yields the result immediately.

◦ Remark: Note in fact that the divisibility condition d1| · · · |dn implies that this product of cyclic
groups is the elementary divisor form of the �nite abelian group OK/S, which gives another proof
that the dk are unique.

4. We have didj |di+j .

◦ Proof: Note that γ =
fi(α)

di
· fj(α)

dj
is an algebraic integer and (when multiplied out) it is a polynomial

in α of degree i+ j, so it is an element of Ri+j .

◦ By (1), γ is then an integer linear combination of
f0(α)

d0
, . . . ,

fi+j(α)

di+j
; comparing coe�cients of αi+j

then shows that
1

didj
must be an integer multiple of

1

di+j
, which is to say, didj divides di+j .

5. The discriminant disc(S) is divisible by d
n(n−1)
1 .

◦ Proof: By a trivial induction using (4) we see that dk1 |dk for each k. Multiplying these and then

squaring, we see that d
n(n−1)
1 divides the product (d1d2 · · · dn−1)2, which by (3) equals [OK : S]2.

◦ But by our earlier results we know that disc(S) = [OK : S]2disc(OK), so the result follows.
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◦ Remark: The point here is that we can actually compute disc(S) = ±NK/Q[m′(α)] where m(x) is
the minimal polynomial of α, and so we obtain a (typically short) list of possible values for d1. We
can use (4) to establish similar divisibility properties for the other di which likewise help narrow
down their possible values.

0.7 (Sep 18) Some Examples of Integral Bases for OK

• After all of that e�ort, we can now actually compute some integral bases for some other OK .

◦ Even in the relatively straightforward situation of cubic extensions, we generally still need to do some
nontrivial calculations in order to �nd the values of d1 and d2 to ensure we have the full ring of integers.

◦ A centrally useful tool here is the trace map, since it allows us to extract information about individual
coe�cients. (In cases of extensions having nontrivial proper sub�elds, the relative trace maps to the
sub�elds are also quite useful, of course.)

• Exercise: Show that the discriminant of the cubic polynomial p(x) = x3 + ax+ b is −4a3 − 27b2.

• Example: Show that the ring of integers of Q(α) for α3 − α+ 1 = 0 is Z[α], with integral basis {1, α, α2}.

◦ The generator α has minimal polynomial m(x) = x3 − 2 over Q as this polynomial is clearly irreducible.

◦ By the exercise above, we have disc(α) = −23.

◦ From our results we know that OK has an integral basis of the form 1,
f1(α)

d1
,
f2(α)

d2
with d1|d2 and where

(d1d2)2 divides disc(α). So we must have d1 = d2 = 1 hence we may take f1(α) = α and f2(α) = α2.

◦ We conclude that {1, α, α2} is an integral basis for the ring of integers, meaning it is simply Z[α].

• Exercise: More generally, suppose m(x) ∈ Z[x] is monic, irreducible, and has squarefree discriminant. If α is
any root of m(x), prove that the ring of integers of K = Q(α) is Z[α].

• Example: Show that the ring of integers of K = Q( 3
√

2) is Z[ 3
√

2], with integral basis {1, 3
√

2, 3
√

4}.

◦ The element α = 3
√

2 has minimal polynomial m(x) = x3 − 2 over Q as this polynomial is clearly
irreducible.

◦ Since m′(x) = 3x2 we see disc(α) = (−1)3NK/Q(3 · 22/3) = −22 · 33.

◦ From our results we know that OK has an integral basis of the form 1,
f1(α)

d1
,
f2(α)

d2
where d1|d2|d and

where d6
1 divides disc(α). So we must have d = 1 and may then clearly take f1(α) = α.

◦ We also know that (d1d2)2 = d2
2 divides disc(α), so d2 divides 6: thus the other basis element is of

the form β =
c0 + c1α+ c2α

2

6
for some integers c0, c1, c2. Then tr(β) = c0/2 so c0 is even. Then

γ = 3β−c0/2 =
c1α+ c2α

2

2
is also an algebraic integer, but now γ3 =

(c1 + c2α)3

4
has trace

3

4
(c31 +2c32),

which can only be an integer when both c1 and c2 are also even.

◦ We conclude that in fact β =
e0 + e1α+ e2α

2

3
for some integers e0, e1, e2.

◦ Squaring yields β2 =
(e2

0 + 2e1e2) + (2e0e1 + 2e2
2)α+ (e2

1 + 2e0e2)α2

9
. In order for this quantity to be

an algebraic integer, each of e2
0 + 2e1e2, e0e1 + e2

2, and e
2
1 + 2e0e2 must be divisible by 3 (this follows

because d2|3, so we cannot have denominators of 9). If any of e0, e1, e2 is zero mod 3, all of them must
be zero mod 3; otherwise, in the event all are nonzero, we see e2

0 ≡ e2
1 ≡ e2

2 ≡ 1 (mod 3), whence
e1e2 ≡ e0e2 ≡ −e0e1 ≡ 1 (mod 3). But this is a contradiction since the �rst two equalities require
e0 ≡ e1 ≡ e2 mod 3, which contradicts the third condition.

◦ Therefore, all of e0, e1, e2 are zero mod 3, and (thus, �nally) we see that β ∈ Z[α]. We conclude that we
may take β = α2 and so we obtain our integral basis {1, 3

√
2, 3
√

4}.
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• We remark that one may compute the ring of integers of Q( 3
√
m) for general (cubefree) m using a similar

approach. Here are two examples:

• Exercise: Show that the ring of integers of Q( 3
√

5) is Z[ 3
√

5]. [Hint: First note d1 = 1, then show d2|15.
Eliminate the possibility that d2 is divisible by 5, then show that d2 = 3 leads to an eventual contradiction
modulo 3.]

• Exercise: Show that the ring of integers of Q( 3
√

10) has integral basis {1, 3
√

10,
1 + 3
√

10 + 3
√

100

3
}. [Hint: First

note d1 = 1, then show d2|30. Use traces to eliminate the possibility that d2 is even or divisible by 5, and
then conclude d2 = 3.]

• Example: Show that the ring of integers of K = Q(
√

2,
√

5) has integral basis {1,
√

2,
1 +
√

5

2
,

√
2 +
√

10

2
}.

◦ Note that K has the three quadratic sub�elds Q(
√

2), Q(
√

5), Q(
√

10) with respective rings of integers

Z[
√

2], Z[
1 +
√

5

2
], Z[
√

10].

◦ The Galois group of K/Q is isomorphic to the Klein 4-group, with generators σ, τ obtained by lifting
the conjugation automorphisms in the two sub�elds Q(

√
2) and Q(

√
5): thus σ(

√
2,
√

5) = (−
√

2,
√

5)
and τ(

√
2,
√

5) = (
√

2,−
√

5), so στ(
√

2,
√

5) = (−
√

2,−
√

5). (Note that στ �xes the other quadratic
sub�eld Q(

√
10).)

◦ Then the algebraic integer α =
√

2 +
√

5 is a generator for this extension, since its Galois conjugates
±
√

2±
√

5 are all distinct. One option would then be to attempt to construct an integral basis using the
powers of α.

◦ However, in this situation, since we already know that the ring of integers of Q(
√

2) is Z[
√

2], that the

ring of integers of Q(
√

5) is Z[
1 +
√

5

2
], and that the ring of integers of Q(

√
10) is Z[

√
10], a more natural

choice would be to use the elements from these integral bases as a starting point.

◦ So let us instead suppose that α = a+ b
√

2 + c
√

5 + d
√

10 is an algebraic integer, for a, b, c, d ∈ Q.
◦ Then in particular, the relative traces (and norms) of α from K to each of the quadratic sub�elds must
be algebraic integers.

◦ So, trK/Q(
√

2)(α) = α+ τ(α) = 2a+ 2b
√

2 must be in Z[
√

2], so 2a and 2b are integers.

◦ Next, trK/Q(
√

10)(α) = α + σ(α) = 2a + 2c
√

5 must be in Z[
1 +
√

5

2
], so since 2a is an integer, 2c must

also be an integer.

◦ Finally, trK/Q(
√

10)(α) = α+ στ(α) = 2a+ 2d
√

10 must be in Z[
√

10], so 2a and 2d must be integers.

◦ Hence we must have α =
p+ q

√
2 + r

√
5 + s

√
10

2
for integers p, q, r, s. Then α−r1 +

√
5

2
−s
√

2 +
√

10

2
=

(p− r) + (q − s)
√

2

2
is also an algebraic integer, but this is an element of Q(

√
2) hence must be of the

form u+ v
√

2 for integers u, v.

◦ We conclude that α = u+v
√

2+r
1 +
√

5

2
+s

√
2 +
√

10

2
for integers u, v, r, s, and so 1,

√
2,

1 +
√

5

2
,

√
2 +
√

10

2
is an integral basis for the ring of integers, as claimed.

• Example: Show that the ring of integers of K = Q(
√

5,
√

13) is Z[
1 +
√

5

2
,

1 +
√

13

2
], with integral basis

{1, 1 +
√

5

2
,

1 +
√

13

2
,

(1 +
√

5)(1 +
√

13)

4
}.

◦ Note that K has the three quadratic sub�elds Q(
√

5), Q(
√

13), Q(
√

65) with respective rings of integers

Z[
1 +
√

5

2
], Z[

1 +
√

13

2
], Z[

1 +
√

65

2
].

◦ The Galois group of K/Q is isomorphic to the Klein 4-group, now with generators σ, τ such that
σ(
√

5,
√

13) = (−
√

5,
√

13) and τ(
√

5,
√

13) = (
√

5,−
√

13) and στ(
√

5,
√

13) = (−
√

5,−
√

13).
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◦ Now suppose that α = a+ b
√

5 + c
√

13 + d
√

65 is an algebraic integer, for a, b, c, d ∈ Q.

◦ Then trK/Q(
√

2)(α) = α+ τ(α) = 2a+ 2b
√

5 must be in Z[
1 +
√

5

2
], so 4a and 4b are integers of the same

parity.

◦ Also, trK/Q(
√

13)(α) = α+ σ(α) = 2a+ 2c
√

13 must be in Z[
1 +
√

13

2
], so 4a and 4c must be integers of

the same parity.

◦ Also, trK/Q(
√

65)(α) = α+ στ(α) = 2a+ 2c
√

65 must be in Z[
1 +
√

65

2
], so 4a and 4d must be integers of

the same parity.

◦ Hence we must have α =
p+ q

√
5 + r

√
13 + s

√
65

4
for integers p, q, r, s all of the same parity. By

subtracting
(1 +

√
5)(1 +

√
65)

4
=

1 +
√

5 + 5
√

13 +
√

65

4
if all of p, q, r, s are odd, we can make all of

p, q, r, s even, in which case α =
p′ + q′

√
5 + r′

√
13 + s′

√
65

2
+ x

(1 +
√

5)(1 +
√

65)

4
for x = 0 or 1.

◦ Then α− q′ 1 +
√

5

2
− r′ 1 +

√
13

2
− s′ 1 +

√
65

2
=
p′ − q′ − r′ − s′

2
must be an (actual) integer u, meaning

that α = u+ q′
1 +
√

5

2
+ r′

1 +
√

13

2
+ s′

1 +
√

65

2
+ x

(1 +
√

5)(1 +
√

13)

4
for integers u, q′, r′, s′, x.

◦ Finally we note that
1 +
√

65

2
= 3 + 2

(1 +
√

5)(1 +
√

65)

4
− 1 +

√
5

2
− 5

1 +
√

13

2
, so the extra element

1 +
√

65

2
can be written in terms of the other four.

◦ We conclude that {1, 1 +
√

5

2
,

1 +
√

13

2
,

(1 +
√

5)(1 +
√

13)

4
} is an integral basis for the ring of integers,

as claimed.

• Exercise: Show that the ring of integers of Q(
√

3,
√

7) has integral basis {1,
√

3,

√
3 +
√

7

2
,

1 +
√

21

2
}.

• Exercise: Compute an integral basis for the ring of integers of Q(
√

2,
√

3). [Hint: It's bigger than Z[
√

2,
√

3].]

0.8 (Sep 19) The Ring of Integers in Q(ζn)

• Our other major source of examples where we can make explicit calculations is the cyclotomic �elds Q(ζn).
We will now build up to our main result in this case, which is that the ring of integers of Q(ζn) is in fact just
Z[ζn].

◦ For completeness, we may as well build up our stockpile of information about Q(ζn) from the beginning.

◦ We recall that an nth root of unity is a complex number z with zn = 1. For d|n, any dth root of unity is
also an nth root of unity, and the primitive nth roots of unity are those nth roots of unity that are not
dth roots of unity for any proper divisor d of n.

• Proposition (Cyclotomic Fields): Let n ≥ 2 and let ζn = e2πi/n be a primitive nth root of unity. The following
hold:

1. There are n distinct nth roots of unity, forming a cyclic group of order n under multiplication denoted µn.
The primitive nth roots of unity are the generators of this cyclic group, of the form ζan for gcd(a, n) = 1.

◦ Proof: Suppose z ∈ C has zn = 1. Then |z| = 1 and so z = eiθ for some θ; then zn = 1 is equivalent
to einθ = 1 whence θ = 2kπ/n for some integer k, which is to say, z = ζkn.

◦ So these ζkn are the nth roots of unity, and since the group homomorphism ϕ : Z→ µn with ϕ(k) = ζkn
is clearly onto and has kernel nZ, the group µn is isomorphic to Z/nZ.
◦ Then the primitive nth roots of unity are the ones which have order exactly n (rather than some
proper divisor), so they correspond to the ϕ(n) elements of (Z/nZ)× under the isomorphism: in
other words, they are the powers ζan for a relatively prime to n.
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2. Let Φn(x) =
∏
a∈(Z/nZ)×(x − ζan) be the nth cyclotomic polynomial, whose roots are the primitive nth

roots of unity. Then Φn(x) has integer coe�cients.

◦ Exercise: Show that xn − 1 =
∏
d|n Φd(x). [Hint: Group together the roots of unity of each order

d|n.]
◦ Exercise: Show that Φn(x) =

∏
d|n(xd − 1)µ(n/d) where µ(n) denotes the Möbius µ-function µ(n) ={

0 if n is not squarefree

(−1)k if n = p1 · · · pk for distinct primes pi
. Use this recurrence to calculate Φ6(x) and Φ20(x).

◦ Proof: Using the recursion provided by the exercises above, we can see by induction on n that Φn(x)
will always have integer coe�cients. The base case n = 1 is trivial.

◦ For the inductive step, observe that
∏
d|n,d<n Φd(x) is monic, has integer coe�cients, and divides

xn − 1 in Q(ζn)[x]: hence it divides xn − 1 in Q[x] since both polynomials have coe�cients in Q.
Then by Gauss's lemma,

∏
d|n,d<n Φd(x) divides xn − 1 in Z[x], so the quotient Φn(x) has integer

coe�cients.

3. The polynomial Φn(x) is irreducible and is therefore the minimal polynomial of ζn over Q.

◦ Exercise: For a prime p, show directly that Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible. [Hint:

Use Eisenstein's criterion on Φp(x+ 1) =
(x+ 1)p − 1

x
.]

◦ Proof: Suppose that we have an irreducible monic factor of Φn(x) in Q[x]. By Gauss's lemma, this
yields a factorization Φn(x) = f(x)g(x) where f(x), g(x) ∈ Z[x] are monic and f(x) is irreducible.

◦ Let ω be a primitive nth root of unity that is a root of f , and let p be any prime not dividing n.
Since f is irreducible, this means f is the minimal polynomial of ω.

◦ By properties of order, we see that ωp is also a primitive nth root of unity, hence is a root of either
f or of g.

◦ Suppose ωp is a root of g, so that g(ωp) = 0. This means ω is a root of g(xp), and so since f is the
minimal polynomial of ω, it must divide g(xp): say f(x)h(x) = g(xp) for some h(x) ∈ Z[x].

◦ Reducing modulo p, we see f(x)h(x) = g(xp) = g(x)p in Fp[x], so by unique factorization we see
f(x) and g(x) have a nontrivial common factor in Fp[x].

◦ Then since Φn(x) = f(x)g(x), reducing modulo p yields Φn(x) = f(x)g(x) and so Φn(x) would have
a repeated factor, hence so would xn−1. But this is a contradiction because since xn−1 is separable
in Fp[x] (its derivative is nxn−1, which is relatively prime to xn − 1 because p does not divide n).

◦ Hence we conclude that ωp is not a root of g, so it must be a root of f . Since this holds for every
root ω of f , we see that for any a = p1p2 · · · pk that is relatively prime to n, then ωa = ((ωp1)p2)···pn

is a root of f .

◦ But this means every primitive nth root of unity is a root of f , and so Φn = f is irreducible as
claimed.

4. Both Φn(x) and Q(ζn)/Q have degree ϕ(n), and Φn(x) is the minimal polynomial of ζn over Q.

◦ Proof: By de�nition Φn(x) has degree ϕ(n). Since Φn is irreducible by (3), Φn(x) is then the minimal
polynomial of ζn hence [Q(ζn) : Q] = deg(Φn) = ϕ(n).

5. The extension Q(ζn)/Q is Galois with Galois group isomorphic to (Z/nZ)×. Explicitly, the elements of
the Galois group are the automorphisms σa for a ∈ (Z/nZ)× acting via σa(ζn) = ζan.

◦ Proof: Since K = Q(ζn) is the splitting �eld of xn − 1 (or Φn(x)) over Q it is Galois, and
#Gal(K/Q) = [K : Q] = ϕ(n).

◦ Furthermore, any automorphism σ must map ζn to one of its Galois conjugates over Q, which are
the roots of Φn(x) by (4): explicitly, these are the ϕ(n) values ζan for a relatively prime to n.

◦ Since there are in fact ϕ(n) possible automorphisms, each of these choices must extend to an auto-
morphism of K/Q. Hence the elements of the Galois group are the maps σa as claimed.

◦ Since σa(σb(ζn)) = σa(ζbn) = ζabn , the composition of automorphisms is the same as multiplication of
the indices in (Z/nZ)×, and since this association is a bijection, the Galois group is isomorphic to
(Z/nZ)×.

• Let us now prove our main result about the ring of integers in Q(ζn):
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• Theorem (Cyclotomic Ring of Integers): Let n ≥ 2, let ζn = e2πi/n be a primitive nth root of unity (so ζn is
a root of xn − 1). The following hold:

1. For any prime power pd > 2 we have NQ(ζ
pd

)/Q(ζpd) = 1 and NQ(ζ
pd

)/Q(1− ζpd) = p.

◦ Exercise: For any prime power pd, show that Φpd(x) = Φp(x
pd−1

). [Hint: Show both sides equal∏p−1
i=1 (xp

d−1 − ζip).]
◦ Proof: By the exercise above, we know that the minimal polynomial of ζpd is Φpd(x) = Φp(x

pd−1

) =

x(p−1)pd−1

+x(p−2)pd−1

+ · · ·+xpd−1

+1, and we also have the factorization Φpd(x) =
∏
a∈(Z/pdZ)×(x−

ζapd).

◦ Thus, x(p−1)pd−1

+ x(p−2)pd−1

+ · · ·+ xp
d−1

+ 1 =
∏
a∈(Z/pdZ)×(x− ζapd).

◦ Now, setting x = 0 yields 1 =
∏
a∈(Z/pdZ)×(−ζapd) = (−1)ϕ(pd)N(ζpd) = N(ζpd) since ϕ(pd) is even.

◦ Also, setting x = 1 yields p =
∏
a∈(Z/pdZ)×(1− ζapd) = N(1− ζpd).

2. For any odd prime p with K = Q(ζp) and S = Z[ζp], we have discK/Q(S) = (−1)p(p−1)/2pp−2.

◦ Proof: For brevity, all norms and discriminants are from Q(ζp) to Q.
◦ By our results on discriminants we know that disc(S) = (−1)p(p−1)/2N [m′(ζp)] where m(x) =

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 is the minimal polynomial of ζp.

◦ A direct evaluation of m′(ζp) using the expansion above is rather unpleasant. Instead, note that
(x−1)m(x) = xp−1: then di�erentiating and setting x = ζp yields m(ζp)+(ζp−1)m′(ζp) = pζp−1

p =

p/ζp, whence m
′(ζp) =

−p
ζp(1− ζp)

since of course m(ζp) = 0.

◦ Then (1) yields disc(S) = (−1)p(p−1)/2N [m′(ζp)] = (−1)p(p−1)/2 N(−p)
N(ζp)N(1− ζp)

= (−1)p(p−1)/2pp−2.

◦ Exercise: Let p be an odd prime. Show that Q(ζp) contains a unique quadratic sub�eld and that

it is Q(
√

(−1)(p−1)/2p). [Hint: Use Galois theory for uniqueness, and discriminants to get the �eld
itself.]

◦ Exercise: Show that every quadratic �eld is a sub�eld of some cyclotomic �eld Q(ζn). [Hint: Take
a composite of Q(ζ8) and the Q(ζp) for various p.] This is a special case of the Kronecker-Weber
theorem: every number �eld K with abelian Galois group over Q is a sub�eld of some cyclotomic
�eld.

3. For any n ≥ 2 and S = Z[ζn], the discriminant discQ(ζn)/Q(S) divides nϕ(n).

◦ Proof: For g(x) =
∏
d|n,d<n(x− ζdn), we have xn − 1 = Φn(x)g(x). Di�erentiating and then setting

x = ζn yields nζ−1
n = Φ′n(ζn)g(ζn) + Φn(ζn)g′(ζn) = Φ′n(ζn)g(ζn).

◦ Taking norms from Q(ζn) to Q (noting that N(ζ−1
n ) = ±1 since it is a unit) then yields ±nϕ(n) =

NQ(ζn)/Q[Φ′n(ζn)] ·NQ(ζn)/Q[g(ζn)], and so NQ(ζn)/Q[Φ′n(ζn)] divides nϕ(n).

◦ The desired result then follows immediately from disc(S) = (−1)n(n−1)/2N [Φ′n(ζn)] .

4. For any prime power pd, the ring of integers of K = Q(ζpd) is Z[ζpd ].

◦ Proof: For brevity write ζ = ζpd . First, since Z[ζ] = Z[1 − ζ] = Z ⊕ Z(1 − ζ) ⊕ · · · ⊕ Z(1 − ζ)ϕ(pd)

since the minimal polynomial for ζ (hence 1− ζ) has degree ϕ(pd), by (3) we know that disc(1− ζ)

divides pdϕ(pd), which is a power of p.

◦ Then from our earlier results on discriminants, we know that any element of OK can be written in

the form
c0 + c1(1− ζ) + · · ·+ cϕ(pd)(1− ζ)ϕ(pd)

pk
for some integer k.

◦ If OK 6= Z[ζpd ], then by scaling the expression above by an appropriate power of p, we may suppose

there is an element in OK of the form α =
c0 + c1(1− ζ) + · · ·+ cϕ(pd)(1− ζ)ϕ(pd)

p
where not all of

the ci are divisible by p.

◦ As calculated in (1) we have N(1− ζpd) = p, which explicitly says (1− ζ) · · · (1− ζpd−1) = p. Since

each of the ϕ(pd) terms on the left-hand side is divisible by 1 − ζ in Z[ζ], we see that (1 − ζ)ϕ(pd)

divides p in Z[ζ].
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◦ Thus, we see p/(1 − ζ)ϕ(pd) is an algebraic integer, hence for each 1 ≤ i ≤ ϕ(pd) so is
pβ

(1− ζ)i
=

c0(1−ζ)−i+c1(1−ζ)1−i+· · ·+ci+ci+1(1−ζ)+· · ·+cϕ(pd)(1−ζ)ϕ(pd)−i. Since the terms from ci onward

are clearly algebraic integers, subtracting them yields that c0(1−ζ)−i+c1(1−ζ)1−i+· · ·+ci−1(1−ζ)−1

is an algebraic integer for each i, and then by an easy induction, this implies ci−1/(1 − ζ) is an
algebraic integer for each 1 ≤ i ≤ ϕ(pd).

◦ But now taking norms yields that N(1− ζ) = p divides N(ci−1) = c
ϕ(pd)
i−1 , hence each ci−1 is divisible

by p. This is a contradiction, and so we must in fact have OK 6= Z[ζpd ].

◦ Exercise: For a prime p, show that p = u(1− ζpd)ϕ(pd) where u is a unit in Z[ζpd ].

5. Suppose K and L are number �elds such that disc(K) and disc(L) are relatively prime and such that
[KL : Q] = [K : Q][L : Q]. Then OKL = OK · OL.
◦ Proof: Suppose OK has an integral basis α1, . . . , αn and OL has an integral basis β1, . . . , βm, where
we note [K : Q] = n and [L : Q] = m.

◦ Then since [KL : K] = [L : Q] the set α1, . . . , αn is a basis for the �eld extension KL/K, and so the
set of mn pairwise products α1β1, . . . , αnβm is a basis for the extension KL/Q, so in particular, it
is linearly independent.

◦ Since each product αiβj is an algebraic integer and there are mn = [KL : Q] of them in total, we see
that these products generate an order in the ring of integers OKL: we now show this order equals
the full ring of integers OKL.
◦ So let γ ∈ OKL: since the αiβj are a Q-basis for KL, taking out common denominators allows

us to write γ =
∑n
i=1

∑n
j=1

ci,j
d
αiβj for some integers ci,j and some positive integer d, where

gcd(d, c1,1, . . . , cn,m) = 1.

◦ It su�ces to show that d divides disc(K), since then by symmetry it also divides disc(L) hence must
be 1 since disc(K) and disc(L) are relatively prime.

◦ Let σ be any complex embedding of K. Since [KL : K] = [L : Q] there are exactly [L : Q] complex
embeddings of KL that extend σ: say they are τ1, . . . , τm. If τi|L = τj |L then τ−1

i τj would �x both
K and L hence all of KL, hence must be the identity. Thus, the restrictions of the τi to L are all
distinct, but since there are only [L : Q] = m possible embeddings, all m complex embeddings of L
must occur exactly once.

◦ So now consider the complex embedding of KL that restricts to σ on K and to the identity on L,
which (by mild abuse of terminology) we also call σ.

◦ Then σ(α) =
∑n
i=1

∑n
j=1

ci,j
d
σ(αi)βj =

∑n
i=1 σ(αi)xi where xi =

∑m
j=1

ci,j
d
βj . Running over all of

the complex embeddings of K yields n linear equations in the n variables x1, . . . , xn.

◦ Solving the system using Cramer's rule yields xi =
det(Mi)

det(M)
=

det(Mi) det(M)

disc(K)
whereM is the n×n

matrix with (i, k)-entry equal to σk(αi) and Mi is the matrix obtained by replacing the ith column
of M with [σ1(α), . . . , σn(α)]T .

◦ Then disc(K)xi =
∑m
j=1

ci,jdisc(K)

d
βj is an algebraic integer for each i, but since the βj are

an integral basis for OL, each of the coe�cients
ci,jdisc(K)

d
must be an integer. But now since

gcd(d, c1,1, . . . , cn,m) = 1, this implies d divides disc(K), as desired.

◦ Remark: In the situation where ∆K = disc(K) and ∆L = disc(L) are not relatively prime, we do

still obtain the weaker statement that OKOL ⊆ OKL ⊆
1

gcd(∆K ,∆L)
OKOL.

6. For any positive integer n, the ring of integers of Q(ζn) is Z[ζn].

◦ Proof: By (4) we already know this result holds when n is a prime power.

◦ Now suppose n = pa11 · · · p
ad
d for distinct primes pi; we wish to apply (5) recursively.

◦ Observe that Q(ζn) is the compositum of the �elds Q(ζpai
i

) for 1 ≤ i ≤ d, and since ϕ(n) =

ϕ(pa11 ) · · ·ϕ(padd ) the degree requirement from (5) is satis�ed.

◦ Additionally, from (3) we know that the discriminant of Q(ζpai
i

) is a power of pi, so the discriminants

of the �elds are all pairwise relatively prime. Thus the discriminant requirement from (5) is also
satis�ed for each composition of �elds.
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◦ We conclude that the ring of integers of Q(ζn) is the product Z[ζpa1
1

] · · ·Z[ζpad
d

] = Z[ζn], as desired.

◦ Exercise: If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that

the ring of integers of Q(
√
D,
√
E) is Z[

1 +
√
D

2
,

1 +
√
E

2
], and compute an integral basis for it.

0.9 (Sep 23) Student Presentations of HW1 Problems

0.10 (Sep 25) Unique Factorization in OK

• Now that we have a moderately good idea of the additive structure of OK , we turn our attention now to the
multiplicative structure of OK . A natural starting point is the question of when OK has unique factorization
of elements (more precisely, when OK is a unique factorization domain).

◦ We �rst observe that in OK , every nonzero nonunit can be written as a �nite product of irreducible
elements; this follows by an easy induction on the norm of the element (and indeed this essentially the
same argument establishing existence of prime factorizations in Z itself).

◦ Thus, the only manner in which OK can fail to have unique factorization is if some elements have multiple
inequivalent factorizations.

• In some situations, the ring OK is a principal ideal domain and even Euclidean, such as for the �eld K = Q(i),
with ring of integers the familiar Gaussian integers Z[i].

◦ Explicitly, recall that in Z[i] we may obtain the quotient of α ∈ Z[i] by a nonzero β ∈ Z[i] by computing
α/β ∈ C and then �rounding� to the nearest Gaussian integer q (simply round the real and imaginary
parts of α/β to the nearest integer); the remainder is then the �leftover� r = α−qβ, and one then readily
veri�es that N(r) ≤ N(β)/2.

◦ A similar procedure can be used to show that O√D is Euclidean for D = −2, 2, 3, and by instead
rounding to the nearest element of O√D, the method can be adapted to show O√D is Euclidean for
D = −3,−7,−11 as well.

• In other situations, the ring OK can fail to have unique factorization.

◦ As we have already mentioned, OQ(
√
−5) is not a unique factorization domain:

◦ Example: In OQ(
√
−5) = Z[

√
−5], observe that we can write 6 = (1 +

√
−5)(1 −

√
−5) = 2 · 3. Each of

1 ±
√
−5, 2, and 3 is irreducible in Z[

√
−5] since their norms are 6, 4, and 9 respectively and there are

no elements in Z[
√
−5] of norm 2 or 3, and none of these elements are associate to one another. We

therefore have two inequivalent irreducible factorizations of 6 in Z[
√
−5].

◦ Indeed, many of the imaginary quadratic �elds lack unique factorization:

◦ Exercise: If D > 4 is squarefree and −D ≡ 2, 3 (mod 4), show that O√−D = Z[
√
−D] is not a unique

factorization domain. [Hint: If D is odd, use 2 · (1 +D)/2 = (1 +
√
−D)(1−

√
−D), and if D is even use

2 · (D/2) =
√
−D · (−

√
−D).]

◦ The situation for real quadratic �elds is more complicated, since the argument in the exercise above does
not generally yield non-unique factorizations due to the presence of more elements of small norm.

◦ Example: In Z[
√

7], we seemingly have a non-unique factorization 6 = (1 +
√

7)(−1 +
√

7) = 2 · 3, but in
fact none of 1±

√
7, 2, and 3 are irreducible: we have 2 = (3+

√
7)(3−

√
7), 1±

√
7 = (3±

√
7)(−2±

√
7),

and 3 = (2 +
√

7)(−2 +
√

7), and so we can see that our factorizations of 6 both reduce to di�erent
arrangements of 6 = (3 +

√
7)(3−

√
7)(2 +

√
7)(−2 +

√
7).

◦ We can still �nd examples of non-unique factorizations in real quadratic �elds, however.

◦ Example: In Z[
√

10] we have 2·3 = 6 = (2+
√

10)(2−
√

10), and in fact 2, 3, and 2±
√

10 are all irreducible
since there are no elements in Z[

√
10] of norm ±2 or ±3 (as can be seen by reducing a2 − 10b2 = ±2,±3

modulo 5).

◦ The presence of additional units in real quadratic �elds also adds some additional complications.
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◦ Example: In OQ(
√

5), we can observe that 4 = 2 ·2 = (1+
√

5)(−1+
√

5) and that both 2 and ±1+
√

5 are

irreducible (as there are no elements of norm ±2, similarly to in Z[
√

10]). But in fact these factorizations

are equivalent, since 1 +
√

5 = 2 · 1 +
√

5

2
and

1 +
√

5

2
∈ O√5 is a unit (its norm is −1).

• Analyzing factorizations of higher-degree rings of integers is, if anything, even more di�cult, since the norm
functions even in the case of cubic �elds are substantially more complicated.

◦ For instance, in the ring of integers Z[ 3
√

2] of Q( 3
√

2), the norm is N(a+b 3
√

2+c 3
√

4) = a3+2b3+4c3−6abc.
We can certainly use the norm to identify some irreducible elements: for instance, 3

√
2 and 1 + 3

√
2 are

both irreducible since their norms are 2 and 3 respectively.

◦ But it is much harder to try to decide (for instance) whether the elements 5 and 7 of respective norms
53 and 73 are irreducible. In fact, 5 is reducible (it factors as 5 = (1 + 3

√
4)(1 + 2 · 3

√
2− 3
√

4)) but as it
turns out, 7 is irreducible (though this is not so easy to prove!).

0.11 (Sep 26) Dedekind Domains

• It would appear that we are essentially at an impasse regarding factorization of elements. However, shifting
our focus instead to ideals, we will be able to show that OK does always possess unique prime factorization
on the level of ideals, rather than elements.

◦ In fact, this is where the name �ideal� originally arose: in Kummer's study of unique factorization, he
constructed �ideal numbers� (essentially as sets of linear combinations of elements of OK) and proved that
they did possess unique prime factorization. These �ideal numbers� were the prototype of the modern
de�nition of an ideal.

◦ To illustrate using an example from above, the element 6 ∈ Z[
√
−5] has two di�erent factorizations into

irreducibles, which we can recast using ideals: (6) = (2) · (3) = (1 +
√
−5) · (1−

√
−5).

◦ However, as ideals, we can factor further: explicitly, one can verify that (2) = (2, 1 +
√
−5)2, that

(1±
√
−5) = (2, 1 +

√
−5) · (3, 1±

√
−5), and that (3) = (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ For an example of one of these calculations: we have (2, 1 +
√
−5) · (3, 1 +

√
−5) = (6, 2 + 2

√
−5, 3 +

3
√
−5,−4+2

√
−5). We can reduce the generating set by observing that this ideal contains (3+3

√
−5)−

(2+2
√
−5) = 1+

√
−5, and that each of the four generators of the product ideal is a multiple of 1+

√
−5:

thus, in fact, (2, 1 +
√
−5) · (3, 1 +

√
−5) = (1 +

√
−5), as claimed. (The other calculations are similar.)

◦ On the level of ideals, therefore, we see that these two factorizations are really �the same�: both of them
reduce to the factorization (6) = (2, 1 +

√
−5)2 · (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ Furthermore, each of the ideals (2, 1 +
√
−5), (3, 1 +

√
−5), and (3, 1−

√
−5) is prime (the quotient ring

of Z[
√
−5] by each is isomorphic to Z/2Z, Z/3Z, and Z/3Z respectively).

• Our goal is to show that the behavior in the example above holds in general: namely, that we can write any
nonzero ideal in OK as a product of prime ideals, and that this factorization is unique up to rearrangement.

◦ For no additional cost, however, we can show the same results in the broader class of rings known
as Dedekind domains (which were, historically, analyzed by Dedekind for precisely these reasons of
understanding the class of rings possessing unique ideal factorization).

◦ To motivate the de�nition of a Dedekind domain, we make some basic observations about the rings OK .

• Proposition (Ring Properties of OK): Let K be a number �eld of degree n over Q with ring of integers OK .

1. Every ideal of OK is �nitely generated, which is to say, OK is Noetherian.

◦ Proof: We already showed this result earlier in our discussion of the additive structure of OK : any
ideal is an additive subgroup of the free rank-n abelian group OK hence is �nitely generated as a
group (thus also certainly as an ideal).

◦ Exercise: If R is an integral domain, show that the following are equivalent:

(a) Every ideal of R is �nitely generated.
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(b) Every ascending chain I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · of ideals of R is eventually constant (i.e., there
exists N such that In = IN for all n ≥ N).

(c) Every nonempty collection S of ideals of R contains a maximal element (i.e., an ideal I such
that if J ∈ S has I ⊆ J then J = I).

2. OK has Krull dimension 1, which is to say, every nonzero prime ideal of OK is maximal.

◦ Recall that the Krull dimension of a ring is the maximum length of a chain of prime ideals, so saying
that the Krull dimension is 1 is equivalent to saying that nonzero prime ideals are maximal and that
the ring is not a �eld.

◦ Exercise: Show that a �nite integral domain is a �eld.

◦ Proof 1: We show that if I is a nonzero ideal of OK , then OK/I is �nite.

◦ Let α ∈ I be nonzero and let m = NK/Q(α); note m is a nonzero integer. Then m/α is an algebraic
integer (being a product of Galois conjugates of α with one α excluded) and is in K, hence it is some
β ∈ OK . Then m = αβ ∈ I.

◦ Then since I is an ideal we havemOK ⊆ I, and so choosing an integral basis β1, . . . , βn for OK we see
that I contains the order mOK with basis mβ1, . . . ,mβn. Then [OK : I] divides [OK : mOK ] = mn,
which is �nite, so OK/I is �nite (and indeed has cardinality dividing mn).

◦ To �nish, if now P is a nonzero prime ideal, then OK/P is a �nite integral domain by the above, so
by the exercise it is a �eld. This means P is maximal, as claimed.

◦ Exercise: Suppose S is an integral ring extension of the commutative ring R with 1 (i.e., every
element of S is the root of a monic polynomial in R[x]).

(a) Show that if Q is a prime ideal of S, then P = Q ∩R is a prime ideal of R.

(b) Show that if S is a domain then R is a �eld if and only if S is a �eld. [Hint: Use the monic
polynomial satis�ed by a nonzero element to construct an inverse for it.]

(c) Show that an ideal Q of S is maximal in S if and only if P = Q ∩ R is maximal in R. [Hint:
Note S/Q is an integral extension of R/P .]

◦ Proof 2: Essentially by de�nition, we see that OK is an integral ring extension of Z.
◦ Then if Q is any prime ideal of OK , by the �rst part of the exercise we see that OK ∩ Z is a prime
ideal of Z which is necessarily of the form (p) for some prime p since OK ∩ Z is nonzero.

◦ But (p) is a maximal ideal of Z, so by the third part of the exercise, that implies Q is a maximal
ideal of OK , as desired.

3. The ring OK is integrally closed in its �eld of fractions K.

◦ We have previously noted (as an exercise) that the �eld of fractions of OK is K. (It is quite obviously
contained in K.)

◦ Exercise: Suppose that R is a commutative ring with 1 and S is a ring containing R. Recall that
the integral closure of R in S consists of the elements of S containing R, and R is integrally closed
when its integral closure is just R itself.

(a) Show that the integral closure of R in S is a subring of S containing R. [Hint: If s, t are integral
over R, then R[s] and R[t] are �nitely-generated R-modules, hence so is R[s, t].]

(b) Show that the integral closure of R in S is integrally closed in S. [Hint: Show that integrality is
transitive.]

◦ Proof 1: By de�nition, OK is the integral closure of Z in K. But by the second part of the exercise
above, the integral closure is integrally closed.

◦ We can also give a more explicit argument (which really is embedded in the general argument above):

◦ Proof 2: Suppose α is in the integral closure of OK : then α is the root of some monic polynomial
with coe�cients in OK , say with αd + βd−1α

d−1 + · · ·+ β0 = 0 for some βi ∈ OK .
◦ Then the ring R = Z[β0, . . . , βd−1] is a �nitely-generated Z-module (since indeed it is contained in
OK), and Z[α] is a �nitely-generated R-module (since is generated by {1, α, . . . , αd−1}).
◦ We deduce that Z[α, β0, . . . , βd−1] and hence Z[α] is therefore a �nitely-generated Z-module, and
this implies α is an algebraic integer. So, α is an algebraic integer in K whence α ∈ OK .

• In the proposition above, we have proved that the ring of integers OK is a Noetherian, integrally closed domain
in which nonzero prime ideals are maximal. We now consider this more general class of rings:
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• De�nition: A Dedekind domain is a Noetherian, integrally closed domain in which nonzero prime ideals are
maximal.

◦ Our proposition above shows that the ring of integers of a number �eld is a Dedekind domain.

◦ Exercise: Show that principal ideal domains are Dedekind domains. [Hint: Use the general fact that
UFDs are integrally closed.]

• Our goal now is to establish that in a Dedekind domain, every nonzero ideal can be written as a product of
prime ideals (with the usual convention that the empty product represents the entire ring).

◦ It is possible to give a more direct approach for this, but we will �rst develop some facts about fractional
ideals, since the notion of a fractional ideal allows us to state some useful alternative characterizations
of Dedekind domains.

• De�nition: Let R be an integral domain with fraction �eld K. A fractional ideal of R is an R-submodule of
K of the form A = d−1I for some nonzero d ∈ R and some ideal I of R.

◦ Equivalently, a fractional ideal is an R-submodule A of K such that dA ⊆ R for some nonzero d ∈ R.
(This de�nition is equivalent to the one above because dA is then an R-submodule of R, which is to say,
an ideal I of R, and then A = d−1I.)

◦ Example: The fractional ideals of Z are the Z-modules of the form
c

d
Z for integers c and d. More

generally, if R is any PID, then the fractional ideals are the sets
c

d
R where c, d ∈ R.

◦ Any ideal of R is a fractional ideal of R, with d = 1. (For emphasis we can call them �integral ideals�.)

◦ We have a natural notion of the product IJ of two ideals I and J : namely, as the set IJ of all �nite
sums r1s1 + · · · + rksk where each ri ∈ I and si ∈ J . This notion extends easily to fractional ideals by
taking (d−1I)(e−1J) = (de)−1IJ .

◦ The ring R = 1−1R serves as a multiplicative identity under this product operation on fractional ide-
als, and since products are obviously associative and commutative, the set of fractional ideals forms a
commutative semigroup under multiplication.

◦ The invertible elements in this semigroup are the invertible fractional ideals: in other words, the fractional
ideals A such that there exists another fractional ideal B with AB = R.

◦ The utility of invertible fractional ideals is that they allow us to do cancellation when we have statements
involving products of integral or fractional ideals, and (as such) arise very naturally in the proof of
uniqueness of ideal factorizations.

0.12 (Sep 30) Ideal Factorization in Dedekind Domains

• We can establish some basic properties of fractional ideals:

• Proposition (Fractional Ideals): Let R be an integral domain with fraction �eld K, and let A be a fractional
ideal of R.

1. If A is invertible, then the inverse of A is unique.

◦ Proof: If AB = AC = R, then B = BR = B(AC) = (BA)C = (AB)C = RC = C.

2. For any nonzero x ∈ R, the principal fractional ideal xR is invertible with inverse x−1R.

◦ Proof: We have (xR)(x−1R) = (xx−1)RR = R.

3. If A 6= 0, then the set A′ = {x ∈ K : xA ⊆ R} is a fractional ideal of R, and AA′ ⊆ R.
◦ Proof: It is easy to see that A′ is an R-submodule of K, since it contains 0 and is closed under
subtraction and R-scaling.

◦ Furthermore, for any nonzero d ∈ A we see that dA′ ⊆ R, so dA′ is an R-submodule of R (i.e., an
ideal I), and then A′ = d−1I, so A′ is a fractional ideal.

◦ Finally since dA′ ⊆ R for any d ∈ A that means AA′ ⊆ R.
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4. With A′ = {x ∈ K : xA ⊆ R}, A is invertible if and only if AA′ = R, and in that case A−1 = A′.

◦ Proof: If A is invertible with AB = R, then B ⊆ A′ by de�nition of A′; then R = AB ⊆ AA′ ⊆ R
so we have equality everywhere hence AA′ = R.

◦ Conversely, if AA′ = R then by de�nition A is invertible with inverse A−1 = A′.

5. Invertible fractional ideals are �nitely generated.

◦ Proof: If A is invertible then by (4) we have AA′ = R. Thus there exist some a1, . . . , ak ∈ A and
a′1, . . . , a

′
k ∈ A′ with a1a

′
1 + · · ·+ aka

′
k = 1.

◦ Then for any a ∈ A we have a = (aa′1)a1 + · · ·+ (aa′k)ak and each term aa′i ∈ R by de�nition of A′.
Hence a is an R-linear combination of a1, . . . , ak, meaning that a1, . . . , ak generates A.

6. The invertible fractional ideals of R form an abelian group under multiplication.

◦ Proof: Obvious from the above discussion, (2), and the fact that (AB)−1 = B−1A−1.

• It is natural to ask: for which rings are all of the nonzero fractional ideals invertible? In fact, these are
precisely the �elds (rather trivially) and the Dedekind domains:

• Proposition (Invertible Fractional Ideals): Suppose R is an integral domain with fraction �eld K 6= R. If
every nonzero fractional ideal of R is invertible, then R is a Dedekind domain.

◦ Exercise: If R is a Noetherian integral domain, show that fractional ideals of R are the same as �nitely-
generated R-submodules of K. [Hint: Put things over a common denominator.]

◦ Exercise: Suppose P is a prime ideal of an integral domain and IJ ⊆ P for some ideals I and J . Show
that I ⊆ P or J ⊆ P . (Note that this property is the ideal analogue of the prime divisibility property
p|ab implies p|a or p|b.)
◦ Proof: Suppose that every nonzero fractional ideal of R is invertible. Then since invertible fractional ide-
als are �nitely generated as we have already shown, in particular every integral ideal is �nitely generated,
so R is Noetherian.

◦ To show R is integrally closed, suppose α ∈ K is integral over R. Consider the ring R[α]: it is a �nitely
generated R-submodule of K because α is integral over R, so by the �rst exercise above, it is a fractional
ideal of R, hence invertible by hypothesis.

◦ But now observe that R[α]2 = R[α] because R[α] is a ring. Since R[α] is invertible, multiplying by its
inverse then yields immediately that R[α] = R, whence α ∈ R and so R is integrally closed.

◦ Finally, suppose P is a nonzero prime ideal, and consider a maximal ideal M containing P .

◦ Then by hypothesis M is invertible, in which case we see that PM−1 ⊆MM−1 = R. Therefore PM−1

is some ideal of R, say I, and multiplying by M yields P = MI.

◦ Then by the second exercise above, we see that I ⊆ P or M ⊆ P . If I ⊆ P multiply PM−1 ⊆ P by P−1

to see M−1 ⊆ R whence R ⊆ RM = M , which is impossible because M is maximal (hence not equal to
R). We must therefore have M ⊆ P , and so P = M is maximal.

• Our goal now is to analyze the factorization of ideals in Dedekind domains with the ultimate goal of showing
that every nonzero ideal can be written uniquely as a product of prime ideals.

• Theorem (Ideal Factorizations): Let R be a Dedekind domain with fraction �eld K 6= R.

1. If I is any nonzero proper ideal of R, then there exist prime ideals P1, . . . , Pk of R such that P1 · · ·Pk ⊆
I ⊆ P1 ∩ · · · ∩ Pk.
◦ Proof: Suppose otherwise and let F be the set of all nonzero proper ideals of R that cannot be so
written.

◦ Then since R is Noetherian, F contains some maximal element I. Clearly I cannot be prime since
otherwise we could take I ⊆ I ⊆ I.
◦ Since I is not prime, there exist some r, s ∈ R such that rs ∈ I but r, s 6∈ I.
◦ Now let Ir = I + (r) and Is = I + (s), and observe that IrIs = I + (rs) = I and I ⊆ Ir ∩ Is, so
IrIs ⊆ I ⊆ Ir ∩ Is.
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◦ Furthermore, Ir and Is are clearly nonzero, and they are proper since if one of them were equal
to R then their product would simply be the other, but neither Ir nor Is is contained in I by the
assumption that r, s 6∈ I.
◦ Therefore, Ir and Is are nonzero proper ideals of R properly containing I so they are not in F :
therefore, there exist prime ideals P1, . . . , Pk and Q1, . . . , Ql with P1 · · ·Pk ⊆ Ir ⊆ P1 ∩ · · · ∩Pk and
Q1 · · ·Ql ⊆ Is ⊆ Q1 ∩ · · · ∩Qs.
◦ But then P1 · · ·PkQ1 · · ·Ql ⊆ I ⊆ P1 ∩ · · · ∩ Pk ∩ Q1 ∩ · · · ∩ Qs, so in fact I does have the desired
property, contradiction. So all ideals have the claimed property.

2. Every nonzero prime ideal of R is invertible (as a fractional ideal).

◦ Proof: Let P be a nonzero prime ideal of R. For any nonzero a ∈ P , by (1) there exist prime ideals
P1, . . . , Pk of R such that P1 · · ·Pk ⊆ aR.
◦ Observe that because a ∈ P and P is prime, at least one of the Pi must contain P , but since nonzero
primes are maximal, that means Pi equals P ; without loss of generality take P1 = P .

◦ Now choose a in such a way that k is minimal. If k = 1 then we have P ⊆ aR so since P is maximal
and aR is proper we have P = aR and thus P is invertible with inverse a−1R (as we have previously
noted, principal ideals are invertible).

◦ Now assume k ≥ 2. We have P (P2 · · ·Pk) ⊆ aR and by minimality the product P2 · · ·Pk is not
contained in aR, so let b ∈ P2 · · ·Pk\aR. Then b 6∈ aR so that ba−1 6∈ R.

◦ Also, Pb ⊆ PP2 · · ·Pk ⊆ aR whence (ba−1)P ⊆ R. Recalling our de�nition P ′ = {x ∈ K : xP ⊆ R},
we therefore have ba−1 ∈ P ′. Since ba−1 6∈ R and clearly R is contained in P ′ (since RP = P ) this
means P ′ is strictly larger than R.

◦ But now consider PP ′: it is an ideal of R that contains P (since 1 ∈ P ′), so it is either P or R. If
it were P , then PP ′ = P would imply P (P ′)n = P for all n ≥ 1 by a trivial induction.

◦ Then for any nonzero x ∈ P and y ∈ P ′\R we would have xyn ∈ P ⊆ R for all n, which would imply
xR[y] ⊆ R and hence that xR[y] is some ideal of R.

◦ Then since R is Noetherian, this ideal is �nitely generated (say by a1, . . . , am) and then the R-module
R[y] would also be �nitely generated (by x−1a1, . . . , x

−1am): but this says y is integral over R, so
since R is integrally closed, we would have y ∈ R, contradiction.
◦ Therefore we must have PP ′ = R and so P is an invertible fractional ideal, as claimed.

3. Every nonzero proper ideal of R is a product of prime ideals.

◦ Proof: By (1), for any nonzero proper ideal I there exist prime ideals P1, . . . , Pk such that P1 · · ·Pk ⊆
I. We show the result by induction on k.

◦ The base case k = 1 is easy: if P1 ⊆ I then since P1 is maximal and I is proper we have P1 = I.

◦ For the inductive step now suppose k ≥ 2 and let M be a maximal ideal containing I. Then by the
same argument as in (2) above, M must equal one of the Pi; without loss of generality takeM = P1.

◦ By (2), M is invertible; multiplying by M−1 yields P2 · · ·Pk ⊆M−1I ⊆M−1M = R.

◦ Thus, M−1I is an ideal of R that contains the product P2 · · ·Pk, so by the induction hypothesis
it has some prime ideal factorization M−1I = Q1 · · ·Ql. Then I = MQ1 · · ·Ql is a prime ideal
factorization of I.

4. Every nonzero fractional ideal of R is invertible.

◦ Proof: From (2) and (3) we see every nonzero integral ideal is invertible.

◦ Then for any fractional ideal d−1I we see that (d−1I)I−1(dR) = R, so d−1I has an inverse I−1(dR).

◦ Remark: Earlier we showed that if every nonzero fractional ideal is invertible then R is a Dedekind
domain. This result supplies the converse statement.

5. Every nonzero ideal of R can be written uniquely as a product of prime ideals, up to reordering.

◦ Proof: Clearly (3) shows existence of such a factorization. So now suppose we have two factorizations
of a nonzero ideal I = P1 · · ·Pk = Q1 · · ·Ql; we show uniqueness by induction on k.

◦ The base case k = 0 is trivial, since the empty product R cannot be written as a product of one or
more prime ideals, since such a product is a proper ideal of R.

◦ For the inductive step now suppose that products of k − 1 prime ideals have unique factorization
and suppose I = P1 · · ·Pk = Q1 · · ·Ql. Then Q1 · · ·Ql = P1 · · ·Pk ⊆ Pk hence since Pk is prime, one
of the Qi is contained in Pk; by reordering suppose it is Ql.
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◦ But nonzero primes are maximal, so since Pk and Ql are nonzero and prime, in fact we must have
Pk = Ql.

◦ By (2), Pk is invertible, so multiplying by P−1
k yields Q1 · · ·Ql−1 = Q−1

l I = P−1
k I = P1 · · ·Pk−1,

and now applying the inductive hypothesis to the ideal J = P1 · · ·Pk−1 = Q1 · · ·Ql−1 yields the
result immediately.

◦ Exercise: If I is a nonzero ideal of a Dedekind domain R, show that I can be written uniquely in
the form I =

∏
Pi prime P

ai
i where the product is taken over all prime ideals of R and the ai are

nonnegative integers only �nitely many of which are positive.

◦ Exercise: Show that the group of fractional ideals in a Dedekind domain is a free abelian group
generated by the nonzero prime ideals.

6. For any ideal I of R, there exists some nonzero ideal J of R such that IJ is principal.

◦ Proof: If I = 0 the result is trivial, so assume I is nonzero.

◦ Then by (4), considered as a fractional ideal of R, I is invertible, say with some fractional ideal
inverse d−1J . Then I(d−1J) = R, which is to say, IJ = (d). (Note of course J is nonzero, since
I(d−10) = 0.)

7. A Dedekind domain is a principal ideal domain if and only if it is a unique factorization domain.

◦ Proof: Any PID is a UFD so the forward direction is immediate. (Alternatively, we could simply
apply (5), since if R is a PID then ideal factorizations are the same as element factorizations, up to
associates.)

◦ Now suppose that R is a UFD. Since the zero ideal is principal and every nonzero ideal is a product
of prime ideals by (3), it su�ces to show that every prime ideal is principal.

◦ So let P be a prime ideal; by (6) there exists some nonzero ideal J such that PJ = (a) is principal.

◦ Let a have unique factorization a = p1 · · · pk for some irreducible elements p1, . . . , pk ∈ R. Then
since irreducibles are prime in a UFD, each of the ideals (pi) are prime, and so we have the equality
PJ = (p1) · · · (pk).

◦ Hence by uniqueness of prime ideal factorizations (5), we must have P = (pi) for some i, and so P
is principal, as desired.

• We can see from the last item in the proposition above that every example of non-unique factorization of
elements in a Dedekind domain, ultimately, arises from the presence of nonprincipal ideals.

◦ This explains the behavior we observed in our earlier examples of non-unique factorization in the various
rings of integers OK : the existence of nonprincipal ideals in these rings leads directly to the failure of
unique factorization, and inversely.

0.13 (Oct 2) Ideal Divisibility in Dedekind Domains

• Now that we have established that Dedekind domains have the properties that every fractional ideal is invert-
ible and every nonzero ideal has a unique prime ideal factorization, let us establish some other properties of
ideals.

◦ In keeping with our goal of establishing ideal analogues of properties of elements, we can easily develop
the basic properties of ideal divisibility.

• De�nition: If A and B are ideals of an integral domain R, we say that A divides B and write A|B when there
is some ideal C of R such that B = CA.

• Proposition (Ideal Divisibility): Suppose A and B are ideals of a Dedekind domain R.

1. We have A|B if and only if B ⊆ A.
◦ This property is often phrased as �To divide is to contain�: A divides B precisely when A contains
B.

◦ Proof: If A|B then B = CA ⊆ A.
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◦ Conversely, if B ⊆ A then since B is invertible, as fractional ideals we have B−1A ⊆ B−1B = R and
therefore B−1A = C is some ideal of R: then A = CB so A|B.

◦ Exercise: If A is any ideal in a Dedekind domain R, show that there are only �nitely many ideals of
R that contain A.

2. We have A|B and B|A if and only if A = B.

◦ Proof: Obvious from (1).

3. For ideals A and B we say that D is their ideal gcd if D|A and D|B, and also for any other common
ideal divisor D′ with D′|A and D′|B, we have D′|D. The ideal gcd exists and is unique, and it is equal
to the ideal sum A+B.

◦ Proof: By (1), D is an ideal gcd of A and B precisely when D contains both A and B, and for any
other D′ containing both A and B, we have D ⊆ D′.
◦ But the sum ideal A + B is the smallest ideal of R containing both A and B, so it satis�es the
requirement of being a gcd.

◦ Uniqueness follows from (2) since two gcds would divide each other.

4. For ideals A and B we say that L is their ideal lcm if A|L and B|L, and also for any other common
multiple L′ with A|L′ and B|L′, we have L|L′. The ideal lcm exists and is unique, and it is equal to the
ideal intersection A ∩B.
◦ Proof: By (1), L is an ideal lcm precisely when L is contained in both A and B, and for any other
L′ contained in both A and B we have L′ ⊆ L.
◦ The intersection ideal A ∩ B clearly has this property, and uniqueness follows from (2) since two
lcms would divide each other.

5. If A and B have prime ideal factorizations A = P a11 · · ·P
ak
k and B = P b11 · · ·P

bk
k where the Pi are distinct

prime ideals, then A|B if and only if ai ≤ bi for each i.
◦ Proof: If ai ≤ bi for each i, then taking C = P c11 · · ·P

ck
k with ci = bi − ai yields B = CA.

◦ Conversely, if B = CA then if C has prime ideal factorization P c11 · · ·P
ck
k (we may assume the

factorization has this form by adding additional prime ideals with exponent zero in the expressions
for A and B if necessary), then by uniqueness of factorizations we necessarily have ci = bi − ai and
so ai ≤ bi for each i.

6. If A and B have prime ideal factorizations A = P a11 · · ·P
ak
k and B = P b11 · · ·P

bk
k where the Pi are distinct

prime ideals, then gcd(A,B) = P
min(a1,b1)
1 · · ·Pmin(ak,bk)

k and lcm(A,B) = P
max(a1,b1)
1 · · ·Pmax(ak,bk)

k .

◦ Proof: By (5) we see P
min(a1,b1)
1 · · ·Pmin(ak,bk)

k is a common divisor of A and B.

◦ If D = P d11 · · ·P
dk
k is any other common divisor, then by (5) we see that di ≤ ai and di ≤ bi hence

di ≤ min(ai, bi), hence by (5) again that means D divides P
min(a1,b1)
1 · · ·Pmin(ak,bk)

k , so this ideal is
in fact the gcd.

◦ The lcm statement follows analogously.

◦ Exercise: For any ideals A and B in a Dedekind domain, show that AB = (A+B)(A ∩B).

7. We say ideals A and B are relatively prime when gcd(A,B) = R. Two ideals are relatively prime if and
only if they are comaximal (i.e., A+B = R) if and only if AB = A ∩B.
◦ Exercise: If I and J are ideals in a commutative ring with 1, show that IJ ⊆ I ∩ J , and also that if
I + J = R then IJ = I ∩ J .
◦ Proof: By (3) the statement gcd(A,B) = R is equivalent to A + B = R. The second equivalence
follows immediately from the exercise above.

• Let us now examine the quotient structure of a Dedekind domain by its ideals.

• Proposition (Quotients of Dedekind Domains): Let R be a Dedekind domain and A be an ideal of R.

1. If A has prime ideal factorization A = P a11 · · ·P
ak
k , then R/A ∼= (R/P a11 )× · · · × (R/P akk ).
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◦ Proof: This is simply an application of the Chinese remainder theorem for rings4. The statement
follows immediately from the observation that the prime powers P aii are pairwise relatively prime
(per their factorizations) and are therefore pairwise comaximal.

2. For any pairwise relatively prime ideals A1, ... , Ad of R and any elements r1, . . . , rd of R, there exists a
solution to the congruences x ≡ ri (mod Ai) and the solution is unique modulo A1, . . . , Ad.

◦ Note as usual the statement x ≡ ri (mod Ai) means x− ri ∈ Ai.
◦ Proof: The result is immediate upon factoring each of the Ai into prime powers and then applying
(1).

3. If A is nonzero, then every ideal in the quotient ring R/A is principal.

◦ Proof: Equivalently, by the lattice isomorphism theorem, if B is any ideal containing A, then we
need to show that B = A+ bR for some b ∈ B.
◦ Now, if B is an ideal containing A, then B|A. Thus, if A has prime ideal factorization A = P a11 · · ·P

ak
k

then B must have a factorization B = P b11 · · ·P
bk
k where each bi ≤ ai.

◦ Now choose any ri ∈ P bii \P
bi+1
i (such an element exists because P bii = P bi+1

i would contradict

unique factorization) and let b be a solution to the simultaneous congruences b ≡ ri (mod P bi+1
i ) for

each i, which exists by (2).

◦ Then we see immediately that P bii is the exact power of Pi dividing b, and so gcd(bR,A) = B. But
the ideal gcd is simply the sum, and so we have B = A+ bR, as claimed.

4. If A is nonzero, then for any nonzero a ∈ A there exists some b ∈ A such that A = aR+bR. In particular,
every ideal of R is generated (as an ideal, or equivalently as an R-module) by at most two elements.

◦ Proof: The �rst statement follows immediately upon applying (3) to the ideals A = aR and B = R.

◦ The second statement is immediate since the zero ideal is principal and any nonzero ideal is of the
form A = aR+ bR = (a, b) in the usual notation for ideals.

0.14 (Oct 3) Ideal Norms, Primes in Extensions

• We can also make some observations about the cardinality of the quotient ring of a Dedekind domain by an
ideal I:

• De�nition: For an nonzero ideal I of a Dedekind domain R, we de�ne the ideal norm N(I) to be the cardinality
of the quotient ring R/I (equivalently, the index [R : I]). For completeness we also de�ne the norm of the
zero ideal to be 0.

◦ In general, the ideal norm in arbitrary Dedekind domains can be in�nite, such as for R = F [t] and I = (t)
where F is any in�nite �eld.

◦ However, when R is the ring of integers in a number �eld, as we have shown previously, the quotient R/I
is �nite whenever I is a nonzero ideal.

• Proposition (Ideal Norms): Suppose R is a Dedekind domain.

1. If P is a nonzero prime ideal of R, then for any nonnegative d, the quotient ring P d/P d+1 is isomorphic
as an additive abelian group to R/P .

◦ Exercise: Let R be an integral domain and let M be a maximal ideal of R. For any d ≥ 0, show that
Md/Md+1 is an R/M -vector space.

◦ Proof: Let α ∈ P d\P d+1 and consider the additive group homomorphism ϕ : R → P d/P d+1 given
by ϕ(r) = αr + P d+1.

◦ Note (immediately from prime ideal factorizations) we have gcd(αR,P d+1) = P d, which is to say,
αR + P d+1 = P d. This observation immediately implies that ϕ is onto, since for any t ∈ P d it says
there exists some s ∈ R such that αs+ P d+1 = t+ P d+1.

4The statement we use is as follows: let R be commutative with 1 and I1, I2, . . . , In be ideals of R. Then the map ϕ : R →
(R/I1)× (R/I2)× · · · × (R/In) de�ned by ϕ(r) = (r+ I1, r+ I2, . . . , r+ In) is a ring homomorphism with kernel I1 ∩ I2 ∩ · · · ∩ In. If
all of the ideals I1, I2, . . . , In are pairwise comaximal, then ϕ is surjective and I1 ∩ I2 ∩ · · · ∩ In = I1I2 · · · In, and thus R/(I1I2 · · · In) ∼=
(R/I1)× (R/I2)× · · · × (R/In).
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◦ Additionally, for r ∈ R, since the largest power of P dividing (α) is P d by construction, we see
r ∈ kerϕ ⇐⇒ αr ∈ P d+1 ⇐⇒ P d+1 divides (α)(r) ⇐⇒ P divides (r) ⇐⇒ r ∈ P .
◦ Therefore, by the �rst isomorphism theorem, ϕ descends to an isomorphism from R/P to P d/P d+1,
as desired.

2. For any nonzero prime ideal P , we have [R : P d] = [R : P ]d.

◦ Proof: By (1) each of the quotients R/P , P/P 2, ... , P d−1/P d is isomorphic as an additive group
to R/P , so they all have the same cardinality as R/P .

◦ Taking indices and using multiplicativity yields the result immediately.

3. The ideal norm is completely multiplicative: N(IJ) = N(I)N(J) for all ideals I and J .

◦ Proof: If I or J is zero the result is trivial.

◦ Otherwise, by the Chinese remainder theorem, if I = P a11 · · ·P
ak
k then N(I) = N(P a11 ) · · ·N(P akk ),

and by (2) we seeN(P aii ) = N(P )ai for any Pi. The result then follows immediately upon multiplying
the prime ideal factorizations of I and J and taking norms.

4. If R = OK is the ring of integers of a number �eld K, then for any α ∈ OK , for the ideal I = (α) = αOK
we have N(I) = |NK/Q(α)|: thus, our use of the word �norm� here agrees with our earlier usage.

◦ Proof: Let β1, . . . , βn be an integral basis ofOK . Then αβ1, . . . , αβn is an integral basis of I, so by our
earlier results on discriminants we immediately have discK/Q(αβ1, . . . , αβn) = N(I)2discK/Q(β1, . . . , βn).

◦ But discK/Q(αβ1, . . . , αβn) =

∣∣∣∣∣∣∣
σ1(αβ1) · · · σ1(αβn)

...
. . .

...
σn(αβ1) · · · σn(αβn)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
σ1(α)σ1(β1) · · · σ1(α)σ1(βn)

...
. . .

...
σn(α)σn(β1) · · · σn(α)σn(βn)

∣∣∣∣∣∣∣
2

=

σ1(α)2 · · ·σn(α)2

∣∣∣∣∣∣∣
σ1(β1) · · · σ1(βn)

...
. . .

...
σn(β1) · · · σn(βn)

∣∣∣∣∣∣∣
2

= NK/Q(α)2discK/Q(β1, . . . , βn).

◦ Therefore, since N(I) is nonnegative, we see N(I) = |NK/Q(α)| as claimed.

• Now that we have established many useful facts about the ideal structure in Dedekind domains, let us return
back to use these tools to study the ideals in rings of integers of number �elds.

◦ So far we have established the existence of prime ideal factorizations, but we would like to be able to
compute these factorizations explicitly.

◦ Of course, even in Z, actually computing prime factorizations e�ciently is a di�cult computational
problem, so we should not expect to �nd any factorization procedures that operate more e�ectively than
integer factorization.

◦ Since the ring of integers OK is an integral extension of Z, its prime ideals all arise naturally from the
prime ideals of Z. For essentially the same e�ort, we can describe the behavior of primes for a general
extension L/K rather than simply for K/Q:

• Proposition (Primes in Extensions): Let L/K be an extension of number �elds with respective rings of integers
OL and OK .

1. If Q is a prime ideal of OL, then Q∩OK = P is a prime ideal of OK , and the quotient OK/P is a subring
of OL/Q.
◦ Proof: Consider the injection homomorphism ϕ : OK ↪→ OL. Then Q∩OK = ϕ−1(Q) is an ideal of
OK (inverse images of ideals are ideals), and ϕ therefore induces a homomorphism from OK/ϕ−1(Q)
to OL/Q which is clearly also injective.

◦ Since Q is prime, OL/Q has no zero divisors, and therefore the subring OK/ϕ−1(Q) also has no zero
divisors, so P = ϕ−1(Q) is a prime ideal of OK .

2. If Q is a prime ideal of OL and P is a prime ideal of OK , the following are equivalent (when they hold,
we say Q lies over P and P lies under Q):

(a) Q divides POL (b) Q contains POL (c) Q contains P (d) Q ∩ OK = P (e) Q ∩K = P

◦ Proof: (a) and (b) are equivalent by the equivalence of divisibility and containment.
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◦ (b) and (c) are equivalent since Q is an ideal of OL and POL is the smallest ideal of OL containing
P .

◦ (d) obviously implies (c). For the converse note that if Q contains P then Q∩OK is an ideal of OK
containing P and it cannot be all of OK (since this would imply 1 ∈ Q), but since P is maximal this
forces the intersection to be P .

◦ Finally, (d) and (e) are equivalent because Q∩K = Q∩OK since Q only contains algebraic integers
(explicitly, Q ∩ OK ⊆ Q ∩K = (Q ∩ OL) ∩K = Q ∩ OK .)

3. Every nonzero prime ideal Q of OL lies over a unique nonzero prime ideal P of OK , and indeed P =
Q ∩ OK .
◦ Proof: This is immediate from (1) and (2) along with the observation that if α ∈ Q is nonzero, then
NL/Q(α) is a nonzero integer in Q hence also in P , so P is nonzero also.

4. Every nonzero prime ideal P of OK lies under at least one prime ideal Q of OL. There are �nitely many
primes Q lying over P , and they are the prime ideal factors in OL of POL.
◦ Proof: All of this is immediate from the equivalences in (2) and the observation that POL has prime
ideal factors since it is a proper ideal.

◦ For this, suppose that POL = OL and consider the fractional ideal inverse P ′ of P in OK : it cannot
be an integral ideal, so choose any α ∈ P ′ that is not in OK hence not an algebraic integer. Then
we would have αPOL ⊆ αOL ⊆ OL which is impossible since α is not an algebraic integer.

• Applying (4) in the proposition above to the situation K = Q, we see immediately that every nonzero prime
ideal of OL lies above a unique integer prime p, and these prime ideals of OL are precisely the prime ideal
factors of pOL.

◦ We may therefore understand the prime ideals of OL by studying how the ideal pOL = (p) factors in
OL. This is our next task.

• In some individual cases we can work out an essentially explicit description of the prime ideals in the ring of
integers using ad hoc methods:

• Example: Characterize the prime ideals in Z[i].

◦ Since Z[i] is Euclidean and therefore a PID, ideal factorizations are equivalent to element factorizations.

◦ If p is an integer prime then either (p) is already a prime ideal or p = rs has some nontrivial factorization.
In the latter case, taking norms yields p2 = N(r)N(s) so since N(r) and N(s) must be greater than 1,
we must have N(r) = N(s) = p, in which case the elements r and s are both irreducible (hence prime,
hence generate prime ideals), so we get the factorization (p) = (r)(s).

◦ Explicitly, for r = a+ bi we see p = a2 + b2 is the sum of two squares, and conversely if p = a2 + b2 then
certainly p = (a+ bi)(a− bi) so we get the ideal factorization (p) = (a+ bi)(a− bi).
◦ It remains to characterize these primes that are the sum of two squares (which was �rst done historically
by Girard and then followed later by Fermat): they are p = 2 and the primes congruent to 1 modulo 4.

◦ Clearly 2 = 12 + 12 is the sum of two squares, so we obtain the ideal factorization (2) = (1 + i)(1 − i).
Note here that because 1 + i and 1 − i are associates, in fact (1 + i) = (1 − i), so as ideals we actually
have (2) = (1 + i)2.

◦ For odd primes p, if p = a2 + b2 then reducing modulo p and rearranging yields (a/b)2 ≡ −1 (mod p)
so −1 must be a quadratic residue modulo p. But by Euler's criterion we have the Legendre symbol

evaluation
(
−1
p

)
≡ (−1)(p−1)/2 (mod p) which is only +1 when p ≡ 1 (mod 4), so we must have p ≡ 1

(mod 4).

◦ In this situation, there exists an integer r with r2 ≡ −1 (mod p). Then clearly p divides neither r + i
nor r− i in Z[i], yet it divides their product (r+ i)(r− i) = r2 + 1, so p is not a prime element, hence it
must factor in Z[i] by the above.

◦ We conclude that the prime ideals in Z[i] are as follows:

1. The ideal (1 + i), of norm 2, with (2) = (1 + i)2.

2. The prime ideals (p) of norm p2 where p is a prime congruent to 3 mod 4.
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3. The two ideals (a+ bi) and (a− bi) of norm p where a2 + b2 = p is a prime congruent to 1 mod 4.

◦ We mention also that the argument above gives an explicit way to compute the factorization of p in
Z[i] when p ≡ 1 (mod 4): namely, �nd a solution to r2 ≡ −1 (mod p), which can be done by taking
r = u(p−1)/4 for any quadratic nonresidue u, and then observe that as ideals we have (p, r+ i) = (a+ bi),
so we may �nd a+ bi using the Euclidean algorithm to compute gcd(p, r + i).

• Exercise: Show that the prime ideals of Z[
√
−2] are as follows: the ideal (

√
−2), the ideals (p) where p is a

prime congruent to 5 or 7 modulo 8, and the two ideals (a+ b
√
−2) and (a− b

√
−2) where a2 + 2b2 = p is a

prime congruent to 1 or 3 mod 4.

0.15 (Oct 7) Rami�cation Index and Inertial Degree

• The methods we used to identify the prime ideals in Z[i] and Z[
√
−2] do not extend well to general rings of

integers: one obvious di�culty is that we made substantial use of the fact that those rings are principal ideal
domains, which many other rings of integers are not.

◦ So let us pause for now our discussion of how to compute factorizations and return to the more abstract
question of understanding how primes decompose in extensions.

◦ Exercise: If P is a prime ideal of OK that lies above the integer prime p, show that N(P ) is a power of
p.

◦ Exercise: We have previously observed that an element α ∈ OK of norm ±p for a prime p is irreducible.
Show in fact that such an element is prime.

• De�nition: Let L/K be an extension of number �elds. If Q is a prime ideal of OL lying above a prime ideal
P of OK , the rami�cation index of Q over P , denoted5 e(Q|P ), is the largest power of Q that divides POL.

◦ More explicitly, if Q1, . . . , Qk are the prime ideals of OL lying over P , then we have a factorization
POL = Qe11 · · ·Q

ek
k : the rami�cation index e(Qi|P ) is then simply the exponent ei.

◦ Since Q lies above P if and only if Q divides POL, we see that e(Q|P ) ≥ 1. When e(Q|P ) > 1 we say
that Q is rami�ed over P , and when e(Q|P ) = 1 we say that Q is unrami�ed over P .

◦ Example: In OK = Z[i], for the primes P = 2Z and Q = (1+i)OK we have e(Q|P ) = 2 since (2) = (1+i)2

in Z[i]. If p ≡ 3 (mod 4) is a prime, then for P = pZ and Q = pOK we have e(Q|P ) = 1. If p ≡ 1
(mod 4) is a prime with p = a2 + b2, then for P = pZ, Q1 = (a+ bi)OK , and Q2 = (a− bi)OK we have
e(Q1|P ) = e(Q2|P ) = 1 since POK = Q1Q2 and the two prime ideals Q1 and Q2 are not equal.

◦ Example: In OK = Z[
√
−5], as we have previously noted, each of the ideals P2 = (2, 1 +

√
−5), P3 =

(3, 1+
√
−5), P ′3 = (3, 1−

√
−5), and P5 = (5,

√
−5) = (

√
−5) is prime (the quotient has prime cardinality

in each case). Since we also have (2) = P 2
2 , (3) = P3P

′
3, and (5) = P 2

5 , we see that e(P2|2) = 2,
e(P3|3) = e(P ′3|3) = 1, and e(P5|5) = 2.

◦ Exercise: Let p be a prime. Show that (1 − ζp) is a prime ideal of Z[ζp] that lies above p ∈ Z. [Hint:
Z[ζp]/(1− ζp) is isomorphic to Z[x]/(1− x,Φp(x)).]

◦ Example: In OK = Z[ζp], for Q = (1− ζp)OK , noting that Q is a prime ideal lying above P = pZ by the
exercise above, we have e(Q|P ) = p− 1 since (p) = (1− ζp)p−1 in Z[ζp], as noted in an earlier exercise.

• De�nition: Let K be a number �eld and P be a nonzero prime ideal of OK . The residue �eld associated to
P is the quotient ring OK/P .

◦ Note of course that the residue �eld is indeed a �eld because P is maximal, and in fact it is a �nite �eld
because the quotient ring by a nonzero ideal is �nite (as we have shown previously).

◦ Therefore, to understand the structure of the residue �eld (up to isomorphism), we really just need
to determine its cardinality, since there is only one �nite �eld of any given prime-power order (up to
isomorphism).

5For notational convenience, when P = (p) = pZ is an ideal of Z we will simply write e(Q|p).
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◦ Example: In Z[i], the residue �eld for (1 + i) is Z[i]/(1 + i) which is isomorphic to F2, the residue �eld
for (p) for a prime p ≡ 3 (mod 4) is Z[i]/(p) which is a �eld of cardinality p2 hence is isomorphic to Fp2 ,
and the residue �eld for (a± bi) where a2 + b2 = p is a 1 mod 4 prime is Z[i]/(a+ bi) which can be shown
to have cardinality p, hence is isomorphic to Fp.
◦ Example: In OK = Z[

√
−5], again with P2 = (2, 1 +

√
−5), P3 = (3, 1 +

√
−5), P ′3 = (3, 1−

√
−5), and

P5 = (
√
−5), the residue �eld for P2 is isomorphic to F2, the residue �elds for P3 and P ′3 are isomorphic

to F3, and the residue �eld for P5 is isomorphic to F5.

◦ Example: In OK = Z[ζp], with Q = (1 − ζp)OK , the residue �eld of Q has cardinality p hence is
isomorphic to Fp.
◦ Notice in all of the examples that the residue �eld of each prime ideal P was an extension of the �eld
Fp where p is the prime of Z lying below P . In fact, a more general observation holds in any extension
L/K of number �elds.

◦ Explicitly, if Q is a prime of OL lying over P in OK , then because Q∩OK = P , if we compose the injection
OK ↪→ OL with the projection OL → OL/Q, the kernel of this composition is simply OK ∩Q = P , and
therefore we have a natural injection of OK/P into OL/Q.

• De�nition: Let L/K be an extension of number �elds. If Q is a prime ideal of OL lying above a prime ideal
P of OK , the inertial degree of Q over P , denoted f(Q|P ), is the �eld extension degree of OL/Q over OK/P .

◦ Example: In Z[i], for P2 = (1 + i) we have f(P2|(2)) = 1, for a prime p ≡ 3 (mod 4) and P = (p) we
have f(P |(p)) = 2, and for the prime ideals P = (a+ bi) and P ′ = (a− bi) where a2 + b2 = p is a 1 mod
4 prime we have f(P |p) = f(P ′|p) = 1.

◦ Example: In OK = Z[
√
−5], again with P2 = (2, 1 +

√
−5), P3 = (3, 1 +

√
−5), P ′3 = (3, 1−

√
−5), and

P5 = (
√
−5), we have f(P2|2) = 1, f(P3|3) = f(P ′3|3) = 1, and f(P5|5) = 1.

◦ Example: In OK = Z[ζp], with Q = (1− ζp)OK , we have f(Q|p) = 1.

• Let us now establish some properties of the rami�cation index and inertial degree.

◦ Exercise: Let L/K/F be an extension tower of number �elds with R a prime ideal of OL lying over the
prime ideal Q of OK lying over the prime ideal P of OF .
1. Show that the rami�cation index is multiplicative in towers: e(R|P ) = e(R|Q)e(Q|P ).

2. Show that the inertial degree is multiplicative in towers: f(R|P ) = f(R|Q)f(Q|P ).

• Theorem (The ef -Theorem): Suppose L/K is an extension of number �elds of degree m, where K/Q has
degree n.

1. Let P be a prime ideal of K lying over the integer prime p. Then N(P ) = pf(P |p).

◦ Proof: By de�nition of the inertial degree, OK/P is a �nite �eld of degree f(P |p) over Z/pZ, so it
has cardinality pf(P |p). Then by de�nition, N(P ) = [OK : P ] = pf(P |p).

◦ Exercise: More generally show that if Q is a prime ideal of L lying over P , then NL(Q) =
NK(P )f(Q|P ).

2. Let p be an integer prime and suppose (p) has prime ideal factors P1, . . . , Pk inOK . Then
∑k
i=1 e(Pi|p)f(Pi|p) =

n = [K : Q].

◦ Proof: Suppose that p has prime ideal factorization pOK = P e11 · · ·P
ek
k in OK , where by de�nition

ei = e(Pi|p).
◦ By (1), for fi = f(Pi|p) we have N(Pi) = [OK : Pi] = pfi , so since the ideal norm is completely
multiplicative we see N(pOK) = N(P1)e1 · · ·N(Pk)ek = pe1f1 · · · pekfk .
◦ But since pOK = (p) is principal we also have N(pOK) = pn, so n = e1f1 + · · ·+ ekfk as claimed.

3. For any prime ideal P of OK , we have [OL : POL] = [OK : P ]m. Equivalently, NL(POL) = NK(P )[L:K].

◦ Proof: Note that OL/POL is a vector space over the �nite �eld OK/P (it is in fact a ring extension);
the claimed result will then follow by showing the dimension of this vector space is equal to m.

◦ First we show the dimension is at most m, so suppose that α1, . . . , αm+1 ∈ OL. Then since the
dimension of L over K is m, there exist β1, . . . , βm+1 ∈ K not all zero such that β1α1 + · · · +
βm+1αm+1 = 0.
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◦ By rescaling we may take all of the βi ∈ OK . Now let B be the ideal of OK spanned by the βi, which
is an invertible fractional ideal and therefore there exists some fractional ideal C with BC = OK .
◦ Choosing any c ∈ C such that cB is not contained in P , multiplying by c yields (cβ1)α1 + · · · +

(cβm+1)αm+1 = 0: now each of the coe�cients is contained in BC ⊆ OK , and not all of them are
in P , so the reduction modulo P of this equality yields a nontrivial R/P -linear dependence of the
images α1, . . . αm+1 in OL/POL. Hence the dimension is at most n, as desired.

◦ For equality, suppose P lies over the integer prime p, and let pOK have prime ideal factorization
pOK = P e11 · · ·P

ek
k , where ei = e(Pi|p).

◦ We have shown above that dimOK/Pi
(OL/PiOL) ≤ m = [L : K], and therefore by taking norms we

have NL(PiOL) ≤ NK(Pi)
m = pmfi by (1), where fi = f(Pi|P ).

◦ Then we have pOL = (P1OL)e1 · · · (PkOL)ei , and so taking ideal norms yields pmn = NL(pOL) =
N(P1OL)e1 · · ·N(PkOL)ek ≤ pm(e1f1+···+ekfk).

◦ But by (2) we have
∑k
i=1 eifi = n = [K : Q], so we must have equality everywhere above. Hence in

fact we have dimOK/Pi
(OL/PiOL) = m for all prime ideals Pi above p, including P .

4. Let P be a prime ideal of OK prime and suppose POL has prime ideal factors Q1, . . . , Qk in OL. Then∑k
i=1 e(Qi|P )f(Qi|P ) = m = [L : K].

◦ Proof: Taking norms of the prime ideal factorization POL = Qe11 · · ·Q
ek
k where as usual ei = e(Qi|P )

yields NL(POL) = NL(Q1)e1 · · ·NL(Qk)ek .

◦ By the exercise following (1) we have NL(Qi) = NK(P )fi for fi = f(Qi|P ), and by (3) we have
NL(POL) = NK(P )m.

◦ Putting these together we see NK(P )m = NK(P )e1f1 · · ·NK(P )ekfk whence e1f1 + · · · + ekfk = m
as claimed.

• We can use the ef -theorem to classify the possible prime ideal factorization behaviors in extensions. The
simplest situation is the case of a quadratic extension:

◦ Suppose L/K is a quadratic extension of number �elds. Then for any prime ideal P of OK , we have a
prime ideal factorization of POL = Qe11 · · ·Q

ek
k . For fi = e(Qi|P ), we then have e1f1 + · · · + ekfk = 2,

so since all of the ei and fi are positive integers, there are only three possibilities:

1. k = 1, e1 = 2, f1 = 1. In this case we say P is rami�ed: its factorization in OL is POL = Q2 for
some prime ideal Q.

2. k = 1, e1 = 1, f1 = 2. In this case we say P is inert: e�ectively, P remains prime as we extend from
K to L, since its factorization is simply POL = POL.

3. k = 2 and e1 = f1 = e2 = f2 = 1. In this case we say P is split: its factorization POL = Q1Q2 splits
apart into several distinct prime ideals.

◦ Example: In Z[i], the prime 2 is rami�ed since (2) = (1 + i)2, the primes congruent to 3 modulo 4 are
inert, and the primes congruent to 1 modulo 4 are split since they factor as (p) = (a+ bi)(a− bi) where
the two ideal factors are not equal.

◦ Example: In Z[
√
−5], the primes 2 and 5 are rami�ed since (2) = (2, 1 +

√
−5)2 and (5) = (

√
−5)2 while

the prime 3 is split since (3) = (3, 1 +
√
−5)(3, 1−

√
−5) and the two ideal factors are not equal.

• In extensions of higher degree, we may obtain prime ideal factorizations that mix all of these various kinds of
behaviors. Some extremal cases of note in an extension of degree n are as follows:

1. We have k = 1, e1 = n, f1 = 1, in which case the prime ideal factorization is POL = Qn. In this
situation we say P is totally rami�ed: it rami�es to the maximum extent possible.

2. We have k = 1, e1 = 1, f1 = n, in which case the prime ideal P remains prime in OL. In this situation
we say P is totally inert: its factorization does not change at all in the extension from K to L.

3. We have k = n and all ei = fi = 1, in which case the prime ideal factorization is POL = Q1Q2 · · ·Qn. In
this situation we say P is totally split: its factorization splits apart into the maximum possible number
of factors in the extension from K to L.
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0.16 (Oct 9) Computing Prime Ideal Factorizations, I

• In order to give further examples, we need a more general procedure for computing ideal factorizations.
Consider �rst the simpler case of an extension K/Q where OK has a power basis: i.e., where OK = Z[α] for
some α.

◦ If m(x) is the minimal polynomial for α over Q, then Z[α] is ring-isomorphic to Z[x]/(m(x)) via the
association of α with x, since the evaluation homomorphism ϕα : Z[x]→ Z[α] mapping x to α is clearly
onto and has kernel (m(x)) hence it descends to an isomorphism ϕ : Z[x]/(m(x))→ Z[α].

◦ Suppose that P is a prime ideal of OK = Z[α] that lies above the integer prime p. As we have shown
previously, for any nonzero element a of an ideal I in a Dedekind domain, there exists some other b in
that ideal with (a, b) = I. Applying this to a = p, we see that there exists some polynomial b(α) ∈ Z[α]
such that P = (p, b(α)).

◦ Now using the isomorphism ϕ, we obtain an isomorphism of Z[α]/(p) with Z[x]/(m(x), p). But by
the third isomorphism theorem, Z[x]/(m(x), p) is isomorphic to (Z[x]/p)/[(m(x), p)/(p)] ∼= Fp[x]/(m̃(x))
where m̃(x) represents the reduction of m(x) modulo p.

◦ By the Chinese remainder theorem applied to the prime ideal factorization (p) = P e11 · · ·P
ek
k in OK

we have Z[α]/(p) ∼= (OK/P e11 ) × · · · × (OK/P ekk ), while applying it to the irreducible factorization

m̃(x) = f1(x)d1 · · · fl(x)dl in Fp[x] yields Fp[x]/(m̃(x)) ∼= (Fp[x]/fd11 )× · · · × (Fp[x]/fdll ).

◦ The point now is that these two decompositions must be equivalent to one another, because the decom-
position of this �nite ring into indecomposable factors, as obtained from the Chinese remainder theorem,
is unique. (More precisely, this follows from the structure theorem for modules over principal ideal
domains.)

◦ Therefore, after rearranging the factors if necessary, we see that we must have k = l, and that the
isomorphisms must send Fp[x]/(fi(x)di) to OK/P eii for each i.

◦ Following the various isomorphisms from Fp[x]/(m̃(x)) back to Z[α]/(p), we see that the polynomial
fi(x) ∈ Fp[x] generating the prime-power factor fi(x)di in the factorization of m̃(x) maps to the (prime)
ideal fi(α) + (p) = (p, fi(α)) in Z[α]/(p), and therefore we should take Pi = (p, fi(α)) and ei = di for
each i.

◦ In other words, to compute the factorization of (p) in OK = Z[α], we factor the minimal polynomialm(x)
of αmodulo p as m̃(x) = f1(x)e1 · · · fk(x)ek for distinct irreducibles fi(x) ∈ Fp[x]: then for Pi = (p, fi(α))
we have (p) = P e11 · · ·P

ek
k .

◦ We can also easily obtain the rami�cation index and inertial degree for each prime in these factorizations:

◦ Exercise: Show that if OK = Z[α] and the minimal polynomial m(x) of α factors modulo p as m̃(x) =
f1(x)e1 · · · fk(x)ek , then for Pi = (p, fi(α)) we have e(Pi|p) = ei and f(Pi|p) = deg(fi).

• Let us illustrate how these calculations work in the situation of the Gaussian integers, where we already know
the general answer:

• Example: For K = Q(i), �nd the prime ideal factorizations of (2), (3), and (5) in OK = Z[i].

◦ The minimal polynomial of α = i over Q is m(x) = x2 + 1, so we need to factor x2 + 1 modulo 2, 3, and
5.

◦ Modulo 2 clearly x2+1 = (x+1)2 so we obtain the ideal factorization (2) = (2, 1+α)2. For P2 = (2, 1+α),
since 1 + α divides 2 we can see in fact that P2 is principal and generated by 1 + α. Here, 2 is rami�ed,
since (2) = P 2

2 .

◦ Modulo 3 the polynomial x2 + 1 is irreducible, so P3 = (3) is already a prime ideal of OK : 3 is inert,
with e(P3|3) = 1 and f(P3|3) = 2.

◦ Modulo 5 we have x2 +1 = (x+2)(x+3) so we obtain the ideal factorization (5) = (5, α+2)(5, α+3). For
P5 = (5, α+2) since α+2 divides 5 we see P5 is principal and generated by 2+α. For P ′5 = (5, α+3) it is
not the case that α+3 divides 5 (the quotient is in fact (3−i)/2), but another element α−2 = (α+3)−5
in the ideal does divide both generators, so P ′5 = (α− 2) is also principal.

◦ We see that 5 is split: for both ideals P5 and P ′5 we see that e(P |5) = f(P |5) = 1.
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◦ Remark: Of course, we already have shown that Z[i] is a PID (since it is Euclidean); the point is that
even when the prime ideals we obtain in our factorizations actually turn out to be principal, we may
have to do some amount of work to �nd a generator.

• Example: For K = Q(
√
−5), �nd the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK = Z[

√
−5].

◦ The minimal polynomial of α =
√
−5 over Q is m(x) = x2 + 5, so we need to factor x2 + 5 modulo 2, 3,

5, 7, and 11.

◦ Modulo 2 clearly x2 + 5 = (x + 1)2 so we obtain the ideal factorization (2) = (2, 1 + α)2 = P 2
2 for

P2 = (2, 1 + α) = (2, 1 +
√
−5): this means 2 is rami�ed. Additionally, P2 cannot be principal, since if

P2 = (β) then we would have NK/Q(β) = NK(P2) = 2, but there are no elements of norm 2 in OK .
◦ Modulo 3 we have x2 +5 = (x−1)(x+1) so we obtain the ideal factorization (3) = (3, 1+α)(3,−1+α) =
P3P

′
3 for P3 = (3, 1 + α) and P ′3 = (3,−1 + α) = (3, 1− α): this means 3 is split. We see neither P3 nor

P ′3 can be principal, since NK(P3) = NK(P ′3) = 3 but there are no elements of norm 3 in OK .
◦ Modulo 5 we have x2 + 5 = x2 so we obtain the ideal factorization (5) = (5, α)2 = P 2

5 for P5 = (5,
√
−5),

so 5 is rami�ed. Since
√
−5 divides 5 in fact P5 = (

√
−5) is principal, as well.

◦ Modulo 7 we have x2 +5 = (x+3)(x−3) so we obtain the ideal factorization (7) = (7, 3+α)(7,−3+α) =
P7P

′
7 for P7 = (7, 3 + α) and P ′7 = (7,−3 + α) = (7, 3 − α): this means 7 is split. As above, neither P7

nor P ′7 is principal since there are no elements of norm 7 in OK .
◦ Finally, modulo 11 the polynomial x2 + 5 turns out to be irreducible, so (11) is itself prime, meaning 11
is inert in OK .

• Exercise: Compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK for K = Q(
√
−2),

Q(
√
−3), and Q(

√
5). Identify which primes ramify, split, and remain inert in each case.

• In higher-degree extensions, we can see additional kinds of behaviors:

• Example: For K = Q( 3
√

2), �nd the prime ideal factorizations of (2), (3), (5), (7), and (31) in OK = Z[ 3
√

2].

◦ The minimal polynomial of α = 3
√

2 over Q is m(x) = x3 − 2, so we need to factor x3 − 2 modulo 2, 3,
5, and 7.

◦ Modulo 2 clearly x3− 2 = x3 so we obtain the ideal factorization (2) = (2, α)3. Here we can see that the
prime ideal P2 = (2, 3

√
2) is principal and generated by 3

√
2, and so we see that 2 is totally rami�ed in

OK : e(P2|2) = 3.

◦ Modulo 3 we have x3− 2 = (x+ 1)3 so we obtain the ideal factorization (3) = (3, 1 +α)3. In fact we can
check that 3 = (1 + α)(1− α+ α2) and so the ideal P3 = (3, 1 + α) is principal and generated by 1 + α.
We see likewise that 3 is totally rami�ed in OK : e(P3|3) = 3.

◦ Modulo 5 we have x3−2 = (x+2)(x2 +3x+4) so we obtain the ideal factorization (5) = (5, 2+α)(5, 4+
3α+ α2). For the ideal P5 = (5, 2 + α) we have e(P5|5) = f(P5|5) = 1 whereas for P ′5 = (5, 4 + 3α+ α2)
we have e(P5|5) = 1 but f(P5|5) = 2. Here we see that 5 splits partially, but not completely, in OK .
◦ Modulo 7 we can verify that x3 − 2 is irreducible, so P7 = (7) is already a prime ideal of OK . Here, 7 is
totally inert: f(P7|7) = 3.

◦ Modulo 31 we can check that x3 − 2 = (x − 4)(x − 7)(x + 11) so we obtain the ideal factorization
(31) = (31, α − 4), (31, α − 7)(31, α + 11). For the ideals P31 = (31, α − 4), P ′31 = (31, α − 7), and
P ′′31 = (31, α+ 11) we have e(Pi|31) = f(Pi|31) = 1 for each i. Here we see that 31 is totally split in OK .

• Example: For K = Q(α) where α3 + α + 5 = 0, compute the prime ideal factorizations of (2), (3), (5), (7),
and (97).

◦ The discriminant of x3 + x+ 5 is −4− 27 · 52 = −7 · 97, so since the discriminant of α is squarefree by
an earlier exercise we know that OK = Z[α].

◦ So, to compute the desired prime ideal factorizations, we simply factor the minimal polynomial x3 +x+5
modulo 2, 3, 5, 7, and 97.

◦ Modulo 2, the polynomial is irreducible, so 2 is totally inert and P2 = (2) is prime: e(P2|2) = 1 and
f(P2|2) = 3.
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◦ Modulo 3 we have x3+x+5 = (x+1)(x2+2x+2) so we obtain the ideal factorization (3) = (3, 1+α)(3, 2+
2α+ α2). We see that 3 splits in OK but not completely: for P3 = (3, 1 + α) and P ′3 = (3, 2 + 2α+ α2)
we have e(P3|3) = e(P ′3|3) = 1 and f(P3|3) = 1 while f(P ′3|3) = 2.

◦ To decide whether P3 is principal we can �rst try dividing 3 by 1 + α: using the Euclidean algorithm in
Q[x] we can determine that 1

3 (−2 + x− x2)(x+ 1) + 1
3 (5 + x+ x3) = 1 and thus substituting x = α we

see 3/(1 + α) = −2 + α − α2. Thus, P3 = (3, 1 + α) = (1 + α) is indeed principal, and then P ′3 is also
principal with generator 3/(1 + α) = −2 + α− α2, which is indeed in P ′3.

◦ Modulo 5 we have x3 + x + 5 = x(x + 2)(x + 3) so we obtain the ideal factorization (5) = (5, α)(5, 2 +
α)(5, 3 + α), so that 5 splits completely in OK . We can again attempt to determine whether the factors
are principal by trying to �nd generators for each ideal; after some calculation we can �nd 5/α = −1−α2

so P5 = (5, α) = (α), and also 5/(2 + α) = 5 − 2α + α2 so P ′5 = (5, 2 + α) = (2 + α). But 5/(3 + α) =
1
5 (10− 3α+ α2) so 3 + α is not a generator of the third ideal factor P ′′5 = (5, 3 + α). Instead, using the
other two ideals' generators, we can instead compute 5/(α(2 + α)) = −3 + α − α2 and then check that
indeed P ′′5 = (5, 3 + α) = (−3 + α− α2).

◦ Modulo 7 we have x3+x+5 = (x−1)(x−3)2 so we obtain the ideal factorization (7) = (7, α−1)(7, α−3)2,
so that 7 is partially rami�ed and partially split.

◦ For P7 = (7, α− 1) we can compute similarly that 7/(α− 1) = −2− α− α2 so P7 = (α− 1) is principal.
However, to determine whether P ′7 = (7, α−3) is principal is trickier, since 7/(α−3) = 1

5 (−10−3α−α2)
so α− 3 is not a generator of this ideal. With some additional e�ort, however, one may verify that both
7 and α− 3 are divisible by α2 − 2 and that α2 − 2 ∈ P ′7, so that P ′7 = (α2 − 2).

◦ Finally, for (97) we have x3 + x + 5 = (x + 56)2(x + 82) so we obtain the ideal factorization (97) =
(97, 56 + α)2(97, 82 + α). We can see that 97, like 7, is partially rami�ed and partially split in OK .

• Exercise: For K = Q( 3
√

5), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK . (Recall
that OK = Z[α] as noted in an earlier exercise.)

• Exercise: For K = Q(α) where α3 − α + 1 = 0, compute the prime ideal factorizations of (2), (3), (5), (7),
and (23) in OK . (Recall that OK = Z[α] as noted in an earlier exercise.)

• Example: For K = Q(ζ5), compute the prime ideal factorizations of (2), (3), (5), (7), (11) in OK .

◦ Per our results we know OK = Z[ζ5] and that the minimal polynomial of ζ5 is Φ5(x) = x4+x3+x2+x+1.

◦ Modulo 2, 3, and 7 the polynomial Φ5(x) is irreducible, so (2), (3), and (7) are all inert.

◦ Modulo 5 we have Φ5(x) = (x− 1)4 so for P5 = (5,−1 + ζ5) we see (5) = P 4
5 , so (5) is totally rami�ed.

Indeed, since ζ5 − 1 divides 5, we see P5 = (1− ζ5) is actually principal.

◦ Modulo 11 we have Φ5(x) = (x + 2)(x + 6)(x + 7)(x + 8) so we see that (11) is totally split, with
(11) = (11, 2 + ζ5)(11, 6 + ζ5)(11, 7 + ζ5)(11, 8 + ζ5).

◦ Some of these ideals we can readily verify are principal, since NK/Q(2 + ζ5) = Φ5(−2) = 11, so 2 + ζ5
divides 11 and so (11, 2 + ζ5) = (2 + ζ5). Indeed, from this calculation we can in fact conclude that all of
the ideals are principal, since 11 = (2 + ζ5)(2 + ζ2

5 )(2 + ζ3
5 )(2 + ζ4

5 ) and so since each factor is an element
of norm 11, each element generates a prime ideal. (Try to identify which factor corresponds to which of
the four prime ideal factors of (11) given above!)

◦ We can in fact determine the general features of the factorization of an arbitrary prime ideal (p), which
requires determining how the polynomial Φ5(x) splits modulo p.

◦ Consider the �eld extension Fp(ζ5)/Fp, where ζ5 represents a primitive �fth root of unity over Fp. Since
all �nite �elds are splitting �elds, as soon as we adjoin one root, we get all the others, so all the irreducible
factors of f must be the same degree, and this degree equals the degree d of the extension Fp(ζ5)/Fp.

◦ Since then Fp(ζ5) = Fpd , we need only determine the smallest power pd such that Fpd contains an
element of multiplicative order 5. But since the multiplicative group of Fpd is cyclic of order pd − 1, we
are equivalently seeking the smallest d for which 5 divides pd − 1, which is simply the order of p as an
element of (Z/5Z)×.

◦ That order is 1 when p ≡ 1 (mod 5), 2 when p ≡ 4 (mod 5), and 4 when p ≡ 2, 3 (mod 5).
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◦ We conclude that (p) splits completely as (p) = P1P2P3P4 with e(Pi|p) = f(Pi|p) = 1 when p ≡ 1 (mod
5), that (p) splits as a product of two ideals (p) = Q1Q2 with e(Qi|p) = 1 and f(Qi|p) = 2 when p ≡ 4
(mod 5), and (p) is inert with (p) = R when e(R|p) = 1 and f(R|p) = 4 when p ≡ 2, 3 (mod 5).

• Exercise: For K = Q(ζ7), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK .
Determine also the general factorization behavior of (p) in terms of the residue class of p modulo 7.

0.17 (Oct 10) Student Presentations of HW2 Problems

0.18 (Oct 16) Computing Prime Ideal Factorizations, II

• Let us now generalize the prime factorization method we have been using so that it can apply to the general
situation of a ring of integers in an arbitrary number �eld extension. Here is the main result:

• Theorem (Dedekind-Kummer Factorization): Suppose that L/K is an extension of number �elds and α ∈ OL is
nonzero with minimal polynomialm(x) overK; note that the coe�cients ofm(x) are algebraic integers hence in
fact lie in OK . Further let P be any prime ideal of OK lying over an integer prime p not dividing [OL : OK [α]],
and suppose that m(x) factors in the residue �eld OK/P as m(x) = f1(x)e1 · · · fk(x)ek for distinct monic
irreducible polynomials f1, . . . , fk ∈ (OK/P )[x]. De�ne the ideals Qi = (P, fi(α)) = POL + fi(α)OL.

1. For each i either Qi = OL or OL/Qi is a �eld of degree deg(fi) over OK/P .
◦ Proof: Consider the quotient (OK/P )[x]/(fi(x)), which is in fact a �eld of degree deg(fi) over
OK/P since fi(x) is irreducible. This quotient is isomorphic to OK [x]/(P, fi(x)) since it is obtained
by taking the quotient of OK [x] by P and then by (fi(x)), and this is clearly equivalent to taking
the quotient by the ideal generated by P and fi(x).

◦ Now consider the ring homomorphism ϕ : OK [x]→ OL/Qi sending x 7→ α+Qi. The kernel of this
homomorphism is generated by m(x) and Qi hence it contains both fi(x) and P by hypothesis, and
therefore also contains the ideal (P, fi(x)) that they generate.

◦ This means ϕ descends to a homomorphism of OK [x]/(P, fi(x)) → OL/Qi. We claim this map is
onto, which is to say that OL = OK [α] + Qi. For this note that p ∈ Qi since Qi lies over P and P
lies over p: and then the index of OK [α] + Qi divides both the index [OL : OK [α]] and the index
[OL : pOL] = p[L:Q], but these are relatively prime by hypothesis.

◦ Now, �nally, because OK [x]/(P, fi(x)) is a �eld, the �rst isomorphism theorem yields the desired
result: either OL/Qi is the trivial ring (in which case Qi = OL) or OL/Qi is isomorphic to the �eld
OK [x]/(P, fi(x)) of degree deg(fi) over OK/P .

2. The ideals Q1, . . . , Qk are pairwise comaximal: Qi +Qj = OL for all i 6= j.

◦ Proof: By the Euclidean algorithm in (OK/P )[x], since fi(x) and fj(x) are relatively prime, there
exist polynomials hi(x) and hj(x) such that hi(x)fi(x) + hJ(x)fj(x) ≡ 1 (mod P ), which is to say,
there exists r ∈ P such that hi(x)fi(x) + hJ(x)fj(x)− r = 1.

◦ Now setting x = α yields hi(α)fi(α) + hj(α)fj(α) − r = 1, whence 1 ∈ (P, fi(α)) + (P, fj(α)) as
desired.

3. The ideal POL divides Qe11 · · ·Q
ek
k .

◦ Proof: First note that because
∏k
i=1 fi(x)ei = m(x) modulo P , setting x = α yields that

∏k
i=1 fi(α)ei =

m(α) = 0 modulo POL.
◦ Now since Qi = (POL, fi(α)) we see that Qe11 · · ·Q

ek
k is contained in (POL,

∏k
i=1 fi(α)ei) = POL

by the observation above. Since divisibility is equivalent to containment, the result follows.

4. The prime ideal factorization of POL is POL = Qe11 · · ·Q
ek
k , and also e(Qi|P ) = ei and f(Qi|P ) =

deg(fi).

◦ Proof: By (1), each of the ideals Qi is either equal to OL or a prime ideal of OL that lies over p with
f(Qi|P ) = deg(fi). (In the former case, which as we will see does not actually occur, we can view
f(Qi|P ) as being zero.)

◦ Additionally, by (2) we see that all of the prime ideals among Q1, . . . , Qk are distinct.
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◦ Finally, by (3) we know that POL divides Qe11 · · ·Q
ek
k , and therefore the prime ideal factorization of

POL must be of the form Qd11 · · ·Q
dk
k for some integers di ≤ ei.

◦ By the ef -theorem, we then have n = [L : K] =
∑k
i=1 di · f(Qi|P ) ≤

∑k
i=1 ei deg(fi) = deg(m) = n.

But this forces us to have equality everywhere, so we must have e(Qi|P ) = di = ei for each i, and
also f(Qi|P ) = deg(fi) for each i.

◦ In particular, none of the Qi can equal OL, so they are all prime ideals, and then so the prime ideal
factorization of POL is POL = Qe11 · · ·Q

ek
k .

• Aside from applying in general extensions and not just over Q, the other main improvement in this theorem
is that it does not require us to compute a basis for the ring of integers OL over OK , which may not exist at
all!

◦ Of course, there is a tradeo�: we are free to choose any α ∈ OL that is not in OK and compute with
respect to α, but the method does not allow us to compute the factorization of any prime ideal above
a prime p dividing the index [OL : OK [α]]. Fortunately, there are only �nitely many such primes, and
we may certainly try to factor those remaining ideals by choosing another α whose index is di�erent.
(Unfortunately, this may not always succeed: there exist examples where every choice of α yields an
index divisible by p.)

◦ In the situation where OL = OK [α] for some α, we of course have no di�culties, but there may not exist
such an α for general extensions L/K.

• Example: For K = Q( 3
√

10), �nd the prime ideal factorizations of (2), (5), (7), (11), and (3) in OK =

Z[1, 3
√

10, 1+ 3√10+ 3√100
3 ].

◦ We �rst try using α = 3
√

10 with minimal polynomial m(x) = x3 − 10.

◦ Using the integral basis {1, α, 1
3 (1 +α+α2)} computed in an earlier exercise, we can calculate disc(K) =

−300 and discK/Q(α) = −2700 so that [OK : Z[α]] = 3 (which agrees with the fact that d1 = 1 and
d2 = 3 for this α).

◦ Therefore, the Dedekind-Kummer method will apply with α to any prime p 6= 3.

◦ For p = 2 we see m(x) = x3 (mod 5) so 2 is totally rami�ed with (2) = P 3
2 where P2 = (2, α). One may

check in fact that P2 is principal and generated by −2 + α, which has norm 2.

◦ For p = 5 we see m(x) = x3 (mod 5) as well so 5 is also totally rami�ed with (5) = P 3
5 where P5 = (5, α).

One may check in fact that P5 is principal and generated by 5 + 2α+ α2, which has norm 5.

◦ For p = 7 we see m(x) is irreducible modulo 7, so 7 is totally inert.

◦ For p = 11 we see m(x) = (x + 1)(x2 − x + 1) (mod 11), so 11 is partially split with (11) = P11P
′
11

where P11 = (11, 1 + α) and P ′11 = (11, 1 − α + α2). One may similarly check that P11 = (1 + α) and
P ′11 = (1− α+ α2) are both principal.

◦ In order to factor the ideal p = 3, however, we cannot use the order Z[α] since its index is divisible (in
fact equal) to 3.

◦ Looking around for another simple order, we can try using the order Z[β] where β = 1
3 (1+α+α2), which

we have already shown is also an algebraic integer. In fact this will work, because after some calculation
we can �nd discK/Q(β) = −300 whence [OK : Z[β]] = 1. (This means in fact we could have just used
Z[β] for all our calculations.)

◦ We can �nd the minimal polynomial for β by computing the characteristic polynomial of the multiplication-
by-β map on K with respect to the �eld basis {1, α, α2}; this yields the minimal polynomial M(x) =
x3 − x2 − 3x− 3.

◦ Then for p = 3 we see M(x) = x2(x − 1) (mod 3), so 3 is partially rami�ed and partially split with
factorization (3) = P 2

3P
′
3 where P3 = (3, β) and P ′3 = (3,−1 + β). One may then verify that P3 = (β)

and P ′3 = (β − α) are both principal.

◦ Remark: If we had attempted to use the factorization procedure to factor (3) using the order Z[α], the
resulting factorization would be incorrect, since x3 − 10 = (x− 1)3 (mod 3), but in fact the ideal (3) is
not totally rami�ed.
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• Example: For K = Q(
√

5,
√

13), �nd the prime ideal factorizations of (3), (5), (13), and (2) in OK =

Z[
1 +
√

5

2
,

1 +
√

13

2
]. Compare these factorizations to the corresponding factorizations in OF for F = Q(

√
5).

◦ Using the integral basis {1, 1+
√

5
2 , 1+

√
13

2 , (1+
√

5)(1+
√

13)
4 } we obtained earlier for OK , we can compute

disc(K) = 52132.

◦ To compute factorizations we try using α =
√

5+
√

13
2 ∈ OK , which does have K = Q(α) since the four

Galois conjugates of α are αi = ±
√

5±
√

13
2 .

◦ Then the minimal polynomial of α over Q is m(x) =
∏
i(x − αi) = x4 − 9x2 + 4 and discK/Q(α) =∏

i<j(αi − αj)2 = 2652132, and so [OK : Z[α]] = 26.

◦ In F = Q(
√

5) we have instead the minimal polynomial M(x) = x2 − x− 1 for the generator β = 1+
√

5
2 .

◦ For p = 3 we see m(x) = (x2 +x− 1)(x2−x− 1) (mod 3), so 3OK = Q3Q
′
3 where Q3 = (3,−1 +α+α2)

and Q′3 = (3,−1− α+ α2).

◦ In F = Q(
√

5) since the polynomial M(x) = x2 − x− 1 is irreducible mod 3, we see that 3OF = P3 is a
prime ideal of O√−5. Thus, in the extension tower K/F/Q, the prime 3 is inert from Q to F , but splits
from F to K.

◦ For p = 5 we see m(x) = (x2 + 3)2 (mod 5), so 5OK = Q2
5 where Q5 = (5, 3 + α2).

◦ In F , since x2 − x − 1 = (x + 2)2 (mod 5), we see that 5OF = P 2
5 where P5 = (5, 2 + α). Thus, in the

extension tower K/F/Q, the prime 5 rami�es from Q to F , but the rami�ed prime P5 remains inert from
F to K.

◦ For p = 13 we see m(x) = (x2 + 2)2 (mod 13) we see that 13OK = Q2
13 where Q13 = (13, 2 + α2).

◦ In F , since x2 − x− 1 is irreducible mod 13, we see 13OF = P13 is a prime ideal of O√−15. Thus, in the
extension tower K/F/Q, the prime 13 is inert from Q to F , but then rami�es from F to K.

◦ To �nd the factorization of p = 2 we cannot directly use Dedekind-Kummer, but instead we can exploit
the intermediate �eld F . Explicitly, in OF since M(x) = x2 − x− 1 is irreducible modulo 2, we see that
2OF = P2 is a prime ideal in OF .

◦ Now since OK = OF [ 1+
√

13
2 ], we may use Dedekind-Kummer to �nd the factorization of 2OK = P2OK in

the extension K/F . To do this we must factor the minimal polynomial m̃(x) = x2 − x− 3 of γ = 1+
√

13
2

in the residue �eld OK/P2
∼= F4.

◦ We can see that m̃(x) does factor over F4 (since F4 is the degree-2 extension of F2, all quadratic poly-
nomials split in F4): explicitly, with OK/P2

∼= Z[β]/(2) ∼= F2[y]/(y2 − y − 1) where y corresponds to

β = 1+
√

5
2 , we obtain the factorization m̃(x) = (x+ y)(x+ y+ 1) (note that all of the coe�cients are still

modulo 2).

◦ Therefore, we see that 2OK = Q2Q
′
2 where Q2 = (2, γ + β) and Q′2 = (2, γ + β + 1).

◦ Exercise: For K = Q(
√

5,
√

13), compare the prime ideal factorizations of (2), (3), (5), and (7) in K to
those in the other two sub�elds Q(

√
13) and Q(

√
65).

• Exercise: ForK = Q(
√

3,
√

7), �nd the prime ideal factorizations of (2), (3), (5), and (7) inOK = Z[

√
3 +
√

7

2
].

Compare these factorizations to the corresponding factorizations in OF for F = Q(
√

3).

0.19 (Oct 17) Factorizations and Rami�cation

• In fact, as originally shown by Dedekind, the only primes for which we may fail to obtain a factorization using
the Dedekind-Kummer method are fairly small.

• Theorem (Dedekind): Suppose K is a number �eld and p is a prime integer. If pOK has prime ideal factor-
ization P e11 · · ·P

ek
k in OK , then there exists some α ∈ OK with p not dividing the index [OK : Z[α]] if and

only if there exist distinct monic irreducible polynomials g1(x), . . . , gk(x) ∈ Fp[x] such that deg(gi) = f(Pi|p)
for each 1 ≤ i ≤ k. As a consequence, if there does not exist any such α, then p < [K : Q].
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◦ If there exists such an α, then by the factorization theorem proven earlier, then the polynomials
g1(x), . . . , gk(x) can simply be taken as the irreducible factors of m(x), since as we noted in the proof of
that theorem, we have deg(gi) = f(Pi|p).
◦ We only sketch the proof of the converse: suppose we have distinct monic polynomials g1(x), . . . , gk(x) ∈
Z[x] whose reductions are irreducible modulo p and where deg(gi) = f(Pi|p). For each Pi let Ii =∏
j 6=i P

ej
j so that pOK = P eii Ii.

◦ Now choose ai ∈ OK such that gi(ai) ≡ 0 (mod Pi), gi(ai) 6≡ 0 (mod P 2
i ), and ai ≡ 0 (mod Ii): such

a choice is always possible because the �eld OK/Pi is a �nite �eld of degree f(Pi|p) = deg(gi) over Fp
which is the splitting �eld of all irreducible polynomials of that degree, so gi has some root ai mod Pi.
If this root gives gi(ai) ≡ 0 (mod P 2

i ) then simply add any element of Pi not in P 2
i to it: since gi is

irreducible it cannot have a repeated root modulo Pi, so the new choice must have gi(ai) 6≡ 0 (mod P 2
i ).

Finally, the third condition ai ≡ 0 (mod Ii) can be added via the Chinese remainder theorem.

◦ Finally, use the Chinese remainder theorem to construct an element α ≡ ai (mod P 2
i ) for each 1 ≤ i ≤ k

that generates K/Q (this last condition can be included by the exercise below). With a somewhat tedious
calculation, one may then show p does not divide [OK : Z[α]], so this element has the desired property.

◦ Exercise: Let K be a number �eld and let I be a nonzero ideal of OK with c ∈ OK arbitrary. Show that
there are in�nitely many elements a ≡ c (mod I) such that K = Q(a). [Hint: Let b ∈ OK generate K/Q
and N = N(I). Show that in�nitely many ck = a+ kNb for k ∈ Z are generators of K/Q.]
◦ For the bound p < [K : Q] we �rst recall another fact:

◦ Exercise: Let p be a prime and let fp(n) be the number of monic irreducible polynomials of degree n in
Fp[x]. Show that fp(n) = 1

n

∑
d|n µ(d)pn/d where µ denotes the Möbius µ-function.

◦ To prove the bound, suppose that p ≥ [K : Q]. Then for any 1 ≤ m ≤ [K : Q], by the ef -theorem there
can be at most [K : Q]/m ≤ p/m prime ideals in the factorization of pOK with inertial degree f equal
to m.

◦ But by the exercise above, we have fp(m) > pm/m ≥ p/m, and so there do exist at least as many monic
irreducible polynomials in Fp[x] of degree m as prime ideal factors of pOK having inertial degree m. The
converse theorem above then immediately yields that there exists some α ∈ OK with p not dividing the
index [OK : Z[α]], as required.

◦ Exercise: Suppose that K/Q is an extension of degree 3. Show that if p is an odd prime, then there
exists some α ∈ OK such that [OK : Z[α]] is not divisible by p. Show also that if 2 splits completely in
K, then for any α ∈ OK , the index [OK : Z[α]] is divisible by 2.

• We will mention also that there is a way to extend the Dedekind-Kummer factorization method to handle the
situations where p divides the index [OK : Z[α]], as shown by Ore in 1926:

• Theorem (Ore Factorization Theorem): Let K = Q(α) where α ∈ OK has minimal polynomial m(x) over Q,
let p be an integer prime lying below a prime ideal P of OK , and suppose that pd is the exact power of p
dividing the discriminant of α. If m(x) has a factorization modulo pd+1 of the form m(x) = g1(x) · · · gr(x) for
irreducible polynomials g1, . . . , gr, then the prime ideal factorization of p in OK is pOK = P e11 · · ·P err where
the Pi are distinct prime ideals and e(Pi|p)f(Pi|p) = deg(gi).

◦ This theorem also extends naturally to the situation of a relative extension L/K, which we will not
bother with.

◦ We will not prove this theorem, but the fundamental idea is to lift the isomorphism given by the Chinese
remainder theorem that we described in the Dedekind-Kummer factorization procedure from Z/pZ to
the p-adic ring Zp.
◦ More explicitly, the distinct components of the p-adic factorization ofm(x) will correspond to the distinct
prime powers P eii , so there are the same number of each and then comparing the extension degrees of
the corresponding local residue �elds yields the second statement. Finally, one uses Hensel's lemma to
show that the factorization of m(x) modulo pk for increasing k stabilizes for k ≥ d + 1, and therefore
the factorization structure of m(x) modulo pd+1 will be the same as the p-adic factorization structure of
m(x) obtained by taking an appropriate inverse limit of factorizations modulo pk as k →∞.
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◦ We will note that factoring polynomials over Z/pdZ is not as convenient as factoring them in Z/pZ, since
factorizations are no longer unique (their structures, however, still are): for instance, the polynomial
x2− 1 has four roots and four di�erent factorizations over Z/8Z, namely as (x− r)2 for r = 1, 3, 5, 7, but
each individual factorization only has a single repeated factor.

◦ Example: For K = Q( 3
√

10) using α = 3
√

10, we may observe that disc(α) = −223352 so the exact power
of 3 dividing the discriminant of α is 33. Factoring m(x) = x3 − 10 modulo 34 we �nd a factorization
(x−13)(x2 +13x+7), and so by Ore's theorem we see that 3OK is the product of two prime powers, one
of which has ef = 1 and the other of which has ef = 2. In fact, because 3 is rami�ed in K (as follows
from results we will establish shortly), at least one factor must have rami�cation index greater than one;
thus, we can conclude that 3OK factors as P 2

1P2 for some prime ideals P1 and P2 each of norm 3.

• Our goal now is to study the phenomenon of rami�cation. To motivate some of the constructions, let us �rst
review the examples of rami�ed primes we have already found.

◦ In Q(i), of discriminant 2, the only rami�ed prime is (2) = (1 + i)2.

◦ In Q(
√
−5), of discriminant −20, the primes (2) = (2, 1 +

√
−5)2 and (5) = (

√
−5)2 are rami�ed. The

primes 3, 7, and 11 are unrami�ed.

◦ In Q( 3
√

2), of discriminant −108, the primes (2) = ( 3
√

2)3 and (3) = (1 + 3
√

2)3 are totally rami�ed, while
the primes 5, 7, and 31 are unrami�ed.

◦ In Q(ζ5), of discriminant 625, the prime (5) = (1− ζ5)4 is totally rami�ed, while the primes 2, 3, 7, and
11 are unrami�ed.

◦ In Q( 3
√

10), of discriminant −300, the primes (2) = (−2 + 3
√

10)3 and (5) = (5 + 2 3
√

10 + 3
√

100)3 are
totally rami�ed, while (3) = P 2

3P
′
3 was rami�ed (but not totally).

◦ In Q(
√

5,
√

13), of discriminant 52132, the primes 5 and 13 ramify, but only partially: 5 rami�es from Q
to Q(

√
5) while 13 rami�es from Q(

√
5) to Q(

√
5,
√

13).

• We can see quite clearly that in all of our examples, the rami�ed primes are precisely the ones dividing the
discriminant of the �eld. In the situation where OK = Z[α] we can show this quite directly:

• Exercise: Suppose K = Q(α) where OK = Z[α]. Prove that an integer prime p is rami�ed in K if and only if
p divides the discriminant disc(K). [Hint: Note disc(K) = disc(m(x)) where m(x) is the minimal polynomial
of α over Q, and apply Dedekind-Kummer.]

• In the general case, we have to expend a bit more e�ort. Let us prove half of the main result now:

• Proposition (Rami�cation and Discriminants): Suppose K is a number �eld and p is an integer prime. If p
rami�es in K, then p|disc(K).

◦ Proof: Suppose P is a prime ideal of OK lying above p ∈ Z with e(P |p) > 1, and write pOK = PI where
by hypothesis I is a product that includes all of the ideals lying above p, hence is contained in all of
these ideals.

◦ Let α be an element of I not in pOK (note I properly divides hence properly contains OK): then by
hypothesis α is contained in all primes of OK lying above p, but α is not an OK-multiple of p.
◦ Let L be the Galois closure of K/Q: then since α is contained in all primes of OK lying above p, it is
also contained in all primes of OL lying above p.

◦ For any σ ∈ Gal(L/Q) and any prime ideal Q of OL lying above p, we can see easily that σ−1(Q) is also
a prime ideal lying above p, hence σ−1(Q) contains α, and so Q contains σ(α).

◦ Now choose an integral basis β1, . . . , βn of OK : then α = a1β1 + · · ·+ anβn for some ai ∈ Z, where not
all of the ai are divisible by p because α 6∈ pOK . Suppose without loss of generality that p does not
divide a1.
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◦ Then letting σ1, . . . , σn be the complex embeddings of K, we have

∣∣∣∣∣∣∣∣∣
σ1(α) σ1(β2) · · · σ1(βn)
σ2(α) σ2(β2) · · · σ2(βn)
...

...
. . .

...
σn(α) σn(β2) · · · · · · σn(βn)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a1σ1(β1) + · · ·+ anσ1(βn) σ1(β2) · · · σ1(βn)
a1σ2(β1) + · · ·+ anσ2(βn) σ2(β2) · · · σ2(βn)

...
...

. . .
...

a1σn(β1) + · · ·+ anσn(βn) σn(β2) · · · · · · σn(βn)

∣∣∣∣∣∣∣∣∣ = a1

∣∣∣∣∣∣∣∣∣
σ1(β1) σ1(β2) · · · σ1(βn)
σ2(β1) σ2(β2) · · · σ2(βn)

...
...

. . .
...

σn(β1) σn(β2) · · · · · · σn(βn)

∣∣∣∣∣∣∣∣∣ and
so disc(α, β2, . . . , βn) = a2

1disc(β1, . . . , βn) = a2
1disc(K).

◦ Now by our calculations above, we know that σi(α) ∈ Q for every prime ideal Q of OL lying over p,
hence Q also contains disc(α, β2, . . . , βn). But since disc(α, β2, . . . , βn) is an integer, it is contained in
Q ∩ Z = pZ.
◦ Finally, since a1 is not divisible by p, we conclude that p|disc(K), as desired.

• We would like to establish the converse of this result, and extend it to relative extensions.

◦ As motivation, note that for K = Q(
√

5,
√

13), the primes 5 and 13 ramify in di�erent ways: we can
see that 5 rami�es in the sub�eld Q(

√
5) and is unrami�ed from Q(

√
5), while 13 is unrami�ed in the

sub�eld Q(
√

5) and then rami�es from Q(
√

5) to K. (Additionally, the situation is entirely reversed in
the sub�eld Q(

√
13).)

0.20 (Oct 21) Rami�cation and Di�erents, I

• In order to study rami�cation in relative extensions, we will need to construct a discriminant associated to
an extension L/K.

◦ However, we cannot easily adapt the de�nition we used for the discriminant over Q, since it ultimately
relies on the existence of an integral basis of OK over Z, but a general extension OL over OK may not
possess an integral basis.

◦ We will take an approach involving the construction of a related object known as the di�erent:

• De�nition: Let L/K be an extension of number �elds. For a fractional ideal A of L, we de�ne its codi�erent
A∗ to be the set A∗ = {x ∈ L : trL/K(xA) ⊆ OK} of all elements of L such that the trace of x times all
elements of A lies in OK (equivalently, is an algebraic integer).

◦ We can see that when A is generated as an OK-module by a1, . . . , an, then A
∗ = {x ∈ L : trL/K(xai) ∈

OK for 1 ≤ i ≤ n}.
◦ Example: For L = Q(i), K = Q, and A1 = Z[i], we see that A∗1 consists of all x + iy ∈ Q(i) such that

tr(x+ iy) = 2x and tr(i(x+ iy)) = −2y are integral, so that A∗1 = 1
2Z[i]. For A2 = (1+ i)Z[i], we see that

A∗2 consists of all x+iy ∈ Q(i) such that tr((1+i)(x+iy)) = 2(x−y) and tr((−1+i)(x+iy)) = −2(x+y)
are integral, so that A∗2 = 1+i

4 Z[i].

• Let us establish some basic properties of the codi�erent:

• Proposition (Properties of Codi�erents): Let L/K be an extension of number �elds and A be a nonzero
fractional ideal of L/K.

1. The codi�erent A∗ is a nonzero fractional ideal of L/K.

◦ Proof: Suppose x1, x2 ∈ A∗, r ∈ OL, and a ∈ A. Note then that ra = b is also an element of A.

◦ We have trL/K((x1 + rx2)a) = trL/K(x1a) + trL/K(x2b) ∈ OK since both traces are in OK by
assumption. Therefore, x1 + rx2 ∈ A∗ as well, and so since trivially 0 ∈ A∗ we see that A∗ is an
R-submodule of L.

◦ To see it is a fractional ideal we must construct some nonzero d ∈ OL with dA∗ ⊆ OL.
◦ For this, choose a �eld basis α1, . . . , αn for L/K where each αi ∈ OL, and let b be a nonzero element
of A ∩ OK (e.g., NL/K of a nonzero element in A ∩ OL).
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◦ We claim that the choice d = bdiscL/K(α1, . . . , αn) = det[{trL/K(αiαj)}1≤i,j≤n] works: it is nonzero
since the αi are linearly independent, and is in OL since b and the αi are.

◦ For any x ∈ A∗, since the αi are a basis for L/K we may write x = c1α1 + · · · + cnαn for some
ci ∈ K. Observe that bαi ∈ A for each i and thus trL/K(xbαi) ∈ OK by assumption that x ∈ A∗.
◦ But now by linearity of the trace we have trL/K(xbαi) = b

∑n
j=1 cjtrL/K(ωiωj) for each i. Solv-

ing the resulting system for the ci using Cramer's rule shows that ci =
det(Mi)

det(M)
where M =

{trL/K(αiαj)}1≤i,j≤n and Mi is the matrix obtained by replacing the ith column by trL/K(xbαi)/b.

◦ Then det(Mi) ∈ b−1OK and so cid = cib det(M) ∈ OK for each i. Hence dx = (dc1)α1 + · · · +
(dcn)αn ∈ OL, so the given choice of d does work, as claimed.

◦ Finally, if A = e−1I, then eA ⊆ OL whence trL/K(eA) ⊆ OK , so e ∈ A∗ yields a nonzero element of
A∗.

2. The codi�erent A∗ satis�es AA∗ = O∗L.
◦ Proof: Observe x ∈ A∗ ⇐⇒ trL/K(xA) ⊆ OK ⇐⇒ trL/K(xAOL) ⊆ OK ⇐⇒ xA ⊆ O∗L ⇐⇒
x ∈ A−1O∗L.
◦ Thus, A∗ = A−1OL so AA∗ = O∗L.
◦ Exercise: If A is a nonzero fractional ideal of OL, show that A∗∗ = A.

3. If I is any nonzero integral ideal of OL, then (I∗)−1 is also an integral ideal of OL, and in fact it is
contained in I.

◦ Exercise: Suppose A is a nonzero fractional ideal of OL. Show that A−1 ⊆ A∗.
◦ Exercise: Suppose A,B are nonzero fractional ideals of OL. Show that if A ⊆ B then B−1 ⊆ A−1

and B∗ ⊆ A∗.
◦ Proof: If I ⊆ OL by the �rst exercise above we have I−1 ⊆ I∗. Then by the second exercise we see

(I∗)−1 ⊆ (I−1)−1 = I, and so (I∗)−1 is an integral ideal of OL contained in I.

4. When K = Q, if A has an integral basis α1, . . . , αn with dual basis α∗1, . . . , α
∗
n (so that trL/Q(αiα

∗
j ) = 0

for i 6= j and 1 when i = j), then α∗1, . . . , α
∗
n is an integral basis for A∗.

◦ As we have previously noted in our earlier discussion of discriminants, the dual basis always exists
and can be computed by solving the associated linear system using Cramer's rule.

◦ Proof: Let x ∈ L and y ∈ A. Then there exist unique xi ∈ Q with x = x1α1 + · · ·+xnαn and unique
yi ∈ Z with y = y1α

∗
1 + · · ·+ ynα

∗
n.

◦ Then trL/Q(xα∗j ) = trL/Q(
∑n
i=1 xiαiα

∗
j ) =

∑n
i=1 xitrL/Q(αiα

∗
j ) = xj , so we see x ∈ A∗ if and only if

each xj is an integer.

◦ Exercise: In K = Q(
√
−5), compute a basis of A∗ for A = OK and for A = (2, 1 +

√
−5)OK .

• By (1) in the proposition above, we can see there is a relationship between the codi�erent A∗ and the
discriminant.

◦ In particular, if we consider the codi�erent O∗L, then since 1 ∈ OL we may take b = 1 in the argument
in (1) to see that O∗L ⊆ d−1OL where d = discL/K(α1, . . . , αn) for any �eld basis α1, . . . , αn of L/K
consisting of algebraic integers.

◦ Taking inverses, we see that the inverse codi�erent satis�es (O∗L)−1 ⊇ (d−1OL)−1 = dOL.
◦ We can see, then, that a somewhat natural candidate for an analogue to the discriminant for the extension
L/K would be the ideal (O∗L)−1, since it contains all of the discriminants discL/K(α1, . . . , αn) of n-tuples
of algebraic integers in OL.

• De�nition: Let L/K be an extension of number �elds. For any nonzero ideal I of OL, we de�ne the
di�erent of I, DL/K(I), to be the ideal (I∗)−1, and we de�ne the di�erent of L/K, denoted DL/K , to be
the ideal DL/K(OL) = (O∗L)−1.

◦ Exercise: Show that for any ideal I of OL, we have DL/K(I) = DL/K · I: thus, we may view the notation
DL/K(I) as representing a product or a function, interchangeably.

◦ We will generally use the DL/K notation for di�erents instead of the star notation, since the star notation
does not indicate the underlying �eld extension.
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• Proposition (Properties of Di�erents): Let L/K/F be an extension tower of number �elds.

1. The di�erent DL/F equals the product DL/KDK/F .

◦ Proof: Recall �rst that for any α ∈ L we have trL/F (α) = trK/F (trL/K(α)).

◦ Now let a ∈ D−1
K/F (so that a ∈ K and trK/F (aOK) ⊆ OF ) and b ∈ D−1

L/K (so that b ∈ L and

trL/K(bOL) ⊆ OK).
◦ Then trL/F (ab) = trK/F (trL/K(ab)) = trK/F (atrL/K(b)) ∈ trK/F (aOK) ⊆ OF .
◦ Thus, every element of D−1

L/KD
−1
K/F has trace in OF , so D−1

L/KD
−1
K/F ⊆ D−1

L/F whence DL/F ⊆
DL/KDK/F .

◦ For the other containment, suppose c ∈ D−1
L/F , so that trL/F (cOL) ⊆ OF .

◦ Then trK/F (trL/K(cOL)) = trL/F (cOL) ⊆ OF , so by de�nition this means trL/K(cOL) ⊆ D−1
K/F

hence DK/F trL/K(cOL) ⊆ OF hence trL/K(DK/F cOL) ⊆ OF ⊆ OK hence DK/F c ⊆ D−1
L/K hence

c ∈ D−1
L/KD

−1
K/F .

◦ We conclude that D−1
L/F ⊆ D

−1
L/KD

−1
K/F whence DL/KDK/F ⊆ DL/F , so we obtain equality.

2. If L/K is Galois and σ ∈ Gal(L/K) is any Galois automorphism, then σ(DL/K) = DL/K .

◦ Proof: For any x ∈ O∗L, observe that trL/K(σ(x)OL) = trL/K(xσ−1(OL)) = trL/K(xOL) ⊆ OK and
so σ(x) ∈ O∗L also.

◦ Thus, σ(O∗L) ⊆ O∗L. Similarly we see σ−1(O∗L) ⊆ O∗L hence applying σ we see O∗L ⊆ σ(O∗L) so
O∗L = σ(O∗L).

◦ Finally, since Galois automorphisms clearly commute with taking inverses of fractional ideals, we
have σ(DL/K) = σ(O∗L)−1 = [σ(O∗L)]−1 = (O∗L)−1 = DL/K .

3. For any ideals I of OK and J of OL, we have trL/K(J) ⊆ I if and only if J ⊆ D−1
L/KI.

◦ Proof: Observe trL/K(J) ⊆ I ⇐⇒ I−1trL/K(J) ⊆ OK ⇐⇒ trL/K(I−1J) ⊆ OK ⇐⇒ I−1J ⊆
D−1
L/K ⇐⇒ J ⊆ D−1

L/KI.

4. We have NK/Q(DK/Q) = |disc(K)|.
◦ Exercise: Suppose α1, . . . , αn is a basis ofK/Q with dual basis α∗1, . . . , α

∗
n. Show that disc(α∗1, . . . , α

∗
n) =

disc(α1, . . . , αn)−1. [Hint: Show that the product of the matrices {σi(αj)}1≤i,j≤n and the transpose
of {σi(α∗j )}1≤i,j≤n is the identity matrix.]

◦ Proof: Let α1, . . . , αn be an integral basis of OK with dual basis α∗1, . . . , α
∗
n, which by (4) of our

previous proposition we know is an integral basis for O∗K = D−1
K/Q.

◦ Let m be a positive integer such that mα∗1, . . . ,mα
∗
n are all integers, and consider the ideal I =

mD−1
K/Q of OK ; then D−1

K/Q = m−1I.

◦ By properties of ideal norms and the exercise above, we have NK/Q(DK/Q)2 =
NK/Q(m)2

NK/Q(I)2
=

|disc(K)|m2n

discK/Q(mα∗1, . . . ,mα
∗
n)

=
|disc(K)|

discK/Q(α∗1, . . . , α
∗
n)

= discK/Q(α1, . . . , αn) |disc(K)| = |disc(K)|2.

◦ Rearranging and taking the square root then yields NK/Q(DK/Q) = |disc(K)| immediately.

5. For any extension L/K of number �elds, disc(K)[L:K] divides disc(L).

◦ Proof: By (1) with F = Q, we have DL/Q = DL/KDK/Q. Taking norms yields NL/Q(DL/Q) =

NL/Q(DL/K)NL/Q(DK/Q) = NL/Q(DL/K)NK/Q(DK/Q)[L:K].

◦ Now applying (4) yields discL = ±NL/Q(DL/K)(discK)[L:K], so disc(K)[L:K] divides disc(L).

6. Suppose that L = K(α) for a generator α ∈ OL and let m(x) ∈ OK [x] be the minimal polynomial of α
over K. For the (fractional) ideal A = OK [α] = OK ⊕OKα⊕ · · · ⊕OKαn−1 where n = [L : K], we have

A∗ =
1

m′(α)
A.

◦ Proof: Let r1, . . . , rn be the various complex embeddings of α. Since m(x) =
∏n
i=1(x− ri), di�eren-

tiating and setting x = ri yields m
′(rj) =

∏
i6=j(rj − ri) =

m(x)

x− rj
|x=rj .
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◦ Thus, the polynomial
1

m′(rj)

m(x)

x− rj
evaluates to 1 when x = rj and (clearly) to 0 when x is equal

to any other ri.

◦ Multiplying by rk+1
j and then summing over j then shows that the polynomial

∑n
j=1

rk+1
j

m′(rj)

m(x)

x− rj
evaluates to rk+1

j for each 1 ≤ j ≤ n. But the same is true for the polynomial xk+1 for 1 ≤ k ≤ n−2,
and therefore since each polynomial has degree at most n− 1, they must be equal. For k = n− 1 we
can see that the same statement holds for xn −m(x) in place of xn.

◦ We conclude that
∑n
j=1

rk+1
j

m′(rj)

m(x)

x− rj
=

{
xk+1 for 0 ≤ k ≤ n− 2

xn −m(x) for k = n− 1
.

◦ Setting x = 0, we see trL/K(
αk

m′(α)
) =

∑n
j=1

rkj
m′(rj)

= − 1

m(0)

∑n
j=1

rk+1
j

m′(rj)

m(0)

−rj
=

{
0 for 0 ≤ k ≤ n− 2

1 for k = n− 1
.

Therefore,
αk

m′(α)
∈ A∗ for each 1 ≤ k ≤ n− 1. Hence

1

m′(α)
A ⊆ A∗.

◦ Conversely, suppose b ∈ A∗, and suppose m(x) = xn + cn−1x
n−1 + · · · + c0. Then for p(x) =∑n

i=1 bi
m(x)

x− ri
where bi is the ith complex embedding of b, we see from the calculations above that

p(x) =
∑n
j=1 cj

∑j−1
k=0 x

ktrL/K(bαj−k−1).

◦ Since b ∈ A∗ each of the traces is in OK , so p(x) ∈ OK [x]. Then bm′(α) = p(α) ∈ A so b ∈ 1

m′(α)
A.

This means A∗ ⊆ 1

m(α)
A, so we get equality as claimed.

7. Suppose that L = K(α) for a generator α ∈ OL with minimal polynomial m(x). Then m′(α) ∈ DL/K .

◦ Proof: Letting A = OK [α], since A ⊆ OL we see O∗L ⊆ A∗, which is to say, d−1
L/K ⊆ A

∗.

◦ By (6) we have A∗ =
1

m′(α)
A hence d−1

L/K ⊆
1

m′(α)
A hence m′(α) ∈ dL/KA ⊆ dL/K .

0.21 (Oct 23) Rami�cation and Di�erents, II

• We can see from (6) and (7) in the proposition above that there is an interesting connection between the
di�erent and derivatives.

◦ In fact, di�erents are quite closely tied to the general notion of a derivation in a commutative ring,
but giving a full discussion of this topic would take us somewhat far a�eld, so we will just give a brief
summary.

• De�nition: Let R be a commutative ring with 1 andM be an R-module. A derivation is a function d : R→M
of additive groups such that d(r + s) = d(r) + d(s) and d(rs) = rd(s) + sd(r) for all r, s ∈ R.

◦ In other words, a derivation is an additive function that also obeys the Leibniz formula for the product
rule.

◦ Example: For any commutative ring R, the usual derivative map D : R[x]→ R[x] with D(f(x)) = f ′(x)
is a derivation.

◦ Exercise: Suppose R is a subring of S and d : S → M is a derivation such that d(r) = 0 for all r ∈ R.
Prove the �chain rule� for polynomials: for any p(x) ∈ R[x] and any a ∈ S, show that d(p(a)) = p′(a)d(a)
where p′ is the usual formal derivative of p.

◦ When S is also a ring, a derivation d : R→ S is essential when the image d(R) contains an element that
is not a zero divisor of S.

• Theorem (Derivations and Di�erents): Let L/K be an extension of number �elds. If I is an ideal of OL, then
I divides the di�erent DL/K if and only if there exists an essential derivation d : S → S/I vanishing on OK .

◦ We will not prove this theorem, as the details are rather technical and not especially enlightening.

48



• Our main result is the close connection between the di�erent and rami�ed primes:

• Theorem (Di�erents and Rami�cation): Let L/K be an extension of number �elds, and let Q be a nonzero
prime ideal of OL lying over the prime ideal P of OK , lying over the integer prime p.

1. The power Qe(Q|P )−1 divides the di�erent DL/K .

◦ Proof: Let L̂ be the Galois closure of L/K and let σ1, . . . , σn be the complex embeddings of L,
viewed as elements of Gal(L̂/L).

◦ Also let POL = Qe(Q|P )I, where by de�nition Q does not divide I.

◦ Let x ∈ QI and take N such that pN exceeds the rami�cation index of any prime ideal dividing

POL. Then we have xp
N ∈ (QI)p

N ⊆ P .
◦ Applying σi yields σi(x)p

N ⊆ σ(POK) = P , and now summing over i shows trL/K(xp
N

) ∈ P .
◦ Then trL/K(x)p

N

= [
∑n
i=1 σi(x)]p

N ≡
∑n
i=1 σi(x

pn) = trL/K(xp
N

) (mod POL) since the pN th power
map is additive in characteristic p. But since both elements are in OK , the congruence also holds
modulo P .

◦ Thus, we see that trL/K(x)p
N ∈ P . But since P is a prime ideal, that means trL/K(x) ∈ P .

◦ This means trL/K(QI) ⊆ P , so by properties of the di�erent, that implies QI ⊆ D−1
L/KP hence

DL/KQI ⊆ P hence P = Qe(Q|P )I divides DL/KQI hence Qe(Q|P )−1 divides DL/K , as claimed.

2. If Q is tame (so that p does not divide e(Q|P )), then Qe(Q|P ) does not divide the di�erent DL/K .

◦ Exercise: Let Q be a nonzero prime ideal of OL. Show that the zero divisors in OL/Qe are the
elements of Q/Qe.

◦ Proof: Suppose p does not divide e = e(Q|P ) and let d : OL → OL/Qe be a derivation.

◦ By the previous theorem, the claimed result is then equivalent to saying that d(x) is a zero divisor
(or zero) for all x ∈ OL.
◦ Let π ∈ P\P 2 and Π ∈ Q\Q2. Then the prime factorization of the fractional ideal A = (Π−eπ)
has no factors of Q, so A = b−1I for some b 6∈ Q and some I not divisible by Q, and thus letting
a = bΠ−eπ we see that a, b ∈ OL\Q and π = Πea/b.

◦ Now we have 0 = πd(b) + bd(π) = d(πb) = d(Πea) = eΠe−1d(Π)a modulo Qe, so since none of e,
Πe−1, or a are zero modulo Qe (here we use the fact that p does not divide e), that means d(Π) is a
zero divisor (or zero) in OL/Qe.
◦ Since the only zero divisors in OL/Qe are the elements of Q/Qe that means d(Π) ∈ Q/Qe.
◦ Now if x ∈ OL has x ∈ Q, then using a similar argument as for π above, there exist r, s ∈ OL and s
not in Q such that x = Πr/s: then sd(x) + xd(s) = d(sx) = d(Πr) = rd(Π) + Πd(r) ∈ Q/Qe.

◦ But since xd(s) ∈ Q/Qe, this means sd(x) ∈ Q/Qe and hence since s 6∈ Q that means d(x) ∈ Q/Qe,
so it is a zero divisor.

◦ Finally, if x 6∈ Q, then by Lagrange's theorem in OL/Q we know that xN(Q)−1 ≡ 1 (mod Q), so
xN(Q)−1 = 1 + t for some t ∈ Q.

◦ Then d(t) = d(1 + t) = d(xN(Q)−1) = (N(Q) − 1)xN(Q)−1d(x) and since N(Q) is divisible by p,
neither N(Q)− 1 nor xN(Q)−1 is zero modulo Q, so we must have d(x) ∈ Q/Qe and so d(x) is again
a zero divisor.

3. For any prime ideal Q of OL, the exact power of Q dividing the di�erent DL/K is ≥ e(Q|P ) − 1, and
equality holds if Q is tame (i.e., tamely rami�ed or unrami�ed).

◦ Proof: Immediate from (1) and (2), along with the observation that if Q is wildly rami�ed, then
e(Q|P ) is divisible by p hence e(Q|P )− 1 > 1.

◦ Remark: We will later be able to give a formula for the power of Q dividing the di�erent when Q is
wildly rami�ed as well.

4. There are only �nitely many prime ideals of OL that are rami�ed in L/K, and they are precisely the
prime ideal factors of the di�erent DL/K .

◦ Proof: By (3), we see that Q divides the di�erent if and only if e(Q|P ) > 1, which is to say when
Q is rami�ed. Since the di�erent has only �nitely many prime ideal factors, there are only �nitely
many rami�ed primes.
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5. For an extension K/Q, an integer prime p is rami�ed if and only if p divides disc(K).

◦ Proof: Immediate from (4) and the di�erent norm formula NK/Q(DK/Q) = |disc(K)|.

• As an application of the di�erent, we can show that there exist unrami�ed �eld extensions (i.e., �eld extensions
with no rami�ed primes).

◦ Exercise: Show that L/K is unrami�ed if and only if disc(L) = ±disc(K)[L:K].

• Example: Show that the extension Q(
√

5,
√

13)/Q(
√

65) is unrami�ed.

◦ Letting L = Q(
√

5,
√

13) and K = Q(
√

65), we see L = K(
√

5) = K(
√

13).

◦ The di�erent DL/K , by our results, contains m′(α) for any α ∈ OL generating L/K.

◦ Taking α = 1+
√

5
2 with minimal polynomial x2 − x − 1 shows

√
5 ∈ DL/K and taking α = 1+

√
13

2 with

minimal polynomial x2 − x− 3 shows that 2α− 1 =
√

13 ∈ DL/K .

◦ But the ideal generated by
√

5 and
√

13 is all of OL since it contains 5 and 13 hence also their integer
gcd 1. Thus, DL/K = OL, and so by our results above, that means no primes ramify in the extension
L/K.

◦ Alternatively, using the discriminant, we can compute that disc(L) = 52132 using an integral basis to see
that the only primes that ramify in L/Q are 5 and 13, so these are the only possible primes that could
ramify in L/K.

◦ But then we can just check directly using Dedekind-Kummer that neither 5 nor 13 rami�es in L/K, and
so L/K is unrami�ed.

◦ Even if we did not have an integral basis for OL already computed, we could just �nd the discriminant
of an element of OL generating L/Q, which would at worst add �nitely many extra primes to check.

• Exercise: Show that the extension Q(
√
−3,
√

5)/Q(
√
−15) is unrami�ed.

• Exercise: Let α3 − α− 1 = 0. Show that the extension Q(α,
√
−23)/Q(

√
−23) is unrami�ed.

0.22 (Oct 24) The Ideal Class Group

• Now that we have a better understanding of prime ideal factorizations and how to compute them, and about
rami�cation, let us return to study the question of unique factorization once more.

◦ As we have already discussed, a Dedekind domain is a unique factorization domain if and only if it is a
principal ideal domain, and thus any examples of non-unique factorization of elements necessarily arise
from nonprincipal ideals.

◦ We would now like to quantify more precisely how �non-unique� the non-unique factorization of elements
in a Dedekind domain can be.

◦ As motivation let us again consider OK = Z[
√
−5], which we have shown not to be a PID by constructing

various nonprincipal ideals I2 = (2, 1 +
√
−5), I3 = (3, 1 +

√
−5), I ′3 = (3, 1−

√
−5), I7 = (7, 3 +

√
−5),

and I ′7 = (7, 3−
√
−5).

◦ If we compute the products of various pairs of these nonprincipal ideals, however, we will quickly discover
that the products always end up being principal. Explicitly, here are various such calculations (note that
to �nd potential generators for the ideal products, we can search for elements of the appropriate norm):

∗ I2
2 = (2), I3I

′
3 = (3), and I7I

′
7 = (7) by Dedekind-Kummer.

∗ I2I3 = (1 +
√
−5) since I2I3 = I2 ∩ I3 ⊇ (1 +

√
−5) but N(I2I3) = 6 = N(1 +

√
−5).

∗ I2I ′3 = (1−
√
−5) by conjugating the calculation above.

∗ I2
3 = (9, 3 + 3

√
−5,−4 + 2

√
−5) = (2 −

√
−5) since 2 −

√
−5 is in this ideal since 2 −

√
−5 =

9− (3 + 3
√
−5) + (−4 + 2

√
−5), and N(I2

3 ) = 9 = N(2−
√
−5).

∗ (I ′3)2 = (2 +
√
−5) by conjugating the calculation above.

∗ I2I7 = (14, 6 + 2
√
−5, 7 + 7

√
−5,−2 + 4

√
−5) = (3 +

√
−5) since 3 +

√
−5 is in this ideal since

3 +
√
−5 = 2(6 + 2

√
−5)− (7 + 7

√
−5)− (−2 + 4

√
−5), and N(I2I7) = 14 = N(3 +

√
−5).
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∗ I2I ′7 = (3−
√
−5) by conjugating the calculation above.

∗ I3I7 = (21, 9 + 3
√
−5, 7 + 7

√
−5,−1 + 4

√
−5) = (1− 2

√
−5) since 1− 2

√
−5 = 21− 3(9 + 3

√
−5) +

(7 + 7
√
−5) and N(I3I7) = 21 = N(1− 2

√
−5).

∗ I3I ′7 = (21, 9−3
√
−5, 7+7

√
−5, 8+2

√
−5) = (4+

√
−5) since 4+

√
−5 = 21+(7+7

√
−5)−3(8+2

√
−5)

and N(I3I
′
7) = 21 = N(4 +

√
−5).

∗ I ′3I7 = (4−
√
−5) and I ′3I

′
7 = (1 + 2

√
−5) by conjugating the calculations above.

◦ These calculations suggest that there might actually be only one �class� of nonprincipal ideal in Z[
√
−5],

up to an appropriate notion of equivalence of ideals.

◦ We would like to declare that two ideals are equivalent if they di�er by a principal ideal factor. We can
formulate an equivalence relation in this manner, but it is more natural to work instead with fractional
ideals rather than integral ideals, since the invertible fractional ideals form a group, rather than merely
a semigroup.

• De�nition: Let R be a Dedekind domain and let JR denote the multiplicative group of nonzero fractional
ideals of R. A fractional ideal A of R is principal when it is of the form A = d−1I for a principal ideal I of
R. It is easy to see that the nonzero principal fractional ideals form a subgroup PR of the group of nonzero
fractional ideals: we de�ne the ideal class group cl(R) to be the quotient group JR/PR of invertible fractional
ideals modulo principal fractional ideals.

◦ We remark that the class group can be de�ned for any integral domain R in the same manner (namely,
as the quotient group of invertible fractional ideals modulo principal fractional ideals), but for rings that
are not Dedekind domains, there can exist non-invertible fractional ideals, whose behavior is then not
accounted for by the class group.

◦ Exercise: For a Dedekind domain R with fraction �eldK, show that the sequence of multiplicative groups

1 → O∗K ↪→ K∗
a7→aR→ JR → cl(R) → 1 is exact. (It is analogous to, and in fact generalizes, the exact

sequence 1 → k∗ ↪→ k(C)∗
f 7→div(f)→ Div0(C) → Pic0(C) → 1 for an algebraic curve C de�ned over an

algebraically closed �eld k.)

◦ For integral ideals I and J , we can see that (the images of) I and J are equivalent in the class group
⇐⇒ IJ−1 is a principal fractional ideal ⇐⇒ there exist nonzero α, β ∈ R such that IJ−1 = α−1(β)
⇐⇒ there exist nonzero α, β ∈ R such that (α)I = (β)J .

◦ We therefore see that equivalence in the class group precisely captures our desired notion of equivalence
of ideals up to principal factors.

◦ Inversely, this equivalence relation on integral ideals does capture the full structure of the class group of
fractional ideals as well (intuitively, we can just clear denominators when working with fractional ideals
to convert statements to ones about integral ideals). Explicitly:

◦ Exercise: For ideals I and J of a Dedekind domain R, write I ∼ J when there exist nonzero α, β ∈ R
with (α)I = (β)J .

1. Show that ∼ is an equivalence relation on the ideals of R.

2. Show that the multiplication operation [I][J ] = [IJ ] on equivalence classes is well de�ned and gives
the nonzero equivalence classes the structure of an abelian group G.

3. Show that the map ϕ : G → cl(R) given by ϕ([I]) = I, where I denotes the image of I in the class
group JR/PR, is well de�ned and an isomorphism.

◦ Exercise: With the equivalence relation ∼ on ideals as given in the exercise above, show that I ∼ J if
and only if I is isomorphic to J as an R-module. (Thus, the isomorphism classes of ideals are the same
as the equivalence classes in the class group, yielding a third natural way to �discover� the class group.)

◦ We can see that the trivial class in the class group consists of the principal (fractional) ideals, and
therefore R is a principal ideal domain if and only if its class group is trivial.

◦ Nontrivial classes in the class group correspond to inequivalent classes of nonprincipal ideals, and so
we see that the class group gives a more precise way of measuring how badly R fails to have unique
factorization of elements.

• For an arbitrary Dedekind domain, the class group can be in�nite: in fact, it is a theorem of Claborn that for
any abelian group G whatsoever, there exists a Dedekind domain whose class group is isomorphic to G.
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◦ However, when R = OK is the ring of integers of a number �eld K, the class group is always �nite:

• Proposition (Finiteness of the Class Group): Suppose K is a number �eld of degree n over Q with com-
plex embeddings σ1, . . . , σn. Let β1, . . . , βn be an integral basis of OK , and de�ne the constant cK =∏n
i=1

[∑n
j=1 |σi(βj)|

]
.

1. If I is a nonzero ideal of OK , then I contains a nonzero element α such that |N(α)| ≤ cKN(I).

◦ Proof: Suppose K has degree n over Q and pick any integral basis β1, . . . , βn for OK . Also let
m = bN(I)1/nc, so that mn ≤ N(I) < (m+ 1)n.

◦ Then since the cardinality of R/I is N(I) < (m+ 1)n, by the pigeonhole principle at least two of the
(m + 1)n elements {a1β1 + · · · + anβn : 0 ≤ a, b ≤ m} in R must be congruent modulo I, so their
di�erence is in I.

◦ Thus, there exists a nonzero element α ∈ I of the form α = a1β1 + · · ·+ anβn where −m ≤ ai ≤ m
for each i. By the triangle inequality we see |N(α)| =

∏n
i=1 |σi(α)| ≤

∏n
i=1

[∑n
j=1 |ai| · |σi(βj)|

]
≤

mn ·
∏n
i=1

[∑n
j=1 |σi(βj)|

]
≤ N(I) · cK , as claimed.

2. Every ideal class of OK contains an ideal J such that N(J) ≤ cK .
◦ Proof: Let C be an ideal class and let I be any ideal in the inverse class C−1.

◦ By (1), there exists a nonzero element α ∈ I such that N(α) ≤ cKN(I). Because α ∈ I, by the
equivalence of divisibility and containment we see that I divides (α) and so (α) = IJ for some ideal
J .

◦ Taking norms yields N(α) = N(I)N(J), so N(J) =
N(α)

N(I)
≤ cK . Finally, taking ideal classes gives

[1] = [(α)] = [I][J ] so J ∈ [I]−1 = (C−1)−1 = C, as required.
3. The ideal class group of OK is �nite.

◦ Proof: By (2), every ideal class contains some ideal J with N(J) ≤ cK .
◦ But there are only �nitely many possible ideals J with N(J) ≤ cK : there are only �nitely many
possible prime ideals that could occur in the prime factorization of J (namely, the primes of norm
at most cK) and the power to which each such ideal can occur is bounded (since a prime power P a

has norm N(P )a, we must have a ≤ logN(P ) cK ≤ logp CK for all such P lying over p ∈ Z).
◦ Thus, we have a �nite list of ideals representing all ideal classes, so there are �nitely many ideal
classes.

• Exercise: Let L/K be an extension of number �elds. Use the fact that the class group of OK is �nite to give
another proof that NL(IOK) = NK(I)[L:K] for any ideal I of OK . [Hint: What can be said about Ih(K)?]

• This result is already enough to allow us to compute class groups in some cases.

◦ When K = Q(
√
D), when D ≡ 2, 3 (mod 4) using the integral basis {1,

√
D} we obtain cK = (1 +

√
D)2.

In fact, we can do slightly better just by estimating
∣∣∣N(a+ b

√
D)
∣∣∣ =

∣∣a2 −Db2
∣∣ ≤ a2 +Db2 ≤ m2(1+D)

to obtain cK = 1 +D.

• De�nition: If K is a number �eld, the class number of K is the order of the ideal class group of OK . The
class number is often written as h(K).

◦ As we noted earlier, the class number of OK is equal to 1 if and only if OK is a principal ideal domain.
A larger class number corresponds to having more inequivalent types of non-unique factorizations.

◦ Our proof of (2) in the proposition above gives us an explicit way to calculate the ideal class group of
OK : we need only compute all of the possible prime ideals having norm at most cK , and then determine
the resulting structure of these ideals under multiplication.

• Example: Show that the class group of K = Q(
√

2) is trivial.

◦ From the proposition, we know that any ideal class contains an ideal J of norm at most 3.
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◦ Then the only possible prime divisors of the norm are 2 and 3, so the only possible prime ideal divisors
of J are the primes lying above 2 and 3.

◦ Using the Dedekind-Kummer factorization theorem shows that in Z[
√

2] we have (2) = (
√

2)2 while the
ideal (3) is inert and has norm 9, so the only possible ideals J are (1) of norm 1 and (

√
2) of norm 2.

◦ Since both of these ideals are principal, we conclude that every ideal of Z[
√

2] is principal and so the
class group is trivial (so that Z[

√
2] is a principal ideal domain).

• Example: Show that the class group of K = Q(
√
−5) has order 2.

◦ From the proposition, we know that any ideal class contains an ideal J of norm at most 6.

◦ Then the only possible prime divisors of the norm are 2, 3, and 5 so the only possible prime ideal divisors
of J are the primes lying above 2, 3, and 5.

◦ We have already computed the factorizations (2) = (2, 1 +
√
−5)2, (3) = (3, 1 +

√
−5)(3, 1−

√
−5), and

(5) = (
√
−5)2.

◦ Thus, the possible prime ideals dividing J are I2 = (2, 1 +
√
−5) of norm 2, I3 = (3, 1 +

√
−5) and

I ′3 = (3, 1−
√
−5) both of norm 3, and I5 = (

√
−5) of norm 5.

◦ As we have previously shown, the ideal I2 is not principal, so since I
2
2 = (2) we see that [I2] is an element

of order 2 in the class group.

◦ We have also previously shown that I2I3 = (1 +
√
−5), so [I3] = [I2]−1 = [I2], and then since I3I

′
3 = (3)

we see [I ′3] = [I2] as well.

◦ Thus, since I5 is principal, we see that all of the nonprincipal ideals lie in the same class (namely, the
class [I2]) and so the class group of Z[

√
−5] has order 2.

0.23 (Oct 28) Real and Complex Embeddings, Minkowski's Lattice Theorems

• Our ability to make e�ective class group calculations, like the ones above, requires being able to get a good
estimate on the norm of the smallest nonzero element in a nonzero ideal I.

◦ Saying that an element α ∈ I has small norm is the same as saying that the product of the absolute
values of the various complex embeddings σ1, . . . , σn of α is small.

◦ So let us make some brief observations about the complex embeddings of K �rst.

• De�nition: If K is a number �eld and σ : K → C is an embedding of K, we say σ is a real embedding if the
image of σ lies inside R, and otherwise we say σ is an imaginary embedding (or nonreal embedding).

◦ If τ is a nonreal embedding, then τ is also a nonreal embedding distinct from τ , so the nonreal embeddings
come in conjugate pairs.

◦ Often the term �complex embedding� is used to refer speci�cally to the nonreal embeddings, though we
have been using the term �complex embedding� to refer to any embedding, real or complex.

• De�nition: If K is a number �eld with r real embeddings and 2s nonreal embeddings, the signature of K is
the ordered pair (r, s). Note that if K has degree n over Q, then r + 2s = n. A number �eld with s = 0 is
totally real (all its embeddings are real) while a number �eld with r = 0 is totally complex (all its embeddings
are nonreal).

◦ Example: The real quadratic �elds Q(
√
D) for D > 0 are totally real and have signature (2, 0), while the

imaginary quadratic �elds Q(
√
D) for D < 0 are totally complex and have signature (0, 1).

◦ Example: The �eld Q( 3
√
n) for any cubefree integer n has signature (1, 1) since the minimal polynomial

x3 − n has one real root and two nonreal roots.

◦ More generally, for K = Q(α), if the minimal polynomial m(x) of α has r real roots and 2s pairs of
complex conjugate roots, then K has signature (r, s).

◦ Exercise: Show that if K/Q is Galois, then K must be totally real or totally imaginary.
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◦ Exercise: Show that if K has signature (r, s), then the sign of disc(K) is (−1)s. [Hint: What does
complex conjugation do to the discriminant matrix?]

◦ Now suppose K has r real embeddings σ1, . . . , σr and 2s complex embeddings τ1, τ1, . . . , τs, τs, where
r + 2s = n.

◦ We would like to consider all of the complex embeddings of a given element α ∈ K together. To do
this we only need the values of half of the complex embeddings, since the other half are their complex
conjugates.

◦ This suggests we should use the natural map ϕ : K → Rr×Cs via ϕ(α) = (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α)),
which is not only an additive group homomorphism but also a Q-linear transformation.

◦ By decomposing the copies of C into real and imaginary parts we may equivalently view ϕ as a homo-
morphism ϕ : K → Rn, which in many cases will be more convenient for us:

• De�nition: IfK is a number �eld with r real embeddings and 2s nonreal embeddings, the Minkowski embedding
is theQ-linear map ϕ : K → Rn de�ned by ϕ(α) = (σ1(α), . . . , σr(α),Re[τ1(α)], Im[τ1(α)], . . . ,Re[τs(α)], Im[τs(α)]).

◦ Example: For K = Q(
√
D) with D > 0, the Minkowski map is ϕ(a+ b

√
D) = (a+ b

√
D, a− b

√
D).

◦ Example: For K = Q(
√
D) with D < 0, the Minkowski map is ϕ(a+ b

√
D) = (a, b

√
|D|).

◦ Example: For K = Q(D1/3), the Minkowski map is ϕ(a + bD1/3 + cD2/3) = (a + bD1/3 + cD2/3, a −
1
2bD

1/3 − 1
2cD

2/3,
√

3
2 bD

1/3 −
√

3
2 cD

2/3).

◦ Clearly kerϕ = 0 so ϕ is injective (thus justifying our use of the word �embedding�).

◦ Thus, if we choose any Q-basis α1, . . . , αn of K, then by Q-linearity the images ϕ(α1), . . . , ϕ(αn) are a
basis for im(ϕ): thus, im(ϕ) is an n-dimensional Q-vector space.
◦ We want to understand the image of OK under ϕ as an additive group. If we choose an integral basis
α1, . . . , αn of OK , then again by linearity as above, we see that ϕ(α1), . . . , ϕ(αn) will be an integral basis
for ϕ(OK): the elements clearly span, and they are linearly independent because α1, . . . , αn are.

◦ Thus, ϕ(OK) is a rank-n additive subgroup of Rn.
◦ Exercise: Suppose G is an additive subgroup of Rn. Show that the following are equivalent (in such a
case we say G is discrete):

1. G is nowhere dense in Rn.
2. Every compact subset of Rn contains �nitely many points of G.

3. Some open neighborhood of 0 contains �nitely many points of G.

4. The rank of G as an abelian group equals the dimension of G⊗Z R as an R-vector subspace of Rn.
◦ We claim that ϕ(OK) is also discrete. To see this, consider the open neighborhood S = {(x1, . . . , xn) :
|xi| < 1/2} of the origin and suppose α ∈ OK has ϕ(α) ∈ S.
◦ Then |σi(α)| < 1/2 for each embedding σi (real or complex), but this would imply |NK/Q(α)| =∏

i |σi(α)| < (1/2)n < 1 but since the norm is an integer, it would have to be zero, implying α = 0.

◦ This means the only point of S in ϕ(OK) is the origin ϕ(0), so by the exercise above, ϕ(OK) is discrete.

◦ Hence ϕ(OK) is a discrete rank-n additive subgroup of Rn, which is to say, a lattice in Rn.
◦ Exercise: Let K be a number �eld and ϕ : K → Rn be the Minkowski map. Show that ϕ(K) is dense in
Rn. [Hint: Replace integer coe�cients with rational ones.]

• De�nition: A lattice in Rn is an additive subgroup given by the Z-span of an R-basis for Rn.

◦ More explicitly, for any integral basis α1, . . . , αn of OK , ϕ(OK) is the Z-span of ϕ(α1), . . . , ϕ(αn).

◦ A fundamental region for this lattice can be obtained by drawing all of the vectors ϕ(α1), . . . , ϕ(αn)
outward from the origin, and then �lling them in to create a �skew box�. The points in this fundamental
region give unique representatives for the quotient group Rn/Λ, up to an appropriate choice of represen-
tatives on the boundary of the region. Since the fundamental region is simply a representative of Rn/Λ,
we call the n-measure6 of the fundamental region the covolume of Λ.

6By n-measure we mean the Lebesgue measure on Rn, like any sensible person would. (But we say �n-measure� because the only
sets we consider are extremely nice, so we do not need to be concerned with of any of the interesting subtleties of measure theory.)
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◦ Exercise: Suppose Λ is a lattice in Rn with an integral basis v1, . . . , vn. Show that the covolume of Λ is
equal to |det(v1, . . . , vn)|.

• By writing down a basis we can compute the volume of the fundamental region for ϕ(OK) and then for ϕ(I)
for any nonzero ideal I:

• Proposition (Measures of Fundamental Regions): Let K be a number �eld of signature (r, s) and discriminant
∆ = disc(K), and let ϕ : K → Rn be the Minkowski map.

1. The covolume of ϕ(OK) is equal to 2−s
√
|disc(K)|.

◦ Proof: Let α1, . . . , αn be an integral basis for OK . By the exercise above, we see that n-measure of
the fundamental region for ϕ(OK) is the (absolute value of the) determinant of the matrix whose
columns are the vectors ϕ(α1), . . . , ϕ(αn).

◦ This determinant is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1(α1) · · · σ1(αn)
...

. . .
...

σr(α1) · · · σr(αn)
Re[τ1(α1)] · · · Re[τ1(αn)]
Im[τ1(α1)] · · · Im[τ1(αn)]

...
. . .

...
Re[τs(α1)] · · · Re[τs(αn)]
Im[τs(α1)] · · · Im[τs(αn)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

(2i)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1(α1) · · · σ1(αn)
...

. . .
...

σr(α1) · · · σr(αn)
τ1(α1) · · · τ1(αn)

τ1(α1) · · · τ1(αn)
...

. . .
...

τs(α1) · · · τs(αn)

τs(α1) · · · τs(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ± 1

(2i)s

√
disc(K).

◦ By taking the absolute value above we see immediately that the covolume of ϕ(OK) is 2−s
√
|disc(K)|.

2. For any nonzero ideal I of OK , the covolume of ϕ(I) is N(I) · 2−s
√
|disc(K)|.

◦ Proof: Note that ΛI = ϕ(I) is a sublattice (i.e., an additive subgroup) of Λ = ϕ(OK).

◦ Since ϕ is an isomorphism of additive abelian groups that maps OK to Λ and I to ΛI , we see that
Λ/ΛI ∼= OK/I. Taking cardinalities then yields #(Λ/ΛI) = #(O√D/I) = N(I).

◦ Geometrically, this means that the fundamental domain for ΛI consists of N(I) copies of the funda-
mental domain for Λ, and then the desired result follows immediately from (1).

• Our goal now is to show that if a convex set in Rn is su�ciently nice and has a su�ciently large n-measure,
it must contain a lattice point.

◦ To obtain our bound, we will then apply these results to the region in Rn corresponding to the points
of small norm, where �small� is chosen in such a way that we obtain a nonzero point lying in the lattice
Λ = ϕ(I), which will provide the desired nonzero element α ∈ I of small norm.

• Theorem (Minkowski Lattice Theorems): Let n ≥ 1. Recall that a set B in Rn is convex when for any
x, y ∈ B, all points on the line segment joining x and y are also in B, and a set is centrally symmetric when
x ∈ B implies −x ∈ B.

1. (Blichfeldt's Principle) If S is a bounded measurable set in Rn whose n-measure is greater than 1, then
there exist two points x and y in S such that x− y has integer coordinates.

◦ Proof: The idea is essentially to use the pigeonhole principle.

◦ For each lattice point a = (a1, · · · , an), let Ba be the �box� consisting of the points (x1, · · · , xn)
whose coordinates satisfy ai ≤ xi < ai+1, and let Sa = S ∩Ba be the intersection of S with Ba.

◦ Since each point of S lies in exactly one box Ba, we have
∑
a∈Zn vol(Sa) = vol(S).

◦ Now let S∗a be the set Sa translated by the vector −a: this translation preserves measure and moves
Ba to B0.

◦ Then
∑
a∈Zn vol(S∗a) = vol(S) > 1. But since all of the sets S∗a lie inside B0 which has volume 1,

there must be some overlap.

◦ If S∗a1 ∩ S
∗
a2 contains some point P , then P + a1 ∈ S and also P + a2 ∈ S. Taking x = P + a1 and

y = P + a2 we see that x− y = a1 − a2 has integer coordinates, as claimed.
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◦ Remark: This proof can also be formulated analytically in terms of the characteristic function

χB(x) =

{
1 if x ∈ B
0 if x 6∈ B

, which is integrable by the hypothesis that B is a measurable set. If we

write ψ(x) =
∑
v∈Zn χB(x + v), then ψ is bounded because B is bounded so there are only �nitely

many nonzero terms for any v ∈ Zn. We may then integrate both sides and change the order
of integration and summation (because the sum is a �nite sum of nonnegative terms) and use the
translation-invariance of the measure on Rn to see that

´
[0,1]n

ψ(x) dx =
´

[0,1]n

∑
v∈Zn χB(x+v) dx =∑

v∈Zn

´
[0,1]n

χB(x+v) dx =
∑
v∈Zn

´
[0,1]n+v

χB(x) dx =
´
Rn χB(x) dx, and this last integral is simply

the measure of B.

2. Let B be a convex open centrally-symmetric set in Rn whose n-measure is greater than 2n. Then B
contains a nonzero point of Zn.

◦ We note here that the bound 2n is sharp, since the open box (−1, 1)n has measure 2n and is convex,
open, and centrally symmetric, but its only Zn-point is the origin.
◦ Proof: Suppose B is a convex open set symmetric about 0 of measure > 2n and let 1

2B = { 1
2x : x ∈

B}.
◦ Notice that since the measure of B is greater than, the measure of 1

2B is greater than 1. Now apply
Blichfeldt's principle (1) to the set 1

2B: we obtain distinct points x, y ∈ 1
2B such that x − y has

integer coordinates.

◦ Then 2x ∈ B and 2y ∈ B. Furthermore, since B is symmetric about the origin, −2y ∈ B.
◦ Then because B is convex, the midpoint of the line segment joining 2x and −2y lies in B.

◦ This midpoint x− y yields the desired nonzero point in B whose coordinates are integers.

3. Let Λ be a lattice in Rn whose fundamental domain has n-measure V . If B is a convex open centrally-
symmetric set in Rn whose n-measure is greater than 2nV , then B contains a nonzero point of Λ.

◦ Proof: Apply the linear transformation T sending the basis vectors of Λ to the standard basis of Rn.
◦ Linear transformations preserve open sets, convex sets, and central symmetry, so the image of B
under this map is still open, convex, and centrally symmetric.

◦ The volume of T (B) is equal to 1/V times the volume of B by the geometric properties of determi-
nants, so this new open convex centrally-symmetric set T (B) has volume > 2n.

◦ Applying (2) to T (B) yields that T (B) contains a nonzero point all of whose coordinates are integers.
This immediately implies that B contains a nonzero point of Λ, as required.

◦ Exercise: Let Λ be a lattice in Rn whose fundamental domain has n-measure V . Show that if B is a
convex closed centrally-symmetric set in Rn whose n-measure is greater than or equal to 2nV , then
B contains a nonzero point of Λ.

0.24 (Oct 30) Student Presentations of HW3 Problems

0.25 (Oct 31) The Minkowski Bound

• We would now like to apply Minkowski's lattice theorem (3) to the lattice Λ = ϕ(I) for a nonzero ideal I and
an appropriate region in Rn consisting of points of small norm.

◦ IfK has signature (r, s), if we write ϕ(α) = (σ1(α), . . . , σr(α),Re[τ1(α)], Im[τ1(α)], . . . ,Re[τs(α)], Im[τs(α)]) =
(x1, . . . , xr, y1, z1, . . . , ys, zs), then we can see that N(α) = σ1(α) · · ·σr(α)τ1(α)τ1(α) · · · τs(α)τs(α) =

σ1(α) · · ·σr(α) |τ1(α)|2 · · · |τs(α)|2 = x1 · · ·xr(y2
1 + z2

1) · · · (y2
s + z2

s).

◦ Thus, the region consisting of points of �norm less thanX� is the region (x1, . . . , xr, y1, z1, . . . , ys, zs) ∈ Rn
with

∣∣x1 · · ·xr(y2
1 + z2

1) · · · (y2
s + z2

s)
∣∣ < X.

◦ This region is obviously centrally symmetric, and in some cases it is centrally symmetric and bounded:
for instance, when (r, s) = (0, 1) it is the region

∣∣y2 + z2
∣∣ < X which is an open disc.

◦ Unfortunately, this is not always the case: for instance, when (r, s) = (2, 0) it is the region |x1x2| < X
which contains both coordinate axes, so it is neither convex nor bounded (since the convex hull of the
coordinate axes is the entire plane).
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◦ One way we can make the region convex is to take the set B de�ned by the inequalities |xi| ≤ X,
y2
j + z2

j ≤ Y for positive reals X and Y , whose measure is (2X)r(πY )s and where the norm function is
bounded by XrY s. This region is obviously convex, open, and centrally symmetric.

◦ Then for any lattice Λ whose fundamental region has n-measure V , whenever (2X)r(πY )s > 2nV we
would get a nonzero point of Λ of norm at most XrY s.

◦ So, taking N = XrY s, for any N > 2nV 2−rπ−s =

(
4

π

)s
V we obtain a nonzero point of Λ of norm at

most N .

◦ But in fact, we can get a better bound than this by intermingling all of the variables, as follows:

• Theorem (Minkowski Bound): Let K be a number �eld of degree n over Q with signature (r, s).

1. In Rn = (x1, . . . , xr, y1, z1, . . . , ys, zs), for any t > 0 the region Bt de�ned by |x1|+· · ·+|xr|+2(
√
y2

1 + z2
1+

· · ·+
√
y2
s + z2

s) < t is open, convex, centrally symmetric, and has n-measure equal to
2r

n!

(π
2

)s
tn.

◦ Proof: Let f(x1, . . . , ys, zs) = |x1|+ · · ·+ |xr|+ 2(
√
y2

1 + z2
1 + · · ·+

√
y2
s + z2

s).

◦ Clearly Bt is open since it is the inverse image of an open set under the continuous function f , and
equally clearly f is an even function, so Bt is centrally symmetric.

◦ To see that Bt is convex we simply note that each component function of f is convex, so for x,y ∈ Bt
and 0 ≤ u ≤ 1 we have f(ux + (1− u)y) ≤ uf(x) + (1− u)f(y) < t, hence ux + (1− u)y ∈ Bt also.

◦ It remains to compute the measure of Bt. Since f(λx) = λf(x) for any positive λ, we see Bt = tB1

and so it su�ces to compute the n-measure of B1.

◦ Now let Mr,s(t) be the n-measure of the set |x1| + · · · + |xr| + 2(
√
y2

1 + z2
1 + · · · +

√
y2
s + z2

s) < t;
note that Mr,s(t) = tr+2sMr,s(1).

◦ First, by changing to polar coordinates we can see that M0,s(1) =
´√

y21+z21+···+
√
y2s+z2s<1/2

dµ =

´
r1+···+rs<1/2

r1 · · · rs dr1 · · · drsdθ1 · · · dθs = (
π

2
)s
´
w1+···+ws<1

w1 · · ·ws dw1 · · · dws = (
π

2
)s

1

(2s)!
as

follows by a straightforward induction.

◦ Then by integrating on the �rst variable, when r > 0 we have Mr,s(1) = 2
´ 1

0
Mr−1,s(1 − x) dx =

2Mr−1,s(1) ·
´ 1

0
(1− x)(r−1)+2s dx =

2

r + 2s
Mr−1,s(1).

◦ By a trivial induction and the above,Mr,s(t) = tr+2sMr,s(1) =
2rtr+2s

(r + 2s)(r + 2s− 1) · · · (1 + 2s)
M0,s(1) =

2r(π/2)str+2n

(r + 2s)(r + 2s− 1) · · · (1 + 2s) · (2s)!
=

2r

n!

(π
2

)s
tn, as desired.

2. With the �norm� function N(x1, . . . , xr, y1, z1, . . . , ys, zs) = x1 · · ·xr(y2
1 + z2

1) · · · (y2
s + z2

s) on Rn, for any

lattice of covolume V , there exists a nonzero point x ∈ Λ with N(x) ≤ n!

nn

(
8

π

)s
V .

◦ Proof: Consider the region Bt from (1) de�ned by |x1|+ · · ·+ |xr|+2(
√
y2

1 + z2
1 + · · ·+

√
y2
s + z2

s) < t,

which by (1) is convex, open, and centrally symmetric with n-measure equal to
2r

n!

(π
2

)s
tn.

◦ Therefore, by Minkowski's lattice theorem, if
2r

n!

(π
2

)s
tn > 2nV , which is to say, tn > n!

(
8

π

)s
V ,

then Bt will contain a nonzero point x ∈ Λ.

◦ Then for this x ∈ Bt, by the arithmetic-geometric mean inequality applied to the list of n nonnegative
real numbers |x1|, . . . , |xr|,

√
y2

1 + z2
1 ,
√
y2

1 + z2
1 , ... ,

√
y2
s + z2

s ,
√
y2
s + z2

s , we have

N(x)1/n = [x1 · · ·xr
√
y2

1 + z2
1

√
y2

1 + z2
1 · · ·

√
y2
s + z2

s

√
y2
s + z2

s ]1/n

≤ 1

n

[
|x1|+ · · ·+ |xr|+ 2(

√
y2

1 + z2
1 + · · ·+

√
y2
s + z2

s)

]
<
t

n
.

◦ Thus, taking tn → n!

(
8

π

)s
V from above, we see N(x) ≤ tn

nn
=

n!

nn

(
8

π

)s
V , as claimed.
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3. For any nonzero ideal I ofOK , there exists a nonzero α ∈ I such that
∣∣NK/Q(I)

∣∣ ≤ N(I)· n!

nn

(
4

π

)s√
|discK|.

◦ Proof: Apply (2) to the lattice Λ = ϕ(I) whose covolume equals V = N(I) · 2−s
√
|disc(K)| as

calculated earlier.

◦ The estimate we obtain isN(α) = N(ϕ(α)) =
n!

nn

(
8

π

)s
N(I)·2−s

√
|disc(K)| = N(I)· n!

nn

(
4

π

)s√
|discK|,

as claimed.

4. (Minkowski Bound) Every ideal class of OK contains an ideal J such that N(J) ≤ n!

nn

(
4

π

)s√
|discK|.

◦ Proof: This follows by the same proof we gave earlier, but with the improved constant cK provided
by (4).

• Exercise: Show that if K is a number �eld of degree n over Q with signature (r, s), show that |discK| ≥(π
4

)2s
(
nn

n!

)2

. Show also that if n > 1 then |discK| > 1, and deduce that Q has no unrami�ed extensions.

• Minkowski's bound is quite a lot better than the estimate we obtained earlier, since it is asymptotic to√
|discK| rather than to the discriminant itself, so the size of the computations we need to make to calculate

class groups is much smaller.

◦ Let us begin by investigating the class groups of quadratic �elds.

• Example (again): Show that the class group of K = Q(
√
−5) has order 2.

◦ Here we have n = 2, s = 1, and disc(K) = −20, so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
20 ≈ 2.8471 < 3, so the only nontrivial ideals we need to consider

are ideals of norm 2.

◦ Since (2) splits as (2) = (2, 1 +
√
−5)2, and we have previously shown that (2, 1 +

√
−5) is nonprincipal,

we conclude that the class group is generated by the nonprincipal ideal I2 = (2, 1 +
√
−5). Since I2 has

order 2 as I2
2 = (2), the class group has order 2 as claimed.

• Example: Show that the ring of integers of K = Q(
√
−19) is a principal ideal domain.

◦ Here we have n = 2, s = 1, and disc(K) = −19, so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
19 ≈ 2.7750 < 3, so the only nontrivial ideals we need to consider

are ideals of norm 2.

◦ Since the minimal polynomial of the generator m(x) = x2 − x+ 5 is irreducible modulo 2, we see (2) is
inert so there are no ideals of norm 2 in OK .
◦ Therefore, the only ideal class is the trivial class, so the class group is trivial and O√−19 is a PID.

◦ Remark: It can be shown that O√−19 is not Euclidean with respect to any norm, so this ring provides
an example of a principal ideal domain that is not Euclidean.

• Example: Determine the class group of K = Q(
√

5).

◦ Here we have n = 2, s = 0, and disc(K) = 5, so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
1

2

√
5 ≈ 1.1180 < 2, so there can be no nontrivial ideal classes.

◦ Thus, the class group of Z[
√

5] is trivial.

• Example: Determine the class group of K = Q(
√

10).

◦ Here we have n = 2, s = 0, and disc(K) = 40, so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
1

2

√
40 ≈ 3.1623 < 4, so the only nontrivial ideals we need to consider

are ideals of norm 2 and norm 3.
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◦ Applying Dedekind-Kummer to the minimal polynomial m(x) = x2 − 10, we see that (2) is rami�ed
and (3) splits: explicitly, (2) = P 2

2 for P2 = (2,
√

10) and (3) = P3P
′
3 for P3 = (3, 1 +

√
10) and

P ′3 = (3, 1−
√

10).

◦ Since x2−10y2 = ±2,±3 has no solutions modulo 5, there are no elements of norm ±2 or ±3, so P2, P3, P
′
3

are non-principal.

◦ Thus, [I2] is an element of order 2 in the class group since I2 is not principal but I2
2 is.

◦ We can then compute I2
3 = (9, 3 + 3

√
10, 11 + 2

√
10). To test for principality we can look for elements

of norm 9, and looking at such elements (e.g., 1 ±
√

10) will reveal this ideal is in fact principal and
generated by (1 +

√
10). Explicitly, 1 +

√
10 = 9 + (3 + 3

√
10)− (11 + 2

√
10) ∈ I2

3 and each generator is
divisible by 1 +

√
10. Then (I ′3)2 = (1−

√
10), so [I3] and [I ′3] are both ideal classes of order 2 and they

are equal.

◦ It remains to determine the relationship between I2 and I3. Indeed, I2I3 = (6, 2+2
√

10, 3
√

10, 10+
√

10).
To test for principality we can look for elements of norm 6, and looking at such elements (e.g., 4±

√
10)

will reveal this ideal is in fact principal and generated by (4 +
√

10), since 4 +
√

10 = (10 +
√

10)− 6 and
each generator is divisible by 4 +

√
10. Thus since [I2][I3] = (1) = [I2]2, we see [I2] = [I3].

◦ Thus, we conclude that there is one nonprincipal ideal class of order 2, so the class group is isomorphic
to Z/2Z.

• Example: Determine the class group of Q(
√
−31).

◦ Here we have n = 2, s = 1, and disc(K) = −31, Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
31 ≈ 3.5445 < 4, so the only nontrivial ideals we need to consider

are ideals of norm 2 and 3.

◦ Applying Dedekind-Kummer to the minimal polynomial m(x) = x2 − x+ 8 yields that 2 splits and 3 is
inert, so we may ignore 3.

◦ Explicitly we have (2) = P2P
′
2 for P2 = (2, 1+

√
−31

2 ) and P ′2 = (2, 1−
√
−31

2 ).

◦ We can check (by solving a2 + 31b2 = 8, 16) that there are no elements of norm 2 and the only elements
of norm 4 are ±2, so since (2) = P2P

′
2 and P2 6= P ′2, we see that neither P2 nor P 2

2 is principal.

◦ On the other hand, P 3
2 has norm 8, and there are elements of norm 8, namely, α = 1+

√
−31

2 . Indeed, we
can see that P 3

2 = (8, 4α, 2α2, α3) so this ideal contains 8 + 8α + α3 = α. Thus P 3
2 = (α) is principal,

and so [P2] is an element of order 3 in the class group with inverse [P ′2] = [P2]2.

◦ Therefore, the class group is generated by [P2] and is isomorphic to Z/3Z.

• Exercise: Show that for D = −1, −2, −3, −7, −11, −19, −43, −67, −163, the class group of Q(
√
D) is trivial.

◦ Heilbronn also showed that there were at most 10 imaginary quadratic �elds of class number 1; since
the 9 listed above were well known to have trivial class group, this meant there could exist at most one
more. (Gauss had previously conjectured that there were only �nitely many.)

◦ The nonexistence of this 10th �eld was essentially proven by Heegner in 1952 using modular forms, but
his proof had some minor gaps and it was not accepted7 until Stark gave a full proof of the result in
1967. Baker also gave a proof, using an entirely di�erent method (linear forms in logarithms), in 1966.

• Exercise: Show that for D = 2, 3, 6, 11, 13, 15, 17, 19, the class group of Q(
√
D) is trivial.

◦ Unlike in the situation of imaginary quadratic �elds, Gauss conjectured there are in�nitely many real
quadratic �elds of class number 1. As of 2024, this problem is still open.

◦ Many small values of D do yield real quadratic �elds of class number 1, such as the ones above.

• Exercise: Show that for D = 101, 103, 107, 109, the class group of Q(
√
D) is trivial.

• Exercise: Show that Q(
√
−10), Q(

√
−13), and Q(

√
−15) all have class number 2.

7Heegner was not a professional mathematician (he was in fact a radio engineer and high school teacher), which certainly contributed
to the lack of belief in his claim to have settled a 150-year-old conjecture of Gauss by the broader mathematical community. Sadly, he
died in 1965, before his results gained general acceptance.
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• Exercise: Show that Q(
√

7), Q(
√

14), Q(
√

23), and Q(
√

29) all have class number 2.

• Exercise: Show that Q(
√
−23), Q(

√
−59), and Q(

√
−83) all have class number 3.

• Exercise: Show that Q(
√

79) has class number 4. Which group is its class group isomorphic to?

• Exercise: Show that Q(
√
−17) and Q(

√
−21) both have class number 4 but that their class groups are not

isomorphic.

• Exercise: Show that Q(
√
−103) has class number 5.

• Exercise: Show that Q(
√
−29) has class number 6.

• Exercise: Show that Q(
√
−71) has class number 7.

• We will mention that there are numerous other conjectures about various aspects of the class groups of real
and imaginary quadratic �elds.

◦ One set of predictions are the Cohen-Lenstra heuristics, which posit, for odd primes p, the density with
which any given abelian p-group will appear as the p-power torsion part of a class group (i.e., the Sylow
p-subgroup) of a real or imaginary quadratic �eld.

◦ For the prime p = 2, the structures of p-power torsion subgroups of class groups are fully understood,
and are consequences of what is called genus theory, which is a name due to Gauss (as is the term
�equivalence class�, which �rst appeared in Gauss's treatment of quadratic forms) that has nothing to do
with other uses of the word �genus�, e.g., in topology.

◦ Intuitively, the Cohen-Lenstra heuristics say that the probability, in an appropriate sense, that a given
abelian p-group P will occur as the p-part of the class group of an imaginary quadratic �eld should be
proportional to 1/#Aut(P ). This may initially seem to be a rather unnatural weighting, but in fact it is
quite sensible in the appropriate context: given a group acting on a set X, if we wish to select an orbit
of the group uniformly at random, we should weight each of the elements of X by 1 over the size of its
orbit and then pick an element of X at random with that weighting.

◦ By summing 1/#Aut(P ) over all �nite abelian p-groups P , one obtains a constant µP , which can be com-
puted (though not easily). Then the Cohen-Lenstra heuristics predict that the proportion of imaginary

quadratic �elds whose p-power torsion subgroup is isomorphic to P is equal to
1/#Aut(P )

µP
.

◦ Some various results for other primes: the probability that the class number is divisible by 3 (i.e., that
the 3-part of the class group is not trivial) is approximately 43.99%, the probability that it is divisible
by 5 is approximately 23.97%, and the probability that it is divisible by 7 is approximately 16.32%.

◦ A similar heuristic holds for real quadratic �elds, although the weighting is slightly di�erent. For real
quadratic �elds, the probability that a prime p divides the class number is predicted to be 1−

∏
k≥2(1−

p−k), which for p = 3 is approximately 15.98%, for p = 5 is approximately 4.96%, and for p = 7 is
approximately 2.37%.

◦ All of these results agree extremely well with the available numerical data.

0.26 (Nov 4) Computing More Class Groups

• Let us now compute some examples of class groups for higher-degree �elds.

• Example: Show that the class group of K = Q( 3
√

2) is trivial.

◦ We have n = 3, s = 1, and we have previously computed disc(K) = −108, so Minkowski's bound says

that every ideal class contains an ideal of norm at most
6

27
· 4
π

√
108 ≈ 2.9404, so we only need to consider

2.

◦ Since (2) = P 3
2 for P2 = (2, 3

√
2) = ( 3

√
2) we see that the unique prime ideal of norm 2 is principal, so the

class group of K is trivial.

• Example: Show that the class group of K = Q( 3
√

10) is trivial.
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◦ We have n = 3, s = 1, and we have previously computed disc(K) = −300, so Minkowski's bound says

that every ideal class contains an ideal of norm at most
6

27
· 4
π

√
300 ≈ 4.9007, so we only need to consider

2 and 3.

◦ With α = 3
√

10 and β = 1
3 (1 + 3

√
10 + 3

√
100), we have previously computed that (2) = P 3

2 for P2 =
(2, α) = (2− α) and (3) = P 2

3P
′
3 for P3 = (3, β) = (β) and P ′3 = (3,−1 + β) = (β − α).

◦ So since the prime ideals of norms 2 and 3 are all principal, the class group of K is trivial.

• Exercise: Show that the class group of K = Q( 3
√

5) is trivial.

• Exercise: Show that the class group of K = Q( 3
√

6) is trivial. (This can be done without computing an integral
basis for the ring of integers, but it ends up being Z[ 3

√
6].)

• Exercise: For K = Q(α) with α3 − α+ 1 = 0, show that the class group of K is trivial.

• Example: Find the class group of K = Q( 3
√

7).

◦ By an argument similar to the one used for the other �elds Q( 3
√
m), for α = 3

√
7 we can show that

{1, α, α2} is an integral basis for OK .
◦ Then we have n = 3, s = 1, and disc(K) = NK/Q(3α2) = −3372, so Minkowski's bound says that every

ideal class contains an ideal of norm at most
6

27
· 4

π

√
3372 ≈ 10.291, so we need to consider 2, 3, 5, and

7.

◦ Since we will need to compute element norms, we note also that NK/Q(a+ bα+ cα2) = a3 + 7b3 + 49c3−
21abc and in particular observe that the norm of any element is congruent to a3 ≡ 0,±1 (mod 7).

◦ Since x3−7 = (1+x)(1−x+x2) mod 2, we have (2) = P2P
′
2 with P2 = (2, 1+α) and P ′2 = (2, 1−α+α2).

Since there are no elements of norm ±2 or ±4 as noted above, both of these ideals are non-principal.

◦ Next, since x3 − 7 = (2 + x)3 mod 3 we have (3) = P 3
3 with P3 = (3, 2 + α). Since there are no elements

of norm 3 as noted above, P3 is non-principal, so since [P3]3 is the trivial class, that means [P3] is an
element of order 3 in the class group.

◦ Further, we have x3 − 7 = (2 + x)(−1 − 2x + x2) (mod 5), so (5) = P5P
′
5 with P5 = (5, 2 + α) and

P ′5 = (5,−1 − 2α + α2). Again since there are no elements of norm ±5 or ±25, both P5 and P ′5 are
nontrivial elements in the class group.

◦ Finally, we obviously have (7) = P 3
7 with P7 = (7, α) = (α) so this ideal is principal.

◦ It remains to characterize the relationships between P2, P3, P5, since we obviously have [P ′2] = [P2]−1

and [P ′5] = [P5]−1.

◦ To do this we want to construct products among P2, P3, P5 that are principal (hence must have norm
congruent to ±1 mod 7). The smallest reasonable candidates are 6 and 15.

◦ Searching brie�y reveals NK/Q(−1 + α) = 6, meaning that we must have P2P3 = (−1 + α) since these
are the only possible prime ideal factors that can produce a norm of 6. (Indeed we can see that −1 + α
lies in both ideals, as it should.)

◦ Similarly, we can see that NK/Q(2 + α) = 15, so we must have P3P5 = (2 + α) since again these are the
only possible prime ideal factors that can produce a norm of 15. (Indeed we can see that 2 + α lies in
both ideals, as it should.)

◦ So we see that [P2] = [P3]−1 and [P5] = [P3]−1, and so the ideal class group is generated by [P3]. Since
[P3] has order 3, that means the class group is isomorphic to Z/3Z.

• Example: Show that the class group of Q(ζd) is trivial for d = 3, 4, 5, 6, 7.

◦ Since Q(ζ3) = Q(ζ6) = Q(
√
−3) and Q(ζ4) = Q(i) the values d = 3, 4, 6 follow from our earlier calcula-

tions. Recall also that we showed previously that disc(Q(ζp)) = (−1)p(p−1)/2pp−2.

◦ For d = 5 we have n = ϕ(d) = 4, s = 2 and disc(K) = 53, so Minkowski's bound says that every

ideal class contains an ideal of norm at most
4!

44
· ( 4

π
)2
√

125 ≈ 1.6992, so we need not make any further

calculations to conclude the ideal class group is trivial.
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◦ For d = 7 we have n = ϕ(d) = 6, s = 3 and disc(K) = −75, so Minkowski's bound says that every ideal

class contains an ideal of norm at most
6!

66
· ( 4

π
)3
√

75 ≈ 4.1295, so we only need to consider 2 and 3.

◦ Since 2 has order 3 modulo 7, by our earlier analysis of the factorization of cyclotomic polynomials
modulo p we see that Φ7(x) factors as a product of two cubics mod 2, and so we have (2) = P2P

′
2 with

P2, P
′
2 each of norm 8. But these ideals' norms exceed the Minkowski bound, so we can ignore them.

(Explicitly, P2 = (2, 1 + ζ7 + ζ3
7 ) and P ′2 = (2, 1 + ζ2

7 + ζ3
7 ).)

◦ Likewise, since 3 has order 6 modulo 7, Φ7(x) is irreducible mod 3, so (3) is inert.

◦ It follows that there are no nonprincipal ideals of norm less than the Minkowski bound, and so the class
group of Q(ζ7) is trivial.

• Exercise: Show that the class group of Q(ζ8) is trivial. [Hint: What is N(1− ζ8)?]

• Exercise: Show that the class group of Q(ζ9) is trivial.

• Exercise: Show that the class group of Q(ζ11) is trivial. [This isn't as bad as it might look, but there is one
di�cult prime. Try computing N(1 + ζ11 − ζ8

11).]

◦ We will mention here that it was shown independently by Montgomery and Uchida in 1971 that for p
prime, the class number of Q(ζp) is equal to 1 if and only if p ≤ 19. This was extended by Malsey to
determine fully the �elds Q(ζn) of class number 1 (there turn out to be 30 distinct �elds).

• Exercise: Show that the class group of Q(ζ23) is not trivial. [Hint: Let P be a prime lying above 23 in
Q(
√
−23) and let Q lie above P in Q(ζ23). Show that NQ(ζ23)/Q(

√
−23)(Q) = P and that P is nonprincipal;

deduce Q is nonprincipal and in fact that [Q] has order 3.]

• Example: Find the class group of K = Q(
√

5,
√

13).

◦ We have previously computed that OK = Z[ 1+
√

5
2 , 1+

√
13

2 ] and that disc(K) = 52132.

◦ Since obviously all of the embeddings of K are real we have r = 4 and s = 0, so since n = 4, Minkowski's

bound says that every ideal class contains an ideal of norm at most
4!

44
·
√

52132 = 6.09375, so we must

consider 2, 3, and 5.

◦ Let α =
√

5+
√

13
2 , β = 1+

√
5

2 , and γ = 1+
√

13
2 , which are all in OK .

◦ For p = 3, we previously computed (3) = Q3Q
′
3 where Q3 = (3,−1 +α+α2) and Q′3 = (3,−1−α+α2).

Each of these ideals has norm 9, which exceeds the Minkowski bound, so we may ignore them.

◦ For p = 5 we also computed (5) = Q2
5 where Q5 = (5, 3 + α2). This ideal has norm 25, which again

exceeds the Minkowski bound, so we may ignore it.

◦ For p = 2 we exploited the intermediate �eld Q(
√

5) to see that 2OK = Q2Q
′
2 where Q2 = (2, γ−β) and

Q′2 = (2, γ − β − 1). (We can con�rm that this form of factorization is correct using Ore's factorization
theorem to see that (2) factors as the product of two prime powers each of which has ef = 2, but since
2 is unrami�ed, there must be two prime ideals each with f = 2, meaning that they have norm 4.)

◦ But we can also readily check that γ−β = −
√

5+
√

13
2 has norm 4, so it generates Q2, and then 2/(γ−β) =

√
5+
√

13
2 generates Q′2. Both ideals are principal, so we conclude there are no nonprincipal ideal classes

and that the class group is trivial.

• Exercise: Show that the class group of K = Q(
√

2,
√
−3) is trivial but that the class group of F = Q(

√
−6)

has order 2. (Thus, class numbers can decrease when taking �eld extensions.)

0.27 (Nov 6) Dirichlet's Unit Theorem

• Our goal now is to study the multiplicative group of units in the ring of integers OK for a number �eld K.

◦ As we already showed quite a while ago, an element α ∈ OK is a unit if and only if NK/Q(α) = ±1.
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◦ Any torsion element in the unit group is (by de�nition) a root of unity. Furthermore, if ζd ∈ K, then
the cyclotomic �eld Q(ζd) would be a sub�eld of K, and therefore by considering degrees we would
necessarily have ϕ(d) ≤ [K : Q].

◦ The roots of unity in K always include ±1, and indeed if K has any real embeddings these are the only
possible roots of unity. (Of course, if K is totally complex, then K can have other roots of unity.)

◦ Since there are only �nitely many integers d with ϕ(d) less than a �xed positive integer (as follows for
instance from the easy estimate ϕ(d) ≥

√
d for d > 2), we see that there are only �nitely many roots of

unity in K, and so since the composite of the �elds Q(ζa), Q(ζb) is Q(ζlcm(a,b)) we see that the torsion
subgroup of the unit group is a �nite cyclic group consisting of the roots of unity in K. Alternatively,
we could appeal directly to the fact that a �nite multiplicative subgroup of a �eld is cyclic:

◦ Exercise: Let F be a �eld and let G be a �nite multiplicative subgroup of the multiplicative group F×.
Show that G is cyclic. [Hint: Consider solving x#G − 1 = 0 in F [x].]

• The remaining (more di�cult) task is to understand the torsion-free part of the unit group.

◦ Our goal is to use a similar strategy as the one we used to understand the additive structure of OK
in establishing the Minkowski bound: there, we constructed a group homomorphism ϕ : K → Rn and
exploited the fact that the image of OK was a lattice.

◦ So we would like to try a similar approach here: namely, constructing a group homomorphism ψ : K× →
Rn into Euclidean space, and then showing that the image of the unit group is a lattice.

◦ For a real embedding σ, restricting to nonzero elements yields a homomorphism σ : K× → R× of
multiplicative groups, but to exploit lattice structures we need the image to be an additive group. There
is an obvious way to achieve this: namely, by taking logarithms afterwards.

◦ Since we clearly want to avoid having to deal with the logarithm of −1 we use the map α 7→ log |σ(α)|.
This also works equally well for a complex embedding, since it allows us to avoid the issues of nonunique-
ness of complex logarithms, but it does make the complex-conjugate embeddings redundant, since they
have the same absolute values.

◦ IfK has real embeddings σ1, . . . , σr and nonreal embeddings τ1, τ1, . . . , τs, τs, we see that we can construct
the desired map ψ as the composition of the Minkowski map ϕ : K× → Rn\{0} with the logarithmic map
log : Rn\{0} → Rr+s via log(x1, . . . , xr, y1, z1, . . . , ys, zs) = (log |x1|, . . . , log |xr|, log(y2

1+z2
1), . . . , log(y2

s+
z2
s)).

• By exploiting the logarithmic map, we can characterize the structure of the unit group:

• Theorem (Dirichlet's Unit Theorem): Let K be a number �eld with signature (r, s), with real embed-
dings σ1, . . . , σr and nonreal embeddings τ1, τ1, . . . , τs, τs. De�ne the map ψ : K× → Rr+s via ψ(α) =
(log |σ1(α)|, . . . , log |σr(α)|, log |τ1(α)|2, . . . , log |τs(α)|2), let UK be the unit group of OK , and let N = NK/Q
denote the norm.

1. The map ψ is a group homomorphism: ψ(αβ) = ψ(α) + ψ(β) for all α, β ∈ K×.
◦ Proof: Clear, since log |σ(αβ)| = log |σ(α)σ(β)| = log |σ(α)| + log |σ(β)| for each embedding σ, so
the required property holds in each coordinate.

2. The image ψ(UK) is contained in the hyperplane H ⊆ Rr+s given by y1 + y2 + · · · + yr+s = 0, and in
fact ψ(UK) = H ∩ ψ(OK\{0}).
◦ Proof: Observe that N(α) = σ1(α) · · ·σr(α)τ1(α)τ1(α) · · · τs(α)τs(α) so taking absolute values yields
|N(α)| = |σ1(α)| · · · |σr(α)| · |τ1(α)|2 · · · |τs(α)|2.
◦ Then for α ∈ UK we have |N(α)| = 1 so for ψ(α) = (y1, · · · , yr+s) we see y1 + · · · + yr+s =

log |σ1(α)|+ · · ·+ log |σr(α)|+ log |τ1(α)|2 + log |τs(α)|2 = log 1 = 0 as claimed.

◦ Conversely, if α ∈ OK\{0} has ψ(α) = (y1, · · · , yr+s) where y1 + · · · + yr+s = 0 then by the same
calculation we see |N(α)| = |σ1(α)| · · · |σr(α)| · |τ1(α)|2 · · · |τs(α)|2 = 1 and so α is a unit.

3. If B is any bounded subset of Rr+s, then ψ−1(B) ∩ OK is �nite, hence ψ−1(B) ∩ UK is also �nite.

◦ Proof: As noted earlier, ψ is the composition of the Minkowski map ϕ : K× → Rn\{0} with the loga-
rithmic map log : Rn\{0} → Rr+s via log(x1, . . . , xr, y1, z1, . . . , ys, zs) = (log |x1|, . . . , log |xr|, log(y2

1+
z2

1), . . . , log(y2
s + z2

s)).
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◦ If B is bounded in Rr+s then the inverse image of B under the logarithmic map is obviously bounded
in Rn. Then because ϕ(OK) is a lattice, we see that ϕ(OK) ∩ log−1(B) is �nite, since any lattice
has only �nitely many elements in any bounded region.

◦ Finally, since ϕ is injective, taking the inverse image under ϕ shows that OK ∩ψ−1(B) is also �nite,
hence so is UK ∩ ψ−1(B) since UK is a subset of OK .

4. The kernel ker(ψ) is �nite and consists of the roots of unity in K.

◦ Proof: The �rst part is immediate by taking B = {0} in (3). Then because ker(ψ) is a �nite subgroup
of the unit group, all its elements must be roots of unity.

◦ On the other hand, since |σ(ζ)| = 1 for any complex embedding σ and any root of unity ζ, so ker(ψ)
does contain all roots of unity in K, so ker(ψ) is precisely the roots of unity in K.

5. The image ψ(UK) is a lattice of rank at most r + s− 1.

◦ Proof: By (3), ψ(UK) has the property that its intersection with any bounded subset of Rr+s is
�nite. Since it is an additive subgroup of Rr+s by (1), it is a lattice, and therefore its rank is at most
r + s.

◦ But by (2) we see that ψ(UK) is contained in a hyperplane hence its rank cannot be r+ s (since this
is incompatible with being a subset of a codimension-1 subspace of Rr+s), so the rank is at most
r + s− 1.

6. The unit group UK is a �nitely generated abelian group of rank at most r + s− 1.

◦ Proof: This is immediate from applying the �rst isomorphism theorem to (4) and (5).

7. For any �xed embedding σ of K (real or nonreal), there exists a positive constant C such that for any
nonzero α ∈ OK there exists a nonzero β ∈ OK with |N(β)| ≤ C and such that log |σi(β)| < log |σi(α)|
for all embeddings σi 6= σ.

◦ Proof: Suppose that ψ(α) = (a1, . . . , ar, ar+1, . . . , ar+s).

◦ Let B be the region in Rn de�ned by |x1| < c1, ... , |xr| < cr and y
2
1 + z2

1 < cr+1, ... , y
2
s + z2

s < cr+s
where the ci are chosen so that 0 < ci < eai for each ai except the one corresponding to the special
embedding σ, which is chosen (potentially to be very large) so that c1c2 · · · cr+s = ( 4

π )s
√
|discK|.

◦ ThenB is an open convex centrally-symmetric region with n-measure equal to (2c1) · · · (2cr)(πcr+1) · · · (πcr+s) =
2rπs( 4

π )s
√
|discK| = 2r+2s

√
|discK| = 2n

√
|discK|, hence by Minkowski's lattice theorem it con-

tains a nonzero element ϕ(β) of the lattice Λ = ϕ(OK) where ϕ is the Minkowski map. (Recall that
as we have previously shown, the covolume of Λ is

√
|discK|.)

◦ Then β has |N(β)| ≤ ( 4
π )s
√
|discK| and log |σi(β)| < log ci = ai = log |σi(α)| for each σi 6= σ, so we

may take C = ( 4
π )s
√
|discK|.

8. For any �xed embedding σ of K (real or nonreal), there exists a unit u ∈ UK such that log |σi(u)| < 0
for all σi 6= σ, and with log |σ(u)| > 0.

◦ Proof: Let α1 be an arbitrary element of OK and apply (7) iteratively to obtain a sequence of nonzero
elements α1, α2, . . . of elements of OK such that log |σi(αk+1)| < log |σi(αk)| for each σi 6= σ, where
the norms |N(αk)| are uniformly bounded above by the constant C.

◦ Then since there are only �nitely many ideals with norm bounded by C, there are only �nitely many
possibilities for the principal ideals (αk), and so by the pigeonhole principle, two of them must be
equal.

◦ If (αa) = (αb) with a < b then αa and αb are associates: then the unit u = α−1
a αb has log |σi(u)| =

log |σi(αa)| − log |σi(αb)| < 0 for each σi 6= σ.

◦ Finally, by (2), since the sum
∑
i log |σi(u)| is zero and all terms with σi 6= σ are negative, the

remaining term log |σ(u)| must be positive.
9. The unit group UK is a �nitely generated abelian group of rank equal to r+s−1 whose torsion subgroup

consists of the roots of unity in K.

◦ Exercise: Suppose that M is an m ×m real matrix whose diagonal entries are positive, whose o�-
diagonal entries are negative, and whose row sums are all zero. Show that M has rank m − 1 and
that any m − 1 columns are a basis for M . [Hint: Suppose there is a linear dependence involving
m − 1 of the columns. Rescale to assume that the largest coe�cient ak of the dependence is 1 and
the others are at most 1. Look at the kth row to obtain a contradiction.]
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◦ Proof: Using (8), construct units u1, u2, . . . , ur+s such that log |σi(uj)| is negative when i 6= j and
positive when i = j. By the exercise above, the rank of the (r + s) × (r + s) matrix M whose
(i, j)-entry is log |σi(uj)| is equal to r + s − 1. Thus, the logarithms of (any) of r + s − 1 of these
units are additively independent, hence the units themselves are multiplicatively independent.

◦ We conclude that the rank of UK as an abelian group is at least r + s− 1, so together with (6) we
see its rank is exactly r + s− 1. Finally, the statement about torsion was already shown earlier.

• From (9) we see that if we take u1, . . . , ur+s−1 to be any set of generators for the torsion-free part of UK , then
the full set of units in K are those elements of the form u = ζua11 · · ·u

ar+s−1

r+s−1 for some root of unity ζ ∈ K and
any integers a1, . . . , ar+s−1.

• De�nition: For any number �eld K with signature (r, s), the unit rank of K is r + s − 1. We say that
units u1, . . . , ur+s−1 form a fundamental system of units when all units of K can be written in the form
ζua11 · · ·u

ar+s−1

r+s−1 for some root of unity ζ ∈ K and some integers a1, . . . , ar+s−1. Equivalently, u1, . . . , ur+s−1

are a fundamental system of units when they generate the torsion-free part of the unit group UK .

◦ We can see immediately that Q of signature (1, 0) and the imaginary quadratic �elds Q(
√
D) for D < 0

with signature (0, 1) are the only �elds with unit rank zero.

◦ In general it can be quite di�cult to construct a fundamental system of units. In principle, however,
the argument used in the proof above (constructing units with most of their complex embeddings small,
with only one that is large) can be converted into a computational algorithm.

• Before moving further, we will mention also that the matrix considered in the proof of (9), whose entries are
the logarithms of the absolute values of the various complex embeddings of a set of generators of the unit
group, turns out to carry important information as well.

• De�nition: For a number �eldK and any units w1, . . . , wr+s−1 ∈ OK , we de�ne their regulatorR(w1, . . . , wr+s−1)
to be the absolute value of the determinant of the matrix {log |σi(ωj)|}1≤i,j≤r+s−1 whose entries are the loga-
rithms of the absolute values of the real and nonconjugate complex embeddings, with one embedding omitted.
(We take the regulator of the empty set to be 1.)

◦ Although the de�nition involves various choices (the ordering of the embeddings, which embedding is
omitted) it is easy to see from the properties of determinants and the fact that

∑
i log |σi(u)| = 0 for any

unit u, that the choices do not a�ect the value of the regulator.

◦ Additionally, we see that R(w1, . . . , wr+s−1) is zero if and only if the units w1, . . . , wr+s−1 are multiplica-
tively dependent, as follows immediately by writing w1, . . . , wr+s−1 in terms of a fundamental system of
units.

◦ In the same way, by changing basis we see that R(w1, . . . , wr+s−1) = R(u1, . . . , ur+s−1) if u1, . . . , ur+s−1

is another fundamental system of units, so the regulators of any fundamental system of units are the
same: thus, we refer to this quantity as the regulator of K.

• The real quadratic �elds Q(
√
D) with D > 0 have signature (2, 0) hence have unit rank 1. Thus, their unit

groups are of the form UK = {±ud : d ∈ Z} for a fundamental unit u.

◦ For real quadratic �elds, we can �nd the fundamental unit explicitly by �nding the minimal solution to
the Pell equation a2 −Db2 = ±4 in integers a, b; then the fundamental unit is u = 1

2 (a+ b
√
D). (When

D ≡ 2, 3 (mod 4) we can instead just solve a2 −Db2 = ±1 and use u = a+ b
√
D.)

◦ Exercise: Suppose K is a real quadratic �eld. Show that there are four possible fundamental units, and
if one of them is u then the others are −u, u, and −u. Conclude that there is a unique fundamental unit
of the form a + b

√
D where a, b ∈ Q are positive, and indeed that among all units of OK with positive

coe�cients, the fundamental unit is the one with a and b minimal.

◦ By the observations above, we can �nd the fundamental units for real quadratic �elds Q(
√
D) by �nding

the minimal positive solution to the corresponding Pell equation. Here are some examples for small D,
which can be found by inspection or a brief search:

D 2 3 5 6 7 10 11 13

Fund. Unit 1 +
√

2 2 +
√

3 (1 +
√

5)/2 5 + 2
√

6 8 + 3
√

7 3 +
√

10 10 + 3
√

11 (3 +
√

13)/2
Norm −1 1 −1 1 1 −1 1 −1
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◦ We mention also that the regulator of a real quadratic �eld Q(
√
D) is the logarithm of its fundamental

unit a+ b
√
D (where as above we choose the fundamental unit with a, b positive).

◦ Exercise: Suppose K = Q(
√
D). Show that the fundamental unit of K is of the form a + b

√
D with

a, b ∈ Z whenever D 6≡ 5 (mod 8).

0.28 (Nov 7) Examples of Unit Groups

• For larger D, we require some deeper results from continued fractions and Pell's equation to compute the
fundamental unit in an e�cient manner.

◦ We recall the notation [a0, a1, . . . , ak] = a0+
1

a1 +
1

· · ·+ 1

ak

for a �nite continued fraction and [a0, a1, . . . ] =

limk→∞[a0, a1, . . . , ak] for an in�nite continued fraction. Any irrational number α has a unique continued
fraction expansion with all ai ∈ Z and ai > 0 for i > 0, which may be computed recursively via a0 = bαc
and [a1, a2, . . . ] =

1

α− a0
.

◦ A basic result in Diophantine approximation states that if α is irrational and
p

q
is rational with

∣∣∣∣α− p

q

∣∣∣∣ <
1

2q2
, then in fact

p

q
is a continued fraction convergent to α.

◦ It is then a straightforward inequality chase to deduce that if r ∈ Z has r2 + |r| < D, then if x and y are

positive integers with x2 −Dy2 = r then
x

y
is a continued fraction convergent to

√
D.

◦ As noted above, to �nd the fundamental unit, we must solve the Pell's equation x2 − Dy2 = ±1 or
±4 depending on D, so for D > 20, the fundamental unit is always obtained from a continued fraction
convergent to

√
D.

◦ By a somewhat tedious analysis, one may show that the continued fraction expansion of
√
D is periodic

and of the form [a0, a1, a2, · · · , ak−1, 2a0] with a0 = b
√
Dc, and this expansion may be tabulated e�ciently

using a method sometimes referred to as the �super magic box�:

∗ The rows in the table are the sequences An, Cn, an, pn, qn, and p
2
n −Dq2

n = (−1)nCn+1.

∗ We compute the sequences an, An, Cn via the recurrences An+1 = anCn − An, Cn+1 = (D −
A2
n+1)/Cn, and an+1 = b(An+1 +a0)/Cn+1c with initial conditions A0 = 0, C0 = 1, and a0 = b

√
Dc.

Once we reach a term with Ck = 1 (or when D ≡ 1 mod 4, the value Ck = 4) we stop, since we will
have �nished computing the necessary continued fraction expansion in the previous step.

∗ We can then evaluate the convergents pn/qn using the recurrence relations pn = anpn−1 + pn−2 and
qn = anqn−1 + qn−2 with initial conditions p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.

• Example: Find the fundamental unit of Q(
√

14).

◦ Here is the result of doing the super magic box calculation:
n −1 0 1 2 3 4

An = an−1Cn−1 −An−1 0 3 2 2 3

Cn = (D −A2
n)/Cn−1 1 5 2 5 1

an = b(An + a0)/Cnc 3 1 2 1 6
pn = anpn−1 + pn−2 1 3 4 11 15 101
qn = anqn−1 + qn−2 0 1 1 3 4 27

p2
n − 14q2

n −5 2 −5 1 −5

◦ Since 14 is not 1 mod 4, we continue until obtaining C4 = 1 and then compute the previous convergent
p3/q3 = 15/4.

◦ This tells us that the fundamental unit of Z[
√

14] is 15 + 4
√

14, with norm (−1)4C4 = 1.

• Example: Find the fundamental unit of Q(
√

61).
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◦ Here is the result of doing the super magic box calculation:
n −1 0 1 2 3

An = an−1Cn−1 −An−1 0 7 5 7

Cn = (D −A2
n)/Cn−1 1 12 3 4

an = b(An + a0)/Cnc 7 1 4 3
pn = anpn−1 + pn−2 1 7 8 39 125
qn = anqn−1 + qn−2 0 1 1 5 16

p2
n − 14q2

n −12 3 −4 9

◦ Since 61 ≡ 1 (mod 4) we stop once we obtain C3 = 4, and then the previous convergent is p2/q2 = 39/5.

◦ This tells us that the fundamental unit of Z[
√

14] is 1
2 (39 + 5

√
61), with norm (−1)3C3/4 = −1.

• Exercise: Find the fundamental units for the quadratic �elds Q(
√
D) for D = 15, 17, 19, 21, 22, 23, 26.

• Unfortunately, we do not have an analogous criterion like the one provided by the basic theory of Pell's
equation that allows us to construct the fundamental unit for other classes of �elds.

◦ For certain classes of �elds, however, we can make some basic estimates that will allow us at least to
identify with certainty the fundamental unit in some examples.

◦ For instance, the pure cubic �elds Q( 3
√
D) also have signature (1, 1) so they likewise have unit rank 1,

and their unit groups are also of the form UK = {±ud : d ∈ Z} for a fundamental unit u. If we can �nd
a unit u that seems �small�, if we can obtain a lower bound on the size of u, we can attempt to use the
bound to show that u is actually the fundamental unit.

◦ So suppose K is any cubic �eld with signature (1, 1) and discriminant D, and let u be a fundamental unit.
Implicitly identifying u with its real embedding, then by negating or taking a reciprocal as necessary we
may assume u > 1.

◦ Then the three complex embeddings of u are u, reit, re−it for some r > 0 and t ∈ (0, 2π), so N(u) = ur2

hence r = u−1/2 since ur2 is positive and N(u) = ±1. Then

− 1
4disc(u) = − 1

4 (u− reit)2(u− re−it)2(reit − re−it)2 = [u2 − 2ur cos t+ r2]2 · (r2 sin t)

= sin2 t · (u3/2 − 2 cos t+ u−3/2)2

= (u3/2 + u−3/2)2 − [(u3/2 + u−3/2) cos t+ 2 sin2 t]2 + 4 sin2 t

≤ (u3/2 + u−3/2)2 + 4 = u3 + u−3 + 6

which yields a quadratic inequality in u3 that is easy enough to solve explicitly to get a lower bound on
u in terms of |disc(K)| ≤ |disc(u)|.
◦ A slightly weaker estimate that is often good enough is easily obtained by noting that because u > 1, we
have u3 ≥ 1

4 |D| − 6− u−3 > 1
4 |D| − 7.

• Example: Show that 1 + 3
√

2 + 3
√

4 is the fundamental unit of Q( 3
√

2).

◦ Using the norm formula N(a+ b 3
√

2 + c 3
√

4) = a3 + 2b3 + 4c3 − 6abc we see that this element does have
norm −1 hence it is a unit, and it (obviously) is not a root of unity, so since it is greater than 1, it must
be some positive power of the fundamental unit u.

◦ Since disc(K) = −108, the (real embedding of the) fundamental unit u satis�es u ≥ ( 1
4 · 108 − 7)1/3 ≈

2.7144 by our analysis above. (Alternatively, solving u3 + u−3 + 6 ≥ 27 directly yields u ≥ 2.7568, so we
see the weaker estimate is fairly close anyway.)

◦ But now because 1 + 3
√

2 + 3
√

4 ≈ 3.8473, we can see that this element is less than u2 (which must be
greater than 7), so it must equal u itself.

• Exercise: For α3 − α+ 1 = 0, show that α is the fundamental unit of Q(α).

• Exercise: Show that 4 + 2 3
√

7 + 3
√

49 is the fundamental unit of Q( 3
√

7).

• Exercise: Show that 1
3 (23 + 11 3

√
10 + 5 3

√
100) is the fundamental unit of Q( 3

√
10).
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• Finding units in other classes of �elds is generally even more di�cult, but we can still make some remarks
about the cyclotomic �elds.

◦ The cyclotomic �elds Q(ζn) for n > 2 are totally complex hence have signature (0, 1
2ϕ(n)), so in general

they have unit rank 1
2ϕ(n)− 1.

◦ Since ϕ(n) grows (generally) as n grows, we can only hope to construct systems of fundamental units
explicitly when n is small.

• We can collect some basic results about units in cyclotomic �elds. A full characterization of the units in
general cyclotomic �elds is quite di�cult to come by, but we can at least construct some examples of units.

• Proposition (Some Units in Cyclotomic Fields): Let n ≥ 3. Noting that Q(ζn) = Q(ζ2n) when n is odd,
assume further that n 6≡ 2 (mod 4).

1. The roots of unity in K = Q(ζn) are ±ζdn for integers d.

◦ Proof: Clearly all of these elements are roots of unity in K. To show these are all of the roots of unity
in K, suppose n has prime factorization n = 2n1 · · · pnk

k and the order of u has prime factorization
ord(u) = 2u1 · · · puk

k : we want to show that ord(u) divides 2n if n is odd, and otherwise divides n.

◦ We can see that uord(u)/p
ui
i is a primitive pui

i th root of unity for each i, and conversely u can be
written as a product of pui

i th roots of unity by the Chinese Remainder Theorem, so saying u ∈ K is
equivalent to saying that Q(ζpui

i
) is a sub�eld of K for each prime power pui

i .

◦ But as we have previously noted, Q(ζa) ∩ Q(ζb) = Q(ζgcd(a,b)), so Q(ζpui
i

) ∩ Q(ζn) can only equal

Q(ζpui
i

) when the �eld degrees ϕ(pui
i ) and ϕ(gcd(pui

i , n)) = ϕ(p
min(ui,ni)
i ) are equal. It is easy to see

that this occurs if and only if ni ≥ ui, or when ni = 0, ui = 1, and pi = 2.

◦ Equivalently, when n2 > 0 (i.e., when n is odd) this means ni ≥ ui for all i whence ord(u) divides
n, and when n2 = 0 (i.e., when n is even) we have ni ≥ ui for all i except i = 2 where potentially
ui = ni + 1: this means instead that ord(u) will divide 2n.

2. The �eld K = Q(ζn) is totally complex, and its maximal real sub�eld K+ = K ∩ R = Q(ζn + ζ−1
n ) is

totally real, and K/K+ is an extension of degree 2.

◦ Proof: All of the complex embeddings ζkn of ζn are nonreal, so K is totally complex, and so in
particular [K : K ∩ R] > 1.

◦ Additionally, clearly ζn + ζ−1
n = 2 cos(2π/n) is real, as are all of its Galois conjugates ζkn + ζ−kn =

2 cos(2πk/n) for k ∈ Z, so the �eld K+ is totally real and is contained in K ∩ R.
◦ On the other hand, since ζn is a root of the quadratic polynomial m(x) = x2 − (ζn + ζ−1

n )x + 1 in
K+[x], we see that [K : K+] ≤ 2. But then 1 < [K : K ∩R] ≤ [K : K+] ≤ 2, so in fact K ∩R = K+

and [K : K+] = 2, as claimed.

◦ Exercise: Show that the unit ranks of K = Q(ζn) and K+ = Q(ζn+ζ−1
n ) are both equal to 1

2ϕ(n)−1.

◦ The same phenomenon occurs (rather more trivially) with the imaginary quadratic �elds and their
proper sub�eld Q, and in fact it turns out this is essentially the only situation where a �eld can have
a proper sub�eld with the same unit rank:

◦ Exercise: Suppose that L/K is an extension of number �elds. Show that L and K have the same unit
rank if and only if L is totally complex, K is totally real, and [L : K] = 2, in which case K = L ∩R
is the maximal real sub�eld of L.

3. Let p be an odd prime and K = Q(ζp) with K+ = Q(ζp + ζ−1
p ). Then any unit u in OK can be written

in the form ζbw where w is a unit of OK+ : in other words, u is a root of unity times a real unit.

◦ Note that the exercise following (2) explains why this is plausible, because the unit ranks of OK and
OK+

are the same, so the quotient group of the units of OK modulo the units of OK+
is �nite. (We

note that in general, the quotient need not just consist of the nonreal roots of unity in K, since the
free part of the unit group of OK+

could be a proper subgroup of the free part of the unit group of
OK .)
◦ Proof: Let α = u/u. Then α is an algebraic integer since u is a unit. Additionally, for any complex

embedding σ, we see |σ(α)| = |σ(u)/σ(u)| =
∣∣∣σ(u)/σ(u)

∣∣∣ = 1 since complex conjugation commutes

with σ and any complex number has the same absolute value as its conjugate.
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◦ Thus we see u/u is an algebraic integer all of whose conjugates have absolute value 1, which (by an
earlier exercise) implies that u/u is a root of unity in K.

◦ Since the roots of unity in K are of the form ±ζdp that means u/u = ±ζdp .
◦ If we had u/u = −ζdp then for u = c0 + c1ζp + · · ·+ cp−2ζ

p−2
p we see u ≡ c0 + · · ·+ cp−2 (mod 1− ζ),

and so u = c0 + c0ζ
−1
p + · · · + cp−2ζ

−(p−2)
p ≡ c0 + · · · + cp−2 ≡ u ≡ −ζdpu ≡ −u (mod 1 − ζp). But

this would imply 2u ≡ 0 (mod 1 − ζp) hence 2 ∈ (1 − ζp) since u is a unit: but (1 − ζp) lies above
the integer prime p 6= 2, so this is impossible.

◦ So in fact we have u/u = ζdp for some d. Letting d ≡ 2b (mod p) and w = ζ−bp u, we see that

w = ζbpu = ζ−bp u = w so w is real and has u = ζbpw, as desired.

4. Let p be an odd prime and K = Q(ζp) with K+ = Q(ζp + ζ−1
p ). Then the unit group of OK is the direct

product of the group of pth roots of unity with the units of OK+
.

◦ Proof: This follows immediately from (1) and (2), after noting that both K and K+ contain ±1.

◦ Remark: More generally, it can be shown (with much more di�culty) that the product of the roots
of unity in K with the units of OK for K = Q(ζn) always generates either the full unit group of OK ,
or an index-2 subgroup.

5. Let p be a prime and K = Q(ζpd). Then for any integers a, b relatively prime to p, the element (ζapd −
1)/(ζbpd − 1) is a unit of OK .

◦ Proof: Since b is invertible modulo pd, there exists t with a ≡ tb (mod pd). Then (ζapd−1)/(ζbpd−1) =

(ζtbpd − 1)/(ζbpd − 1) = ζ
(t−1)b

pd
+ · · ·+ ζbpd + 1 ∈ OK .

◦ By interchanging a, b we see that (ζbpd − 1)/(ζapd − 1) is also in OK , so both elements are units.

6. Suppose n has at least two distinct prime factors and let K = Q(ζn). Then 1− ζn is a unit of OK .
◦ Contrast this result with the case where n = pd is a prime power above: in that case (1 − ζpd) is a
prime ideal lying over p, so 1− ζpd is certainly not a unit!

◦ Proof: From the factorization Φn(x) =
∏
d|n(xd − 1)µ(n/d), divide each term on the right by x − 1.

This introduces a net factor of (x − 1)s where s =
∑
d|n µ(n/d), but this sum is easily seen to be

zero whenever n has 2 or more prime factors.

◦ So Φn(x) =
∏
d|n(xd−1 + · · ·+ 1)µ(n/d); now setting x = 1 produces Φn(1) =

∏
d|n d

µ(n/d) = 1 as can
be seen directly by decomposing n as a product of primes.

◦ But then NK/Q(1− ζn) =
∏

gcd(k,n)=1(1− ζkn) = Φn(1) = 1 so 1− ζn is a unit, as claimed.

7. For any a relatively prime to n, the circular unit ωa = ζ
(1−a)/2
n

1− ζan
1− ζn

=
ζ
−a/2
n − ζa/2n

ζ
−1/2
n − ζ1/2

n

=
sin(πa/n)

sin(π/n)
is a

unit in OK for K+ = Q(ζn + ζ−1
n ) hence also a unit in OK for K = Q(ζn).

◦ Proof: When n is a prime power, this follows from (5), and when n is not a prime power, this follows
from (6).

◦ Remark: With some additional work one may show that the circular units of Q(ζpd) for 1 < a < 1
2p
d

and p not dividing a, generate all of the circular units, and that the regulator of this set of circular
units is nonzero: thus, they generate a �nite-index subgroup of the full unit group of Q(ζpd).

• By exploiting the maximal real sub�eld it is possible in some cases to compute the unit group exactly.

• Example: Show that 1 + ζ5 is a fundamental unit for Q(ζ5).

◦ Since Q(ζ5) has signature (0, 2), its unit rank is 1. By (4) of the proposition above, we only need to �nd
the fundamental unit of its maximal real sub�eld Q(ζ5 + ζ−1

5 ). This is the quadratic sub�eld of Q(ζ5),
which since Q(ζ5) has discriminant 52, must be rami�ed only at 5, hence can only be Q(

√
5).

◦ Indeed, we can see this more directly by noting that for α = ζ5 + ζ4
5 with Galois conjugate β = ζ2

5 + ζ3
5 ,

we have α + β = αβ = −1 which both follow from using Φ4(ζ5) = 0, so α, β are roots of the quadratic

x2 +x− 1 = 0 whence α, β = −1±
√

5
2 , and indeed by trivially observing that the real part of α is positive

we see β = − 1+
√

5
2 is the negative of the fundamental unit of Q(

√
5).
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◦ Thus by (4) above, we see that every unit ofQ(ζ5) is of the form±ζa5βd for some d, and since β = ζ2
5 (1+ζ5)

we may substitute to see that the units of Q(ζ5) are all of the form ±ζc5(1 + ζ5)d, and so 1 + ζ5 is a
fundamental unit.

• Exercise: Show that 1 + ζ8 + ζ2
8 is a fundamental unit for Q(ζ8).

0.29 (Nov 13) Galois Actions, Decomposition and Inertia Groups

• So far, we have not really exploited the action of the Galois group on an extension of number �elds in a major
way, beyond using it to simplify some calculations with complex embeddings.

◦ So let us now study in more detail how Galois groups act on primes and factorizations.

• Proposition (Galois Action on Primes): Let L/K be a Galois extension of number �elds with Galois group
G = Gal(L/K), and let P be a nonzero prime ideal of OK .

1. If Q is any prime of OL lying above P and σ ∈ G is any automorphism, then σ(Q) is also a prime lying
above P . Thus, σ acts as a permutation on the primes lying above P .

◦ Proof: Since L/K is Galois, we see that σ(OL) = OL.
◦ Then OL/σ(Q) = σ(OL)/σ(Q) ∼= σ(OL/Q) is a �eld, so σ(Q) is a maximal ideal of OL.
◦ Additionally, since σ �xes K hence also P , since Q contains P we see σ(Q) also contains P , so σ(Q)
also lies above P .

◦ Finally, σ is invertible, so it permutes the primes lying above P .

2. The action of G on the primes of OL lying above P is transitive: for any Q,Q′ lying above P , there
exists some σ ∈ G with σ(Q) = Q′.

◦ Proof: Suppose otherwise, so that there exist primes Q and Q′ such that σ(Q) 6= Q′ for any σ ∈ G.
◦ Then by the Chinese remainder theorem, there exists some α ∈ OL such that α ≡ 0 (mod Q′) and
α ≡ 1 (mod σ(Q)) for all σ ∈ G.

◦ The latter condition implies σ−1(α) ≡ 1 (mod Q) for all σ ∈ G, and thus we have NL/K(α) =∏
σ∈G σ

−1(α) ≡ 1 (mod Q) as well.

◦ However, since α ≡ 0 (mod Q′) we also have NL/K(α) ∈ Q′ ∩K = P : but Q divides POL, so this
would imply NL/K(α) ≡ 0 (mod Q), contradicting the above.

◦ Thus, the action of G must be transitive, as claimed.

3. For any primes Q1 and Q2 of OL lying over P , we have e(Q1|P ) = e(Q2|P ) and f(Q1|P ) = f(Q2|P ).

◦ Proof: Suppose POL has prime factorization POL = Qe11 Q
e2
2 · · ·Q

ek
k . Via (2), let σ ∈ G be such

that σ(Q1) = Q2.

◦ Then σ �xes both P and OL, so applying σ yields POL = σ(POL) = σ(Q1)e1σ(Q2)e2 · · ·σ(Qk)ek =
Qe12 σ(Q2)e2 · · ·σ(Qk)ek .

◦ By unique factorization we immediately have e1 = e2 so e(Q1|P ) = e(Q2|P ) as claimed.

◦ For the second part, observe as in (1) that σ yields a ring isomorphism between OL/Q1 and OL/Q2,
so since both Q1 and Q2 lie over P , we see that the vector space dimensions of OL/Q1 and OL/Q2

over OK/P are equal.

◦ This means f(Q1|P ) = f(Q2|P ), as desired.

4. (The efg Theorem) If Q1, . . . , Qg are the primes of OL lying over P , with common values e(Qi|P ) = e
and f(Qi|P ) = f , then efg = [L : K].

◦ Proof: We see [L : K] =
∑g
i=1 e(Qi|P )f(Qi|P ) = efg immediately from (3) and the ef -theorem.

• As noted in (1) of the proposition above, we have a group action of the Galois group G = Gal(L/K) on the
prime ideals lying over a given P of OK .

◦ It is now natural to consider various kinds of stabilizers for this group action.

◦ The most obvious one is the stabilizer of a speci�c prime Q lying over P : namely, the elements σ ∈ G
with σ(Q) = Q.
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◦ Another obvious one would be the stabilizer of OL, but any σ �xing OL will �x all of L hence must be
the identity by the Galois correspondence.

◦ Instead of the stabilizer of OL, we can instead consider the stabilizer of OL mod Q: in other words, the
set of σ ∈ G such that σ(α) ≡ α (mod Q) for all α ∈ OL.

• De�nition: Let L/K be a Galois extension of number �elds with Galois group G, and let Q be a nonzero
prime ideal of OL lying over the prime P of OK . The decomposition group associated to Q is the subgroup
of G �xing Q, where explicitly D(Q|P ) = {σ ∈ G : σ(Q) = Q}. The inertia group associated to Q is the
subgroup of G �xing OL mod Q, where explicitly E(Q|P ) = {σ ∈ G : σ(α) ≡ α (mod Q) for all α ∈ OL}.

◦ The decomposition and inertia groups are in fact subgroups of G, since they are obviously closed under
multiplication and inverses and they contain the identity.

◦ When Q is clear from context we will refer to the decomposition and inertia groups simply as D and E
respectively.

◦ As a �rst observation, we note that E is a subgroup of D: if σ ∈ E, then for any α ∈ Q we have
σ(α) ≡ α ≡ 0 (mod Q), so σ(α) ∈ Q also. Thus, we must have σ(Q) ⊆ Q hence σ(Q) = Q since σ(Q) is
prime, whence σ ∈ D.

• Example: Find the decomposition and inertia groups for the primes Q2 = (1 + i), Q3 = (3), and Q5 = (2 + i)
of K = Q(i).

◦ The Galois group for K/Q is G = {1, σ} where σ is complex conjugation.

◦ For the prime Q2 = (1 + i), we see that the decomposition group D(Q2|2) = G since σ(Q2) = Q2 and
the inertia group E(Q2|2) = G as well since σ(α) = α = α− 2Im(α) ≡ α (mod Q2) for all α ∈ OL.
◦ For the prime Q3 = (3) we see that the decomposition group D(Q3|3) = G since σ(Q3) = Q3, but the
inertia group E(Q3|3) = 1 since for example σ(i) 6≡ i (mod Q3).

◦ For the prime Q5 = (2+ i) we see that the decomposition group D(Q5|5) = 1 since σ(Q5) = Q′5 = (2− i),
and then the inertia group E(Q5|5) = 1 immediately as well since it is a subgroup.

• Exercise: Find the decomposition and inertia groups for the primes (
√
−2), (1 +

√
−2), and (5) of Q(

√
−2).

• Example: Find the decomposition and inertia groups for the primes Q2 = (2), Q5 = (1−ζ5), and Q11 = (2+ζ5)
of K = Q(ζ5).

◦ The Galois group for K/Q is G = {1, σ, σ2, σ3} where σ(ζ5) = ζ2
5 .

◦ For the prime Q2 = (2), we see that the decomposition group D(Q2|2) = G since σ(Q2) = Q2.

◦ On the other hand, the inertia group E(Q2|2) = 1 since σ(ζ5)− ζ5 = ζ2
5 − ζ5 is not in Q2 (since it is not

divisible by 2 in OK = Z[ζ5]), and neither is σ2(ζ5)− ζ5 or σ3(ζ5)− ζ5.
◦ For the prime Q5 = (1− ζ5) which lies above 5 and is in fact totally rami�ed so that (5) = Q5

5, we must
have σ(Q5) = Q5 since Q5 is the only prime above 5. Thus, D(Q5|5) = G.

◦ Exercise: Suppose L/K is a Galois extension with Galois group G and Q is a prime of OL lying over P .
Show that D(Q|P ) = G if and only if Q is the unique prime of OL lying over P .

◦ For the inertia group, we have σd(ζk5 ) − ζk5 = ζ2dk
5 − ζk5 = ζk5 (ζ

(2d−1)k
5 − 1) which is divisible by 1 − ζ5

hence lies in Q5 for all d, k. Thus since σd(α) − α ∈ Q5 for an integral basis of OL we see σd(α) ≡ α
(mod Q5) for all α ∈ OL, so in fact we also have E(Q5|5) = G.

◦ Finally, for Q11, which lies above 11, from Dedekind-Kummer and the observation that NK/Q(2 +
ζ5) = 11, we see that (11) has prime ideal factorization (11) = (2 + ζ5)(2 + ζ2

5 )(2 + ζ3
5 )(2 + ζ4

5 ) =
Q11σ(Q11)σ3(Q11)σ2(Q11).

◦ So the only automorphism �xing Q11 is the identity, and so D(Q11|11) = 1 hence also E(Q11|11) = 1.

• In order to compute additional examples it will be convenient to establish some basic properties of the
decomposition and inertia groups �rst.

◦ The �xed �elds of D and E, which we will refer to as the decomposition �eld LD and the inertia �eld
LE , also carry important information, as we will now show.
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• Proposition (Decomposition and Inertia, I): Let L/K be a Galois extension of number �elds with Galois group
G. For a nonzero prime ideal Q of OL lying over the prime P of OK , let D = D(Q|P ) be the decomposition
group and E = E(Q|P ) be the inertia group, and also let e = e(Q|P ) be the rami�cation index, f = f(Q|P )
be the inertial degree, and g = g(Q|P ) be the number of primes lying over P .

1. The inertia group E is a normal subgroup of D, and the quotient group D/E is cyclic of order dividing
f(Q|P ).

◦ Proof: Suppose σ ∈ D. Then σ induces an automorphism of OL, and since σ(Q) = Q, it descends
to an automorphism σ of the residue �eld FQ = OL/Q, de�ned explicitly via σ(α+Q) = σ(α) +Q
for α ∈ OL.
◦ Furthermore, since σ is an element of Gal(L/K) it �xes OK hence σ �xes FP = OL/P .
◦ This means σ is an automorphism of OL/Q that �xes OK/P , so it is an element of the Galois group

Gal(FQ/FP ).

◦ It is then easy to see that the map ψ : D → Gal(FQ/FP ) with ψ(σ) = σ is a group homomorphism.

◦ Now we have σ ∈ kerψ ⇐⇒ σ �xes OL/Q ⇐⇒ σ(α+Q) = α+Q for all α ∈ OL ⇐⇒ σ(α) ≡ α
(mod Q) for all α ∈ OL ⇐⇒ σ ∈ E.
◦ Hence E is a normal subgroup of D and by the �rst isomorphism theorem we see that D/E is
isomorphic to a subgroup of Gal(FQ/FP ).

◦ Finally, as we have previously noted, FQ/FP is an extension of �nite �elds of degree f(Q|P ), so its
Galois group is cyclic of order f(Q|P ), generated by the Frobenius map. The conclusion follows.

2. We have [G : D] = [LD : K] = g, and in fact if τ1, . . . , τg are coset representatives for D in G, then
τ1(Q), . . . , τg(Q) are the distinct primes of OL lying above P .

◦ Proof: As shown earlier, the group action of G on the primes lying above P is transitive, and the
stabilizer of Q is the decomposition subgroup D. All of the claimed results then follow immediately
from the orbit-stabilizer lemma: the elements in the orbit are obtained as the images under the
cosets of the stabilizer, and the size of the orbit is equal to the index of the stabilizer.

3. Let QD = Q∩LD be the prime below Q in the decomposition �eld LD. Then Q is the only prime of OL
lying above QD, and additionally e(Q|QD) = e, f(Q|QD) = f , and e(QD|P ) = f(QD|P ) = 1.

◦ Proof: First observe that the primes of OL lying above QD are permuted transitively by the Galois
group Gal(L/LD) = D, but all of D sends Q to itself so the action is trivial and Q is the only prime
lying above QD.

◦ By (2) we know [LD : K] = g so [L : LD] = ef by the efg-theorem.

◦ Then by the efg-theorem again we have ef = [L : LD] = e(Q|QD)f(Q|QD) ≤ e(Q|P )f(Q|P ) = ef ,
so we must have equality everywhere, so e(Q|P ) = e(Q|QD) and f(Q|P ) = f(Q|QD).

◦ Then since e, f are multiplicative in towers we immediately also have e(QD|P ) = f(QD|P ) = 1 as
claimed.

4. Let QE = Q ∩ LE be the prime below Q in the inertia �eld LE . Then Q is the only prime of OL lying
above QE , and also f(Q|QE) = 1.

◦ Proof: The �rst statement follows immediately from (3), since QE lies over QD and Q is the only
prime lying over QD.

◦ For the second statement, we must equivalently show that the residue �eld extension of FL = OL/Q
over FE = OLE

/QE has degree 1, which because this extension is a Galois extension of �nite �elds,
is in turn equivalent to showing that the Galois group of this extension is trivial.

◦ So let α ∈ FL be an element of FL (for some α ∈ OL) and consider the polynomial g(x) =
∏
σ∈E(x−

σ(α)) in OL[x]. Applying any automorphism in E to g(x) leaves g(x) �xed, so the coe�cients of
g(x) in fact lie in OLE

.

◦ This means that the reduction g(x) ∈ FL[x] of g(x) mod Q in fact has coe�cients in FE [x], and so
since α is a root of g(x), g(x) must be a multiple of the minimal polynomial of α over FE . But also,
since σ(α) ≡ α (mod Q) for each σ ∈ E, we see that g(x) = (x− α)#E in FL[x].

◦ But now any element τ of Gal(FL/FE) must map α to another root of the polynomial g(x), but the
only possible root is α, so τ �xes α. This holds for all elements α ∈ FL, so in fact τ is trivial, hence
Gal(FL/FE) is trivial.
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5. With QD and QE as in (3) and (4), we have f(QE |QD) = f and [D : E] = f , whence D/E is cyclic of
order f .

◦ Proof: From (3) we have f(Q|QD) = f and from (4) we have f(Q|QE) = 1, hence by multiplicativity
we see f(QE |QD) = f .

◦ Then by the ef -theorem we have f = f(QE |QD) ≤ [D : E] but by (1) we have [D : E] ≥ f , so we
must have equality: [D : E] = f . Per (1) this immediately implies that D/E is cyclic of order f .

6. With QD and QE as in (3) and (4), we have e(QE |QD) = 1 and e(Q|QE) = e.

◦ Proof: From (5) since f(QE |QD) = f = [D : E] by the ef -theorem we must have e(QE |QD) = 1.
Then from (2) since e(Q|QD) = e, by multiplicativity we must have e(Q|QE) = e.

7. We have [L : LE ] = e, [LE : LD] = f , and [LD : K] = g. Thus, QE is totally rami�ed from LE to L, and
QD is totally inert from LD to LE .

◦ Proof: Immediate from the previous parts, multiplicativity, and the efg-theorem.

• Exercise: Show that if D is a normal subgroup of G, then P is totally split from K to LD, and if E is also

normal, then each of the primes Q
(i)
D of LD above P are totally inert from LD to LE and then are totally

rami�ed from LE to L. (Thus, we obtain all of the splitting of P in the decomposition �eld, and then all of
the inertia of P in the inertia �eld, whence the names for these �elds.)

0.30 (Nov 14) Decomposition and Inertia, II

• With these basic results about the decomposition and inertia groups and �elds in hand, we can explore some
more complicated examples.

◦ One utility of the decomposition and inertia groups and �elds is that they can allow us to obtain results
about the splitting of primes in the entire extension by piecing results together from the various sub�elds,
where calculations are easier to perform.

• Example: Let L = Q(i,
√

2). Analyze the factorization type of the primes 2 and 3 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

◦ We note that L is Galois over Q (being the splitting �eld of (x2+1)(x2−2)) with Galois group isomorphic
to the Klein 4-group V4 = 〈σ, τ〉 where σ(i,

√
2) = (−i,

√
2) and τ(i,

√
2) = (i,−

√
2).

◦ From Dedekind-Kummer we know that 2 is rami�ed in all three quadratic sub�elds Q(i), Q(
√

2), and
Q(
√
−2) hence also in L. Therefore, for any prime lying above 2, the decomposition and inertia �elds

must both be Q, since 2 is unrami�ed in the decomposition and inertia �elds.

◦ We conclude that f = g = 1 and e = 4, so that 2 is totally rami�ed in L and we have the factorization
(2) = Q4

2. The decomposition and inertia groups are then both equal to the full Galois group V4.

◦ For 3, we can see that 3 is inert in Q(i) and Q(
√

2) but splits in Q(
√
−2). Therefore, from the last

observation, there are at least two primes of OL lying above 3, and they must each have f ≥ 2. Hence
by the efg-theorem, we must have e = 1, f = 2, and g = 2, so that (3) = Q3Q

′
3.

◦ Then since [L : LE ] = e that means the inertia �eld LE = L, and the inertia group E is trivial.

◦ Additionally, since there are two primes P3 and P ′3 lying above 3 in Q(
√
−2), by swapping if necessary

we may assume Q3 lies above P3 and Q′3 lies above P ′3: then f(Q3|P3) = f(Q′3|P ′3) = 2. Indeed, we can
compute explicitly P3 = (1 +

√
−2) and P ′3 = (1 −

√
−2), so that {1, στ} �x P3 and P ′3 while {σ, τ}

interchange them.

◦ From this explicit description we see that the decomposition group of both Q3 and Q′3 is D = 〈στ〉 and
the corresponding decomposition �eld is Q(

√
−2).

• Exercise: Let L = Q(i,
√

3). Analyze the factorization type of the primes 2, 3, and 5 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

• Exercise: Suppose L/K is Galois and Q is a prime of OL lying over the prime P of OK . Show that if
σ ∈ Gal(L/K), then D(σQ|P ) = σD(Q|P )σ−1 and E(σQ|P ) = σE(Q|P )σ−1. Deduce that when G is
abelian, all primes of OL lying over P have the decomposition and the same inertia subgroups and sub�elds.
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• Example: Let L = Q(21/3, ζ3). Analyze the factorization type of the primes 2, 3, and 5 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

◦ We note that L is Galois over Q (being the splitting �eld of x3 − 2) with Galois group isomorphic to
S3 = 〈σ, τ〉 where σ(21/3, ζ3) = (ζ321/3, ζ3) and τ(21/3, ζ3) = (21/3, ζ2

3 ).

◦ From Dedekind-Kummer we know that 2 is totally rami�ed in Q(21/3) and inert in Q(ζ3) = Q(
√
−3).

So if Q is a prime of OL lying above 2, we have e(Q|2) ≥ 3 and f(Q|2) ≥ 2, so by the efg-theorem we
must have e = 3, f = 2, and g = 1, so that (2) = Q3.

◦ Then the decomposition �eld LD(Q|2) must be Q, since [LD : Q] = g = 1, while the inertia �eld LE
must be Q(ζ3) since [LE : LD] = f = 2 and Q(ζ3) is the only quadratic sub�eld of L by the Galois
correspondence.

◦ For 3, again by Dedekind-Kummer we know that 3 is totally rami�ed in both Q(21/3) and Q(ζ3), so if
Q3 is a prime of OL lying above 3, then its rami�cation index e(Q3|3) is divisible by the rami�cation
index in both sub�elds, hence must be a multiple of 6. But then by the efg-theorem we must have e = 6,
f = 1, and g = 1, so that (3) = Q6

3.

◦ Then for Q3, from the �eld degrees we see that the decomposition and inertia �eld must both be Q and
the corresponding decomposition and inertia groups are all of S3.

◦ For 5, by Dedekind-Kummer we know that 5 is partially split in Q(21/3) as 5 = P5P
′
5 where e(P5|5) =

f(P5|5) = 1 while e(P ′5|5) = 1 and f(P ′5|5) = 2, and in Q(ζ3) we can see that 5 is inert.

◦ Therefore, there are at least two primes lying above 5 in OL. Then we must have e = 1, g ≥ 2, and f be
a multiple of 2. The only possibility with efg = 6 is then to have g = 3 and f = 2, so that (5) = Q5Q

′
5Q
′′
5

where each of Q5, Q
′
5, Q

′′
5 has inertial degree 2.

◦ Since Q5, Q
′
5, Q

′′
5 are all unrami�ed, their inertia �elds are all L and their inertia groups are trivial.

◦ The decomposition �elds of Q5, Q
′
5, Q

′′
5 are cubic extensions of Q inside L, hence are Q(21/3), Q(21/3ζ3),

Q(21/3ζ2
3 ) in some order. By observing that the Galois action is transitive on both the primes and the

�elds, we see that each cubic �eld is the decomposition �eld for one of these primes, and speci�cally, it
is the decomposition �eld for the prime that lies above the norm-5 prime in that �eld's ring of integers.

◦ For example, ifQ5 is the prime ofOL that lies above the prime P5 inQ(21/3), then since f(Q5|P5) = 2 that
means P5 is inert from Q(21/3) to L, and then the conjugation map τ �xes Q5, hence the decomposition
group D(Q5|P5) is 〈τ〉 and the decomposition �eld is Q(21/3).

◦ Applying σ, if we then take Q′5 = σ(Q5) to be the prime of OL that lies above the prime σ(P5) = P ′5 in
σ[Q(21/3)] = Q(21/3ζ3), then the decomposition group D(Q′5|P ′5) is

〈
τσ−1

〉
, which is the subgroup �xing

the decomposition �eld Q(21/3ζ3).

• Exercise: Let L = Q(101/3, ζ3). Analyze the factorization types of the primes 2, 3, and 5 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

• Example: Let L = Q(ζ23). Analyze the factorization type of the prime 2 in L, and �nd the decomposition
and inertia groups and �elds for its associated primes.

◦ For 2, �rst we note that 2 has order 11 modulo 23. Therefore, per our earlier observations about splitting
of primes in cyclotomic �elds, we see that (2) factors in OL as (2) = Q2Q

′
2 with e = 1, f = 11, and

g = 2.

◦ Since e = 1, the inertia �eld is simply L itself, and the inertia group is trivial.

◦ The decomposition �eld for both Q2 and Q′2 has [LD : Q] = g = 2, but since the Galois group is cyclic,
there is only one such �eld: the unique quadratic sub�eld of Q(ζ23). From our results we know that√

(−1)(23−1)/22321 =
√

disc(L) ∈ L, so LD = Q(
√
−23).

◦ The decomposition group is the subgroup of Gal(Q(ζ23)) �xing LD, which corresponds to the unique
subgroup of index 2 of (Z/23Z)×: explicitly, it is the set of nonzero squares.

◦ We can check this calculation by observing that 2 splits in the decomposition �eld Q(
√
−23), as (2) =

P2P
′
2 where explicitly P2 = (2, 1+

√
−23

2 ) and P ′2 = (2, 1−
√
−23

2 ). Each of these ideals remains inert from

Q(
√
−23) up to L.
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• Exercise: Let p be a prime and H be a subgroup of Gal(Q(ζp)/Q). Show that α =
∑
σ∈H σ(ζp) is a generator

for the �xed �eld of H.

• Exercise: Let L = Q(ζ31). Analyze the factorization types of the primes 2, 5, and 7 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

0.31 (Nov 18) Student Presentations of HW4 Problems

0.32 (Nov 20) Applications of Decomposition and Inertia

• We would now like to give some characterizations of the decomposition and inertia �elds in terms of their
splitting and rami�cation properties.

• Proposition (Decomposition and Inertia, II): Let L/K be a Galois extension of number �elds with Galois
group G, and let Q be a nonzero prime of OL lying over the prime P of OK . Additionally let K ′ be an
intermediate �eld between L and K �xed by the subgroup H of G, and take Q′ to be the prime of OK′ lying
under Q.

1. For any such �eld K ′, we have D(Q|P ′) = D(Q|P ) ∩H and E(Q|P ′) = E(Q|P ) ∩H.

◦ Proof: Since Gal(L/K ′) = H, by de�nition D(Q|P ′) = {σ ∈ H : σ(Q) = Q}, and this is quite
obviously the same as D(Q|P ) ∩H.

◦ Similarly, E(Q|P ′) = {σ ∈ H : σ(α) ≡ α (mod Q) for all α ∈ OL} and this is again quite clearly
E(Q|P ) ∩H.

2. For any such �eld K ′, the decomposition �eld LD′ of Q|P ′ is the composite �eld LDK
′ and the inertia

�eld LE′ of Q|P ′ is the composite �eld LEK
′.

◦ Proof: Immediate from (1) and the Galois correspondence, since the �xed �eld of an intersection of
subgroups is the composite of the �xed �elds of those subgroups.

3. The decomposition �eld LD is the smallest intermediate �eld K ′ such that Q is the only prime of OL
lying over P ′.

◦ Proof: Certainly LD does have this property since g(Q|QD) = 1 as we showed earlier.

◦ Now suppose K ′ is an arbitrary intermediate �eld such that Q is the only prime of OL lying over
P ′.

◦ But since the action of the Galois group Gal(L/K ′) is transitive on primes lying over P ′, that means
σ(Q) = Q for all σ ∈ Gal(L/K ′), whence Gal(L/K ′) ⊆ D = Gal(L/LD).

◦ By the Galois correspondence we then have LD ⊆ K ′, and so LD is the smallest such �eld as claimed.

4. The decomposition �eld LD is the largest intermediate �eld K ′ such that P splits completely in K ′.

◦ Proof: Certainly LD does have this property since g = [LD : K] as we showed earlier.

◦ Now suppose that P splits completely in K ′, so that e(P ′|P ) = f(P ′|P ) = 1: then e(Q|P ′) = e(Q|P )
and f(Q|P ′) = f(Q|P ) by multiplicativity.

◦ But now by (2) and our results earlier, we know that [L : LD] = e(Q|P )f(Q|P ) = e(Q|P ′)e(Q|P ′) =
[L : LD′ ] = [L : LDK

′] whence LD = LDK
′, which is to say, K ′ ⊆ LD as desired.

5. The inertia �eld LE is the smallest intermediate �eld K ′ such that Q is totally rami�ed over P ′.

◦ Proof: Certainly LE does have this property since e(Q|QE) = e = [L : LE ] as we showed earlier.

◦ Now suppose K ′ is an arbitrary intermediate �eld such that Q is totally rami�ed over P ′, meaning
that e(Q|P ′) = [L : K ′].

◦ Since e(Q|P ′) = [L : LE′ ] = [L : LEK
′] by our earlier results and (2), we must therefore have

K ′ = LEK
′ whence LE ⊆ K ′ as desired.

6. The inertia �eld LE is the largest intermediate �eld K ′ such that P ′ is unrami�ed over P .

◦ Proof: Certainly LE does have this property since e(P ′|P ) = 1 as we showed earlier.

◦ Now suppose K ′ is an arbitrary intermediate �eld such that P ′ is unrami�ed over P , so that
e(P ′|P ) = 1.
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◦ Then e(Q|P ′) = e(Q|P ) by multiplicativity, so LE = LE′ = LEK
′ again by (2) and our earlier

results, whence K ′ ⊆ LE as desired.

7. If D is a normal subgroup of G, then the decomposition �eld LD is the largest intermediate �eld K ′ such
that P splits completely in OK′ .
◦ Proof: If P splits completely in K ′ then e(P ′|P ) = f(P ′|P ) = 1 and so K ′ ⊆ LD by (4).

◦ The remainder follows by applying the exercise above to the result of the exercise earlier that P
splits completely in LD when D is normal in G.

• Exercise: Suppose L/K is a number �eld extension and P is a prime of OK . Suppose that P is totally split
/ inert / rami�ed in L. Show that P is totally split / inert / rami�ed (respectively) in every sub�eld of L.

• As an application of these results about the decomposition and inertia �elds, we can show that various splitting
and rami�cation properties are preserved by taking composites of �elds without requiring the extension to be
Galois.

• Proposition (Splitting and Rami�cation in Composites): Suppose that L1 and L2 are two number �eld exten-
sions of K and P is a prime of OK .

1. If P is unrami�ed in L1 and in L2 then it is unrami�ed in the composite �eld L1L2.

◦ Proof: Let Q be a prime of L1L2 lying over P . Also let L̂ be the Galois closure of L1L2 over K and
let Q̂ be a prime of OL̂ lying over Q.

◦ Then the inertia �eld LÊ of Q̂|Q is the largest intermediate �eld of L̂/K such that P is unrami�ed
in LÊ , hence it contains both L1 and L2 by hypothesis. But then it also contains the composite �eld
L1L2, whence P is unrami�ed in L1L2.

2. If P is totally split in L1 and L2 then it is totally split in the composite �eld L1L2.

◦ Proof: As in (1) let Q be a prime of L1L2 lying over P , L̂ be the Galois closure of L1L2 over K, and
Q̂ be a prime of OL̂ lying over Q.

◦ Then the decomposition �eld LD̂ of Q̂|Q is the largest intermediate �eld of L̂/K such that P splits
completely in LD̂, hence it contains both L1 and L2 by hypothesis. But then it also contains the
composite �eld L1L2, whence P splits completely in L1L2.

• We can also use these properties of the decomposition and inertia �elds to give a proof of the law of quadratic
reciprocity.

◦ The �rst step is to connect the values of Legendre symbols to splitting behaviors, which we have essentially
already seen via Dedekind-Kummer:

◦ Exercise: Let K = Q(
√
D) have discriminant ∆ and let p be an odd prime. Show the following equiva-

lences:

1. p is rami�ed in Q(
√
D) ⇐⇒ ∆ is zero mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= 0.

2. p is split in Q(
√
D) ⇐⇒ ∆ is a nonzero square mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= +1.

3. p is inert in Q(
√
D) ⇐⇒ ∆ is a nonsquare mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= −1.

◦ We can now exploit the decomposition and inertia �elds in a cyclotomic extension to identify the splitting
behavior of p in Q(ζq).

• Theorem (Cyclotomic Fields and Quadratic Reciprocity): Let p and q be distinct odd primes.

1. If d divides p− 1 and a is not divisible by p, then the congruence xd ≡ a (mod p) is solvable if and only
if a(p−1)/d ≡ 1 (mod p).

◦ Proof: Obviously, if xd ≡ a (mod p) then a(p−1)/d ≡ xp−1 ≡ 1 (mod p) by Euler's theorem.

◦ Conversely, if d divides p − 1 then xd − 1 divides xp−1 − 1 which splits completely mod p again by
Euler's theorem, so xd ≡ 1 (mod p) has d solutions mod p.

◦ Therefore, the kernel of the dth-power map on (Z/pZ)× has size d, so by the �rst isomorphism
theorem, the image, which is precisely the set of dth powers, has size (p− 1)/d.
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◦ But by the same observation, there are exactly (p−1)/d solutions to the equation x(p−1)/d ≡ 1 (mod
p), so by the above, these must be exactly the dth powers.

◦ Exercise: If u is a primitive root modulo p and d divides p− 1, show that the dth powers modulo p
are ud, u2d, ... , up−1. Deduce again that a is a dth power mod p if and only if the order of a divides
(p− 1)/d.

2. If d is any divisor of p− 1, then q is a dth power mod p if and only if q splits completely in the unique
sub�eld Fd of Q(ζp) of degree d over Q.
◦ Proof: Let Q be a prime of Q(ζp) lying over q.

◦ From our earlier discussion of splitting in cyclotomic �elds, we know that q splits as the product of
(p− 1)/f distinct prime ideals over Q(ζp), where f = f(Q|q) is the multiplicative order of p modulo
q.

◦ Since the Galois group is abelian, the decomposition subgroup for Q|q is automatically normal, and
so the decomposition �eld LD for Q|q is the maximal sub�eld over which q splits completely. Since
[LD : Q] = g = (p− 1)/f , that means LD is the unique sub�eld of degree (p− 1)/f over Q.
◦ Then by (1) and our results on decomposition, we see that q is a dth power mod p ⇐⇒ the
multiplicative order f divides (p − 1)/d ⇐⇒ d divides (p − 1)/f ⇐⇒ [Fd : Q] divides [LD : Q]
⇐⇒ Fd is contained in LD (since the sub�elds are linearly ordered) ⇐⇒ q splits completely in Fd,
as claimed.

3. For p∗ = (−1)(p−1)/2, we have the equality of Legendre symbols
(p∗
q

)
=

(
q

p

)
.

◦ Proof: By (2), we know that ( qp ) = 1 if and only if q splits completely in the unique quadratic

sub�eld of Q(ζp) of degree 2 over Q.
◦ But as we saw in an earlier exercise, the unique quadratic sub�eld of Q(ζp) is Q(

√
p∗).

◦ By the exercise above, q splits in Q(
√
p∗) if and only if

(
p∗

q

)
= 1, since the discriminant of Q(

√
p∗)

is either p∗ or 4p∗.

◦ Therefore, we see that ( qp ) = 1 if and only if (p
∗

q ) = 1, so since the only other possibility (for distinct

p, q) is for both symbols to equal −1, we see that (p
∗

q ) = ( qp ).

4. (Quadratic Reciprocity) For distinct odd primes p and q, we have

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

◦ Proof: By multiplicativity of Legendre symbols and Euler's criterion a(p−1)/2 ≡ (ap ) (mod p), we

have

(
q

p

)
=

(
p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(
−1

q

)(p−1)/2(
p

q

)
= (−1)(p−1)(q−1)/4

(
p

q

)
.

◦ The desired result then follows immediately since each Legendre symbol squares to 1.

• Exercise: By comparing the splitting of p in Q(ζ8) to that of 2 in Q(
√
p∗), show that

(
2

p

)
= +1 when p ≡ 1, 3

(mod 8) and

(
2

p

)
= −1 when p ≡ 5, 7 (mod 8).

0.33 (Nov 21) Frobenius Elements

• As we have noted previously, the quotient of the decomposition group D(Q|P ) by the inertia group E(Q|P )
is isomorphic to the Galois group Gal(FQ/FP ) of the corresponding extension of residue �elds.

◦ Suppose that the inertia group is trivial, so that the prime Q, or equivalently P , is unrami�ed, since the
extension is Galois.

◦ Then the decomposition groupD is naturally isomorphic to the Galois group Gal(FQ/FP ) of the extension
of residue �elds, which is a cyclic group of order f(Q|P ) generated by the Frobenius map ϕ : FQ → FQ,
given explicitly by ϕQ|P (α) = αN(P ) for α ∈ FQ. (Remember that α = α + Q is a residue class in

FQ = OL/Q and that N(P ) = #FP = pf(P |p) is a prime power.)

◦ The corresponding element ϕQ|P in the decomposition group is called the Frobenius element:
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• De�nition: Let L/K be a Galois extension of number �elds with Galois group G. If Q is an unrami�ed
prime of OL lying over a prime P of OK , then the Frobenius element ϕQ|P ∈ G is the automorphism with

ϕQ|P (α) ≡ αN(P ) (mod Q) for all α ∈ OL.

◦ The discussion above shows that ϕQ|P exists and is a generator for the decomposition group D(Q|P ).

◦ Exercise: Suppose L/K is Galois with Q of OL lying over P of OK . Show that if Q′ = σ(Q) is another
prime lying above P for some σ ∈ Gal(L/K), then the corresponding Frobenius element for σQ|P is
given by the conjugate ϕσQ|P = σϕQ|Pσ

−1.

◦ By the exercise above, we conclude that the Frobenius elements for all of the primes above P form a
conjugacy class of the Galois group.

◦ In particular when the Galois group is abelian, the Frobenius element depends only on P , and is char-
acterized by the condition ϕP (α) ≡ αN(P ) (mod POL).

• Example: Let K = Q(ζn) and let p be a prime not dividing n, so that p is unrami�ed in K. Find the Frobenius
element associated to p.

◦ Since Gal(K/Q) is abelian, by the observations above, the Frobenius element ϕp must satisfy ϕp(α) ≡ αp
(mod pOK) for all α ∈ OK .
◦ Since the elements of the Galois group are characterized by mapping ζn to ζkn for some k, it is not hard
to come up with a natural candidate: namely, the automorphism σp that maps ζn 7→ ζpn.

◦ Indeed, since the pth power map is additive in characteristic p, since this automorphism σp maps ζan to
ζapn , by additivity we see that for any α =

∑
ciζ

i
n for ci ∈ Z, we have σp(α) =

∑
ciζ

pi
n ≡ (

∑
ciζ

i
n)p = αp

(mod pOK).
◦ Thus, the Frobenius element ϕp is the automorphism σp mapping ζn 7→ ζpn.

• Exercise: Suppose n = pvk where p is prime and does not divide k, and let K = Q(ζn) and P be a prime of
OK lying above p.

1. Show that the inertia �eld of P |p is Q(ζk). [Hint: Consider rami�cation.]

2. Suppose that K ′ is a sub�eld of K in which p is unrami�ed. Show that K ⊆ Q(ζk).

3. Show that the decomposition �eld of P |p is the sub�eld of Q(ζk) �xed by the automorphism ζk 7→ ζpk .
[Hint: This is the Frobenius element.]

• Exercise: Suppose n is not a prime power. For K = Q(ζn) and K+ = Q(ζn + ζ−1
n ), show that the extension

K/K+ is unrami�ed at �nite primes, so that the di�erent dK/K+
= 1. [Hint: Write n = pvk where k > 1. If

P is a prime of K lying over P+ in K+ lying over p in Q, observe that E(P |P+) = E(P |p) ∩ {1, σ} where σ
is complex conjugation. Use the exercise above and k > 1 to see that σ 6∈ E(P |p).]

• The importance of the Frobenius element is that it carries information about how P splits, since (most
obviously) the element ϕQ|P has order f(Q|P ) in the Galois group.

◦ But more usefully, we can still exploit the Frobenius element even in a non-Galois extension to analyze
splitting behaviors.

• Proposition (Frobenius and Splitting): Let L/K be an extension of number �elds with Galois closure L̂ and
set G = Gal(L̂/K) and take H = Gal(L̂/L) to be the subgroup �xing L. Also, let P be a prime of OK
that is unrami�ed in L lying under the prime Q̂ of OL̂ and take ϕ = ϕQ̂|P to be the Frobenius element and

D = D(P̂ |P ) be the decomposition group.

1. The right cosets {Hσ}σ∈G of H in G are permuted by right-multiplication by ϕ. The orbits are of
the form {Hσ,Hσϕ, . . . ,Hσϕm−1} where Hσϕm = Hσ and m is the smallest positive integer with
σϕmσ−1 ∈ H.

◦ Proof: Obvious.

Now suppose that orbits of the action in (1) are given explicitly by {Hσ1, . . . ,Hσ1ϕ
m1−1}, ... , {Hσg, . . . ,Hσgϕmg−1}.

78



2. The ideals Qi = σi(P̂ ) ∩ OL are distinct primes of OL lying over P , for 1 ≤ i ≤ g.
◦ Proof: The prime σi(P̂ ) is a prime ideal of OL̂ lying over P , so (σiP̂ ) ∩ OL = Qi is a prime of OL
lying over P . It remains to see all of these primes are distinct, so suppose we had Qi = Qj .

◦ Since the Galois action is transitive, there exists some τ ∈ H such that τ(Qi) = Qj : then Qi = Qj
⇐⇒ τσi(P̂ ) = σj(P̂ ) ⇐⇒ σ−1

j τσi(P̂ ) = P̂ ⇐⇒ σ−1
j τσi ∈ D ⇐⇒ σ−1

j τσi = ϕk for some integer

k, since ϕ generates the decomposition group D ⇐⇒ σjϕ
kσ−1

i = τ ∈ H ⇐⇒ Hσi and Hσjϕ
k are

in the same coset.

◦ We conclude that the distinct cosets correspond to distinct primes, as desired.

3. For Qi = σi(P̂ ) ∩ OL, we have f(Qi|P ) ≥ mi.

◦ Exercise: Suppose L̂ is the Galois closure of L/K and Q̂ is an unrami�ed prime of L̂ lying over Q of

OL lying over P of OK . Show that ϕQ̂|Q = ϕ
f(Q|P )

Q̂|P
. [Hint: Both Frobenius elements act as power

maps. How are the powers related?]

◦ Proof: By the exercise above and an earlier exercise we have ϕσQ̂|Qi
= ϕ

f(Qi|P )

σQ̂|P
= (σϕQ̂|Pσ

−1)f(Qi|P ) =

σϕ
f(Qi|P )

Q̂|P
σ−1 = σϕf(Q|P )σ−1.

◦ Since ϕσQ̂|Qi
∈ H, this means σϕf(Q|P )σ−1 ∈ H and thus Hσ = Hσϕf(Q|P ). Thus, by (1), we have

f(Qi|P ) ≥ mi.

4. For Qi = (σiP̂ ) ∩ OL, we have POL = Q1 · · ·Qg and f(Qi|P ) = mi.

◦ Proof: First note that m1 + · · ·+mg = [L : K] by the orbit decomposition.

◦ Then by the ef -theorem, the fact that P is unrami�ed so that all e(Qi|P ) = 1, and the fact that all of
the Qi are distinct per (2), we have [L : K] =

∑
imi ≤

∑
i f(Qi|P ) =

∑
i e(Qi|P )f(Qi|P ) ≤ [L : K].

◦ Hence we must have equality everywhere, so the Qi are all of the primes of OL lying above P and
that f(Qi|P ) = mi for each i.

• There is a very nice application of this result to the computation of Galois groups of polynomials:

• Theorem (Dedekind-Frobenius): Suppose K is a number �eld and g(x) ∈ OK [x] is an irreducible polynomial
of degree n with Galois group G, viewed as a subgroup of Sn. Then for any unrami�ed prime P of OK , if
the mod-P reduction of g(x) factors over the residue �eld FP = OK/P as a product of terms having degrees
m1,m2, . . . ,md, then G contains a permutation whose cycle decomposition is a product of cycles of lengths
m1,m2, . . . ,md.

◦ Proof: Let α be a root of g. By the Dedekind-Kummer factorization theorem, since P is unrami�ed,
the factorization of P in L = K(α) is given by P = Q1Q2 · · ·Qg where Qi = (P, fi(α)) where g(x) =
f1(x) · · · fg(x) in FP [x], and f(Qi|P ) = deg(fi).

◦ On the other hand, by the theorem above, POL = Q1 · · ·Qg and f(Qi|P ) = mi where mi is equal to the
size of the coset {Hσ1, . . . ,Hσ1ϕ

m1−1} of the Frobenius element ϕ = ϕQ̂|P acting on G.

◦ Viewing G as a subgroup of the symmetric group Sn, the coset {Hσ1, . . . ,Hσ1ϕ
m1−1} corresponds to a

cycle of length mi, so the cycle decomposition of ϕ is a product of cycles of lengths m1,m2, . . . ,md. The
result is immediate.

• The point of the theorem above is that we can �nd cycle decompositions of permutations in the Galois group
of a polynomial g(x) by factoring g(x) modulo unrami�ed primes.

◦ We will mention here that the cycle decompositions only determine a permutation in Sn up to conjugacy,
which re�ects the fact that all of the Frobenius elements in a given extension are conjugate.

◦ Under the assumption that g(x) is irreducible of degree n, its Galois group as a subgroup of Sn (viewed
explicitly as a permutation group on the n roots of g(x) over an algebraic closure, or equivalently on the
n complex embeddings of the extension K[x]/g(x)) is a transitive subgroup.

◦ So, by listing the cycle types of transitive subgroups of Sn, and then comparing them to the factorization
types of g(x) modulo P for unrami�ed primes P (i.e., primes not dividing the discriminant of g), we may
in many cases identify the Galois group of g.
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• We will mention also the following theorem of Chebotarev:

• Theorem (Chebotarev Density Theorem): Let L/K be a Galois extension of number �elds with Galois group
G, and let S be a union of conjugacy classes in G. Then the set of primes of K unrami�ed in L whose
Frobenius conjugacy class lies in S has natural and analytic density #S/#G.

◦ Intuitively, this result says that the Frobenius element is (in an appropriate sense) chosen randomly and
uniformly from the Galois group.

◦ Applying the Chebotarev density theorem to our result above shows that if we compute the proportion
of primes of norm less than a given bound X for which the polynomial g(x) factors mod p with a given
cycle type C, then as X →∞, this proportion tends to the proportion #C/#G of elements in the Galois
group G with cycle type C.

• We will now list the transitive subgroups of Sn for some smaller values of n (along with the distribution of
cycle types):

◦ There is a standard labeling of the transitive subgroups of Sn due to Conway, Hulpke, and McKay, which
we include with the tables. We also remark that many subgroups have (isomorphic) conjugates inside
Sn, and the list of generators is only one possibility among many.

◦ For degree 4, there are 5 transitive subgroups of S4, with generators and cycle types as follows:

# Order Name Generators 1 2 2,2 3 4
5T1 4 C4 (1 2 3 4) 1 1 2
5T2 4 C2 × C2 (1 2)(3 4), (1 3)(2 4) 1 3
5T3 8 D2·4 (1 2 3 4), (1 2)(3 4) 1 2 3 2
5T4 12 A4 (1 2 3), (2 3 4) 1 3 8
5T5 24 S4 (1 2 3 4), (1 2) 1 6 3 8 6

◦ For degree 5, there are 5 transitive subgroups of S5, with generators and cycle types as follows:

# Order Name Generators 1 2 2,2 3 2,3 4 5
5T1 5 C5 (1 2 3 4 5) 1 4
5T2 10 D2·5 (1 2 3 4 5), (1 5)(2 4) 1 5 4
5T3 20 F20 (1 2 3 4 5), (1 2 4 3) 1 5 10 4
5T4 60 A5 (1 2 3), (3 4 5) 1 15 20 24
5T5 120 S5 (1 2 3 4 5), (1 2) 1 10 15 20 20 30 24

◦ For degree 6, there are 16 transitive subgroups of S6, with generators and cycle types as follows:

# Order Name Generators 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6
6T1 6 C6 (1 2 3 4 5 6) 1 1 2 2
6T2 6 S3 (1 3 5)(2 4 6), (1 4)(2 3)(5 6) 1 3 2
6T3 12 S3 × C2 (1 2 3 4 5 6), (1 4)(2 3)(5 6) 1 3 4 2 2
6T4 12 A4 (1 4)(2 5), (1 3 5)(2 4 6) 1 3 8
6T5 18 F18 (2 4 6), (1 4)(2 5)(3 6) 1 3 4 4 6
6T6 24 A4 × C2 (3 6), (1 3 5)(2 4 6) 1 3 3 1 8 8
6T7 24 S4 (a) (1 4)(2 5), (1 3 5)(2 4 6), (1 5)(2 4) 1 9 6 8
6T8 24 S4 (b) (1 4)(2 5), (1 3 5)(2 4 6), (1 5)(2 4)(3 6) 1 3 6 8 6
6T9 36 S3 × S3 (2 4 6), (1 5)(2 4), (1 4)(2 5)(3 6) 1 9 6 4 4 12
6T10 36 F36 (2 4 6), (1 5)(2 4), (1 4 5 2)(3 6) 1 9 18 4 4
6T11 48 S4 × C2 (3 6), (1 3 5)(2 4 6), (1 5)(2 4) 1 3 9 6 7 8 6 8
6T12 60 A5 (1 2 3 4 6), (1 4)(5 6) 1 15 20 24
6T13 72 F36 o C2 (2 4 6), (2 4), (1 4)(2 5)(3 6) 1 6 9 12 18 6 4 4 12
6T14 120 S5 (1 2 3 4 6), (1 2)(3 4)(5 6) 1 15 10 20 30 24 20
6T15 360 A6 (1 2)(3 4 5 6), (1 2 3) 1 45 90 40 40 144
6T16 720 S6 (1 2 3 4 5 6), (1 2) 1 15 45 120 90 15 40 40 90 144 120

◦ For degree 7, there are 7 transitive subgroups of S7, with generators and some cycle types as follows (for
any cycle type not listed, S7 is the only transitive subgroup containing it):
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# Order Name Generators 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7
7T1 7 C7 (1 2 3 4 5 6 7) 1 6
7T2 14 D2·7 (1 2 3 4 5 6 7), (2 7)(3 6)(4 5) 1 7 6
7T3 21 F21 (1 2 3 4 5 6 7), (1 2 4)(3 6 5) 1 14 6
7T4 42 F42 (1 2 3 4 5 6 7), (1 3 2 6 4 5) 1 7 14 14 6
7T5 168 PSL2(F7) (1 2 3 4 5 6 7), (1 2)(3 6) 1 21 42 56 48
7T6 2520 A7 (3 4 5 6 7), (1 2 3) 1 105 630 210 70 280 504 720
7T7 5040 S7 (1 2 3 4 5 6 7), (1 2) 1 105 630 105 210 70 280 504 840 720

• We can use these tables to compute probable Galois groups for irreducible polynomials of degree ≤ 7 by
computing the factorization of the polynomial modulo primes not dividing its discriminant and listing the
corresponding cycles that must appear in its Galois group.

◦ Exercise: Let g(x) be a polynomial irreducible over Q. Prove that the discriminant of g is a square if
and only if the Galois group of g(x) is a subgroup of An.

◦ Per the exercise above, we can also determine whether G is a subgroup of An by checking whether the
discriminant is a square.

• Example: Find the Galois group over Q for the polynomial g(x) = x4 + 2x+ 2.

◦ We can compute that this polynomial has discriminant 24 · 101, so its Galois group is not a subgroup of
An.

◦ Computing the factorization of g modulo p for the 100 smallest primes excluding 2 and 101 yields the
following cycles:

Factorization Type 1 2 2,2 3 4

# Appearances 5 24 7 32 32

◦ The only transitive subgroup of S4 containing all of these cycle types is S4 itself, so the Galois group

must be S4 .

◦ Note that the distribution of the factorization types matches fairly closely with the distribution of cycle
types in S4, as should be expected per Chebotarev.

• Example: Determine the probable Galois group of g(x) = x5 − 5x2 − 3.

◦ We can compute that this polynomial has discriminant 32 · 56, so its Galois group is a subgroup of A5.

◦ Computing the factorization of g modulo p for the 100 smallest primes excluding 3 and 5 yields the
following cycles:

Factorization Type 1 2 2,2 3 2,3 4 5

# Appearances 8 54 38

◦ The only transitive subgroups contained in A5 having these cycle types are D2·5 and A5.

◦ Since D2·5 has no 3-cycles (in contrast to A5, 1/3 of whose elements are 3-cycles) we would expect no
factorizations to have a 3-cycle if the Galois group were D2·5, while we would expect about 1/3 of them
to have a 3-cycle if the Galois group were A5.

◦ Since no 3-cycles appear in the computed factorizations, it seems overwhelmingly likely that the Galois
group is D2·5.

• Example: Determine the probable Galois group of g(x) = x6 − x5 − x2 + x+ 1.

◦ This polynomial has discriminant −33 · 433, so its Galois group is not a subgroup of A6.

◦ Computing the factorization of g modulo p for the 100 smallest primes excluding 3 and 433 yields the
following cycles:

Factorization Type 1 2 2,2 2,3 2,4 2,2,2 3 3,3 4 5 6

# Appearances 1 4 14 17 29 6 8 3 18

◦ There are only two transitive subgroups that contain cycles of each of these types: the subgroup 6T13
of order 72 and the subgroup 6T16 (which is S6).
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◦ Since 6T16 has no 4-cycles or 5-cycles (in contrast to S6, roughly 1/3 of whose elements are 4-cycles
or 5-cycles), and no 4-cycles or 5-cycles appear in the computed factorizations, it seems overwhelmingly
likely that the Galois group is 6T13.

• Example: Determine the probable Galois group of g(x) = x7 − 7x+ 3.

◦ We can compute that this polynomial has discriminant 38 · 78, so its Galois group is a subgroup of A7.

◦ Computing the factorization of g modulo p for the 100 smallest primes excluding 3 and 7 yields the
following cycles:

Factorization Type 1 2,2 2,4 2,2,2 2,2,3 3 3,3 5 6 7

# Appearances 15 32 32 21

◦ There are only two transitive subgroups contained in A7 that contain cycles of each of these types, namely
PSL2(F7) and A7.

◦ As above, since the observed factorization types match the cycles of PSL2(F7) very closely (in contrast
to A7, which also has 3-cycles, 2,2,3-cycles, and 5-cycles), the probable Galois group is PSL2(F7).

• Exercise: Find the probable Galois group for each polynomial below, given its factorization modulo the 100
smallest primes not dividing its discriminant ∆:

1. g(x) = x5 − x2 − 2x− 3, with ∆ = 172 · 292.

Factorization Type 1 2,2 3 5

# Appearances 1 20 30 49

2. g(x) = x5 − 5x3 + 5x− 20, with ∆ = 24 · 34 · 55 · 112.

Factorization Type 1 2,2 4 5

# Appearances 3 26 52 19

3. g(x) = x6 + x4 + 23, with ∆ = −26 · 233.

Factorization Type 1 2,2 2,2,2 3,3 4

# Appearances 3 9 27 36 24

4. g(x) = x6 − 6x3 − 6x2 − 6x− 2, with ∆ = 26 · 36 · 132.

Factorization Type 2,2 2,4 3 3,3 5

# Appearances 8 24 13 14 41

5. g(x) = x7 − 14x5 + 56x3 − 56x− 22, with ∆ = 26 · 710.

Factorization Type 1 3,3 7

# Appearances 2 68 30

• Once a candidate for the Galois group has been identi�ed, it is possible to construct resolvent polynomials
and use information about their roots and factorizations to eliminate the other possible Galois groups.

◦ For example, to establish that a particular polynomial of degree 5 has Galois groupD2·5 = 〈(1 2 3 4 5), (1 5)(2 4)〉
requires eliminating the possibility that the Galois group is A5 = 〈(1 2 3), (3 4 5)〉.
◦ One way to do this is to compute the resolvent polynomial whose roots are the S5-permutations of
β1β2 + β2β3 + β3β4 + β4β5 + β5β1, which in this case has degree 12 (since there are 11 other possible
results of permuting the indices, such as β1β3 + β2β4 + β3β5 + β4β1 + β5β2). This will di�erentiate
between D2·5 and A5 since D2·5 �xes several of these elements (so the resolvent polynomial will have a
rational root) but A5 does not.

0.34 (Nov 25) Higher Rami�cation Groups

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2024. You may not reproduce or distribute this material
without my express permission.
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