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0 Algebraic Number Theory

These are lecture notes for the graduate course Math 7315: Algebraic Number Theory, taught at Northeastern in
Fall 2024.



0.1 (Sep 4) Overview, Number Fields and Algebraic Integers

e The goal of this course is to provide an introduction to algebraic number theory, which (broadly speaking)
uses the language and tools of abstract algebra to study number theory.

(¢]

To illustrate, here are some fundamental things from classical number theory: primes, unique factoriza-
tions, congruences and modular arithmetic, Fermat’s and Euler’s theorems, the prime number theorem,
quadratic reciprocity (and higher reciprocity), and the prime number theorem.

It was observed in the 1700s and early 1800s that many of these same ideas extend in fundamentally
similar ways to other kinds of numbers beyond the integers — various natural examples being the Gaussian
integers, other kinds of algebraic numbers such as the nth roots of unity, and polynomials with coefficients
in the field F,,.

However, it was not until some of the fundamental constructions from abstract algebra were better
understood that these ideas coalesced into an understandable form — precisely, the central ideas are
the closely-related notions of a ring, a module, and of an integral extension — which arose between the
1860s and 1880s in the work of Dedekind and Kronecker, and were extended greatly over the subsequent
decades by Noether, Hilbert, Krull, and others.

As a matter of history, the questions we will study about unique factorization and algebraic number
fields motivated the development of a great deal of abstract algebra, but we will reverse the historical
trend and start by developing the needed algebraic facts before applying them to study number theory.

e Our general goal is to study the problem of unique factorization (and quite often its failure!) in the ring of
integers of a number field.

[¢]

e}

[¢]

Now, one may certainly adopt the position that the existence or nonexistence of unique factorization in
an integral domain is already an intrinsically interesting question by itself, but the question is rather
trivialized simply by noting that such rings are, by definition, unique factorization domains.

The more specific question of whether we can tell if a particular ring has unique factorization is more
interesting, but still, we are really interested only in rings of interest for their utility in answering questions
about number theory.

So let us first formulate the proper class of rings that we will study.

e Definition: A number field is a field extension K/Q whose vector space dimension over Q is finite.

o

(¢]

e}

Equivalently, a number field is a finite-degree extension of Q.

Since the complex field C is algebraically closed and contains Q, by standard facts about algebraic field
extensions, K can be embedded into C.

As such, we may equivalently think of a number field as a subfield of C that has finite degree over Q.

e Example: The quadratic field Q(v/D) = {a + bv/D : a,b € Q} for any squarefree integer D # 1 is a number
field of degree 2 over Q.

o

For positive D the field Q(v/D) is a real quadratic field, while for negative D the field Q(v/D) is an
imaginary quadratic field.

We could spend a tremendous amount of time just studying properties of factorization in quadratic
fields, since even by themselves they already provide interesting examples of unique and non-unique
factorization.

As is well known (and which we will prove properly later), the ring Z[i] of Gaussian integers, which is a

subring of the quadratic field Q(4), has unique factorization.

On the other hand, in Z[v/—3|, a subring of Q(v/—3), we have 4 =2-2 = (1 ++/-3) - (1 — v/-3), and

these two factorizations are inequivalent because the terms are all irreducible but are not associates of

one another.

However, this “example” is not really so interesting, because inside the corresponding field Q(1/—3) there

does exist a subring where these two factorizations are equivalent up to unit factors: namely, the subring
-1++v-3

Zw] = Z[f]



o More interestingly, in the ring Z[/—5], a subring of Q(v/—5), we have a similar lack of unique factor-
ization: 6 =2-3 = (1 ++/=5)- (1 —/=5). Yet as we will see, there is no similar way to “enlarge” this
subring (while still maintaining the desired kind of integrality of the elements) in order to salvage unique
factorization of elements.

e Example: For a primitive nth root of unity ¢, such as ¢, = €*™/", the cyclotomic field Q(¢,) is a number
field of degree ¢(n) over Q, since the minimal polynomial of ¢,, over Q is the nth cyclotomic polynomial which
has degree p(n).

o There are many properties of the roots of unity, and some simple ones lead to relations among the
cyclotomic fields.

o Exercise: If a and b are relatively prime, show that Q((up) = Q(Ca, (). Deduce that Q(¢ay) = Q(¢,) for
odd integers n. Do there exist distinct even integers 2m and 2n such that Q((am) = Q(C2n)?

e We can generalize the two examples above rather substantially:

e Example: For any irreducible polynomial p(z) € Q[z] of degree n with a complex root «, the field Q(a) =
{coa+ -+ +cp_1a™ 1 1 ¢; € Q} generated by « over Q is a number field of degree n.

o In fact, every number field is really of this form:
o Exercise: Suppose K/Q is a number field. Show that K = Q(«) for some complex number «. [Hint:

Apply the primitive element theorem.]

e Now, in order to discuss unique factorization fruitfully, we need to identify the analogue of the integers 7Z
inside our number field K, which will give us (in a very strong sense) the “proper” subring of K in which to
consider factorizations:

e Definition: For a number field K, an algebraic number a € K is an algebraic integer if there exists a monic
polynomial p(z) with integer coefficients such that p(«) = 0.

o Examples: Integers are algebraic integers, as are v/2 and i, and more generally a'/™ for any integer a
and positive integer n. The roots of 2> — z — 1 = 0 are algebraic integers.

o Indeed, it is not so trivial to show that a given complex number is not an algebraic integer using this
definition, since it would require showing that there is no monic polynomial with integer coefficients of
which it is a root.

o Let us give a better way to determine whether an algebraic number is an algebraic integer, while also
reviewing some properties of algebraic numbers in general:

e Proposition (Algebraic Integers I): Suppose « is an algebraic number, so that « is the root of some nonzero
polynomial ¢(x) € Q[z].

1. The set of all polynomials p(z) € Q[z] for which p(a) = 0 is an ideal of Q[z]. The unique monic generator
m(z) of this ideal is the minimal polynomial of «, and is the unique monic polynomial in Q[z] of smallest
degree having a as a root.

o Proof: It is easy to see that the set of p(x) with p(«) = 0 is an ideal. Since Q[z] is a principal ideal
domain, this ideal is principal, and therefore has a unique monic generator.

o Since m(x) divides all elements of this ideal, its degree is smallest among all nonzero elements of the
ideal.

o Exercise: Show that the minimal polynomial m(z) is irreducible in Q[x].

2. The algebraic number « is an algebraic integer if and only if its minimal polynomial (over Q) has integer
coefficients.

o Proof: If the minimal polynomial m(x) has integer coefficients, then m(x) itself is a monic polynomial
with integer coefficients of which « is a root, so obviously « is an algebraic integer.



o Conversely, suppose « is an algebraic integer. Let p(z) be the monic polynomial of minimal degree
such that p(a) = 0 and p(z) has integer coefficients. If p(x) were reducible in Q[z], then by Gauss’s
lemmal p(z) would have a factorization in Z[z]: say p(x) = f(z)g(x). But then at least one of f
and g would have « as a root, contradicting the minimality of p.

o Thus p is irreducible. Now, since p(a) = 0, we see that m(x) divides p(z), so since p is irreducible
we must have p(z) = ¢-m(x) for some ¢ € Q, but as both p and m are monic, we have ¢ = 1. Thus,
m(z) € Z[z] as claimed.
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e Using the criterion in (2) above allows us to compute the algebraic integers in a number field K by finding
the elements of K whose minimal polynomials have integer coefficients.

o Exercise: Show that the set of algebraic integers of Q is Z.
o Exercise: Suppose D is squarefree. Show that the set of algebraic integers of Q(v/D) is Z[v/D] when

1 D
D = 2,3 (mod 4) and that it is Z[JFT\F] when D =1 (mod 4). [Hint: First verify that for b # 0 the

minimal polynomial of a + bv/D is m(z) = 2% — 2a 4 (a> — Db?), and then classify when the coefficients
are integers.|

e In the examples above note that the algebraic integers in these number fields both form rings. In fact, the
algebraic numbers in any number field always form a ring, as we will now show.

o After noting rather obviously that 0 is an algebraic integer and the negative of an algebraic integer is
an algebraic integer, the claimed fact is equivalent to proving that the set of algebraic integers is closed
under addition and multiplication.

o This fact can be proven directly from the definition using rather tedious polynomial elimination: the
idea is that if a and 8 are algebraic integers with integer polynomials p, ¢ with p(a) = ¢(8) = 0, then
one may do polynomial elimination on the sets {p(x), q(y),z — = — y} and {p(z),q(y), z — xy} to obtain
a single monic polynomial in z with integer coefficients in each case, which then establishes that o +
and af3 are algebraic integers.

o But this approach is very tedious to implement in practice, and is not particularly enlightening. Let us
give a much more natural approach using modules.

e Proposition (Rings of Integers): Suppose K is a number field.

1. For a € K, the following are equivalent:

(a) « is an algebraic integer.

(b) The ring Z[a] is finitely generated as an additive group (i.e., as a Z-module).

(¢) « is an element of some subring of C that is finitely generated as an additive group.
(d) There exists some finitely generated additive subgroup G of C with aG C G.

o Proof: (a) = (b): If the minimal polynomial of « is m(z) = 2™ + ¢, 2" ' + -+ + c12 + ¢o then we
claim {1,q,...,a" '} generates Z[a] as an additive group. To see this it suffices to observe that each
power of « is an integral linear combination of {1,q,...,a" 1}, which follows by an easy induction
relying on the fact that a” = —cy — cra — - - - — cp,a™ L.

o (b) = (c¢): Obvious, since « € Z[q].

o (¢) = (d): Obvious by taking L to be the given subring.

o (d) = (a): Suppose G is generated by Si,...,05,. Then afi,...,aB, are all elements of G hence

B B
can be expressed as integral linear combinations of 31,..., 8,: thus, « : =M : for an
B Bn

IThe formulation of Gauss’s lemma we use here is that if a polynomial with integer coefficients factors in Q[z], then in fact it factors
in Z[z].




2.

3.

appropriate M € M,,«,,(Z). This means « is an eigenvalue of the matrix M, and so the characteristic
polynomial p(z) = det(zI — M) has « as a root; as M has integer entries, p(z) is then a monic
polynomial with integer coefficients having « as a root.

The set of all algebraic integers forms a ring. The set of algebraic integers in K also forms a ring, which
is called the ring of integers of K and is denoted O.

o Proof: Suppose a and f are algebraic integers. Then Z[«a] and Z[5] are finitely-generated Z-modules,
hence so is Z[a, 8] since it is generated by the pairwise products of the generating sets. Hence so are
the submodules Z[a — 5] and Z[af].

o We deduce that the set of all algebraic integers is closed under subtraction and multiplication, so it
is ring. The intersection of it with K is therefore also a ring.

o Remark: All of the argument above can be made completely explicit: if Z]a] has basis {1, a, ..., a" "'}
and Z[f] has basis {1, 8,...,8™ '} then Z[a, ] is spanned by {a’7}1<i<n1<j<mn. Then to com-
pute a polynomial with, say, a 4+ 8 as a root, simply compute the coefficients of multiplication by
« + [ on this spanning set, and evaluate the appropriate determinant.

o Exercise: Use the procedure described above to find a monic integer polynomial satisfied by v/2+ /3
and by v2- (/3 —1).

For every element oo € K there is some nonzero d € Z such that da is an algebraic integer.

o Proof: Suppose that the minimal polynomial of « is m(z) = 2™ + ¢, 2" ! + -+ + 12 + ¢ € Q[7]
and let d be the lem of the denominators appearing in m.

o Then 0 = d"m(a) = (da)™ + cpd(da)* =t + -+ + c1d"~(da) + cod™, so for m(z) = 2™ + cp,da™ ™1 +
co+cpd™ o + cod™ we see m(da) = 0. Since m has integer coefficients, we see da is an algebraic
integer, as claimed.

o Exercise: Show that K is the fraction field of its ring of integers Ok .

e We would like now to study further the structure of the ring of integers Ok, both additively and multiplica-
tively. In order to do this efficiently, we require a few additional tools from the basic theory of algebraic field
extensions, the first two of which are the trace and norm maps. We will give a few different approaches for
these constructions.

(¢]

The most natural is for Galois extensions, so suppose K/F is a Galois extension with Galois group G.
For an element a € K, we define the trace of o to be trgx/r(a) = >° c;9(a) and the norm to be
Ni/r(a) =[l,eq 9(@). In other words, the trace is the sum of all the Galois conjugates of a, while the
norm is the product of all the Galois conjugates of a.

It is easy to see that both the trace and norm are Galois-invariant (simply reindex the sum), so the trace
and norm are in fact both elements of the base field F'.

The main reason we are interested in these maps is that the trace is additive and F-linear, while
the norm is multiplicative: trg/p(a + cf) = trg/p(a) + ctrg/p(B) for any ¢ € F, and Ng/p(aff) =
Ng/rp()Ng p(B), as is easily seen by the definitions (note g(c) = ¢ since c € F).

Thus, the trace and norm give us convenient ways to relate the respective multiplicative and additive
structures of the larger field K to the smaller field F'.

Example: For K = Q(v/D) and L = Q, which is Galois with Galois group G = 7 /27 generated by the
conjugation map o(a + bv/D) = a — bv/D, we have tr(a + bv/D) = 2a and N(a 4 bv/D) = a®> — Db?.

e However, not all extensions are Galois (including many number field extensions we will be interested in, such
as Q(v/2)/Q). To extend our definitions to this more general situation, suppose now we only have a separable
finite-degree extension K/F and suppose K /F is its Galois closure (i.e., the smallest Galois extension of F
containing K) now with Galois group G.

[¢]

(¢]

By the Galois correspondence, the intermediate field K of K /F corresponds to a subgroup H of G
(namely, the subgroup of G that fixes K). Letting S be a set of coset representatives for H in G,
for an element a € K, we define the trace of a to be trgx/r(a) = > .gg(e) and the norm to be
Nip(a) =]l es9(a).

The trace and norm are well defined because the value g(«) is independent of which coset representative
is used: if g; and go represent the same coset, then gl_lgg € H hence gl_lgg fixes all elements of K; then

g1 92(@) = as0 gi(@) = ga(a).




o Exercise: For a separable extension K/F, show that the trace and norm as defined above are still
Galois-invariant, that the trace is additive and F-linear, and that the norm is multiplicative.

o Example: Consider K = Q({/2) and L = Q, whose Galois closure is K = Q({/2, (3) with Galois group
isomorphic to S3 with generators o, 7 with o(v/2,() = ((3v/2,¢3) and 7(V/2,(3) = (¥/2,¢2). Then K
is the fixed field of the subgroup H = (7) so we can take coset representatives {1,0,02} for H in K.
Then for any a € K we have tr(a) = a + o(a) + 0?(a) and N(a) = a - o(a) - 0%(a). Explicitly, for
a=a+bv2+cV4d wesee o(a) = a+b(3v/2+ c(3V/4 and o%(a) = a + b2 /2 + c(3V/4, so tr(a) = 3a
and N(a) = a® + 2b% + 4¢® — 6abc after some simplification.

o In the example above, notice that the three Galois conjugates a, o(a), o?(a) correspond to the three
different complex embeddings of « (this is more obvious with the specific choice a = /2, where o(a) =
(3V/2 and 0%(a) = (23/2 are the other two complex cube roots of 2).
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e We will now give another approach to the trace and norm that is more amenable to explicit calculations, in
terms of the complex embeddings of the number field K.

o Let us review some of the basic properties of complex embeddings, which are the nonzero ring homo-
morphisms from a field to C.

o The connection to our previous discussion is that the various complex embeddings of K are simply the
images of K under the Galois group of the Galois closure of K.

e Proposition (Complex Embeddings): Suppose K/F is an extension of number fields of degree n, with K and
F explicitly considered as subfields of C.

1. For a fixed embedding o : F — C, there exist exactly n embeddings 7 : K — C extending o (i.e., with
T|k = 0).

o Proof: For n = 1 the result is trivial so now assume n > 1.

o For an embedding 7 : K — C, since we know the value of 7 on F' and since K = F'(«), the choice of
7(a) determines 7 uniquely, so we just have to determine the possible values of 7(a).

o Let K = F(«a), let m(x) be the minimal polynomial of « over F (which necessarily has degree
n), and let m(z) be the polynomial obtained by applying o to all the coefficients of m(z). Then
m(z) € o K[z] is the minimal polynomial of o(«), as it is clearly irreducible and has o(«) as a root.

o Any embedding 7 : K — C restricting to ¢ on F must map m(x) to m(x), and so 7 must map the
root a of m(x) to some root S of m(x).

o On the other hand, for any root 8 of m(x), there is a unique isomorphism from F(«a) to ocF ()
that restricts to ¢ on F and that sends o to B3; such a map must take coox + -+ + ¢p_12” ! to

o(co)B + - + o(cp_1)B" 1), but this determines it uniquely, and we can see it is well defined
a—T o

by noting that it is obtained as the composition of the isomorphisms F(«) "= Flz]/(m(x)) =
o Flx]/(in(x)) "3 o F (8).
o Since the degree of m(x) is the same as the degree of m(x), namely n, the degree of the extension
L/K, we conclude that there are exactly n embeddings 7 : K — C extending o.
2. For any number field K/Q of degree n, there are exactly n complex embeddings 7: K — C.

o Proof: Apply (1) with F' = Q, noting that there is only one embedding of Q into C (as 0 must map
to 0 and 1 must map to 1).

3. If o1,...0, denote the n complex embeddings of K fixing F', then for a € K we have trg /p(a) =
> iz 0i(@) and Ngyp(a) = [T, 0i().
o Proof: Consider Athe Galois closure K /F as a subfield of C, and consider the action of the Galois
group G = Gal(K/F) on K.
o For any o € G we see that o(K) is a subfield of C isomorphic to K (as the inverse isomorphism is
simply o~ !), and so o : K — C yields a complex embedding of K.



o Conversely, by (1), any complex embedding of K extends to one of K but since K is Galois, any
complex embedding is an automorphism of K: thus, all of the complex embeddings of K are obtained
as o(K) for some o € G.

o Two complex embeddings o; and o, of K are equal when o1 () = o3(a) for a € K <= o7 '0a(a) =
aforall o € K «<— Uflog fixes K <— Jflag lies in the subgroup H of G fixing K <= o3
and o9 represent the same coset of H in G.

o Thus, the n possible complex embeddings o; of K are given precisely by a set of a coset representatives
for H in G. The claimed formulas for the trace and norm then reduce immediately to our earlier
definition.

e Example: The quadratic field K = Q(v/D) has two complex embeddings: the identity embedding o, (a +
bv'D) = a + bv/D, and the conjugate embedding with o(a + bv/D) = a — by/D.

o Here, we can see that both embeddings represent field automorphisms of Q(v/D); that is because Q(v/D)
is Galois over Q.

o We then have try/g(a+bv/D) = 2a and Nk g(a+bv/D) = a® — Db?, just as we computed in our example
earlier.

e Example: The cubic field K = Q(+/2) has three complex embeddings: the identity embedding and the two
embeddings obtained by mapping /2 to the other roots of its minimal polynomial p(z) = 2® — 2: namely,
(3¢/2 and & /2, the other two complex cube roots of 2.

o Explicitly, these maps o1, 02, o3 send a+b+/2+ c{/4 respectively to a+b/2+ /4, to a+bls /2 + 3 V4,
and to a + b(3V/2 + c(3V/4.

o Here, we can see that only the identity embedding maps K back to itself, illustrating that K is not
Galois over Q. The other two embeddings map K to its Galois conjugates o2(K) = Q((3¥/2) and
03(K) = Q(¢2+/2), the fields generated by the other two roots of the minimal polynomial.

o We can as before compute the trace and norm trg /g(a + by/2 + cC/Z) = 3a and Ng/g(a+ by/2 + 0\3/41) =
(a+bY2+ c/4)(a+ b3¥/2 + cC3/4)(a + bC3Y2 + cl3v/4) = a® + 2b% 4 4¢® — 6Gabe.

e Example: The cyclotomic field Q(¢,) has ¢(n) complex embeddings, obtained by mapping (, to the p(n)
roots of its minimal polynomial®, which are (2 for a € (Z/nZ)* (i.e., relatively prime to n).

o Writing these maps in general is rather cumbersome, so we will just give a few examples for specific n.

o For n = 8, we see that Q((s) = Q(i,v/2) has ¢(8) = 4 complex embeddings obtained by mapping
Cs = (V2+iv/2) /2 to the roots (g, (3, (3, ¢§ = (£v/2+i/2)/2 of the cyclotomic polynomial ®g(x) = 441
over Q.

o Noting that Q((s) has a basis {1,(s,(2,(3} over Q, we may compute the embeddings o1, 02,03,04
explicitly as the maps sending a +b(g + c(2 +d(3 respectively to a+b(g +c(2 +d(3, to a+b(3 + (S + d(s,
to a + b(E + (2 + d¢f, and to a + b¢l + (S + d(E.

o Then we have try/g(a+ bCs + (3 +d(3) = 4a and N g(a+bls + (3 +d¢3) = (a® +c*) + (b? 4+ d?)? —
4(ab + cd)(ad — be) after some simplification.

o Exercise: Compute the four complex embeddings of Q(¢s) = Q(4, v/2) instead using the Q-basis {1, v/2,i,iv/2},

and find the trace and norm of p + q\/i + 7i + siv/2.

e These definitions of trace and norm also have a convenient, and in some sense even more natural, interpretation
in terms of the linear transformation given by multiplication by «, which also explains the linearity of the
trace (and its name) and the multiplicativity of the norm:

e Exercise: Let K/F be an extension of number fields with o € K and define T,, : K — K to be the F-linear
transformation of multiplication by «, namely with T}, (z) = axz for all z € K.

1. Show that the minimal polynomial of the linear transformation T, is the minimal polynomial of the
algebraic number «. [Hint: Show that F'[T] is ring-isomorphic to Fa].]

2 As we will prove along the way later, the nth cyclotomic polynomial &, (z), which is the minimal polynomial of ¢,, factors in C as
@n(2) =Il.e@/nzyx (@ — (7). In particular, its degree is ¢(n).



2. Show that the eigenvalues of T, in C are the elements o;(«), where 01, .. ., 0, are the complex embeddings
of K fixing F.

3. Show that the characteristic polynomial p(z) = det(zI — T,) of T, is m(z)'F(®] where m(z) is the
minimal polynomial of « over F.

4. Show that tr(T,) = trg/p () and that det(Tw) = Ng/p(a).

5. Use (a) and (d) to compute the trace, norm, and minimal polynomial of a = /2 + /7 from K =
Q(¥/2,V/7) to Q. [Suggestion: Compute the matrix T}, with respect to the basis {1, /2, /4, V7, ¥/2v/7, V4V/7} ]

e Let us now prove a few other basic properties of the trace and norm:

e Proposition (Trace and Norm): Let K/F be an extension of number fields of degree n. Then the following
hold:

™ and

1. For any 7 € Q and a € K we have trg,p(r) = nr, trg/p(ra) = rtrg/p(a), Ng/p(r) = r
Nk /p(ra) = r"Ng p(a).
o Proof: The complex embeddings of K all fix Q, so o;(r) = r for each 1 < ¢ < n. The claimed
formulas then follow immediately from the linearity of the trace and multiplicativity of the norm.

2. (Transitivity) If L/ K is another extension of number fields and a € L, we have try,/p (o) = trg p(trr k()
and Np,p(o) = Ng;p(Np/x(a)).
o Proof: Consider the Galois closure L of L/F with Galois group G. Let Hg be the subgroup of G
fixing K and Hj, be the subgroup of G fixing L.

o Let oq,...,0, be a set of coset representatives for Hy in G (these represent the complex embeddings
of K fixing F) and 71,...7, be a set of coset representatives for Hy, in Hy (these represent the

SUTL I ) >

of coset representatives for Hy in G.

o Thus trp/p(a) =37, s oimj(a) = 350, 3200 oi(mi(@) = 3201, 3070 7i(a)] = 320, oiltr k(o) =

trg/r(trp )k (@), and finally the norm formula is the same with sums replaced by products.
3. If o has minimal polynomial m(z) = % + ¢,_12" "' + -+ + ¢o over F, then trg/p(a) = —gcn_l and
n n/d
Ni/p(a) = (-1) Co/ .
o Proof: The possible Galois conjugates of a are the d different roots of its minimal polynomial over
F.
o By our earlier result on extensions of embeddings, for any other root 8 of m(z), there is a unique
embedding of F(«) fixing F' that maps a to 8. Then applying the result again, there are exactly
[K : F(a)] = n/d embeddings of K fixing F' that map « to .
o We conclude that in the list of values o;(a) for 1 < i < n, the value /8 occurs exactly n/d times, and
this holds for all d possible roots j3.
o Then trg p(a) = >, 0s(a) is n/d times the sum of the roots of m(x) while Ng/r(a) =[]} 0i(a)
is the product of the roots of m(z) to the n/dth power. The formulas follow immediately.
4. If a is an algebraic integer, then try p(a) and N p(a) are both algebraic integers in F. In particular,
trg/g(a) and Nk /g(a) are both integers.
o Proof: If « is an algebraic integer, its Galois conjugates are also algebraic integers, hence so too are
the sum and product of all these conjugates.

o By the argument in (3) above, trg/p(a) is an integer times the sum of the Galois conjugates of «
while N/ p(a) is an integer power of the product of the Galois conjugates of a. The result follows
immediately.

5. The units in the ring of integers Ok are precisely the elements of norm +1 (i.e., the a € Ok with
Nk g(a) = £1).

o Proof: If a € Ok is a unit with multiplicative inverse 8 € Ok, then af = 1 so taking norms yields
Nk o(a)Ngo(B) = Ngjo(aB) = Nk (1) = 1 by multiplicativity and (1).

o But now by (4), both N ,g(a) and N /q(3) are integers, so we must have Ny q(a) = 1.

o Conversely, if Nk, g(a) = %1, then this says o times a product of its Galois conjugates 3y --- 3,
equals +1. But then +4; - -- 3, is an algebraic integer that is a multiplicative inverse of «, so it lies
in Ok and thus « is a unit in Og.
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e Using this convenient characterization of units in Ok we can easily test whether specific elements of Ok are
in fact units, and in some simple cases we can characterize all of the units.

o Example: In the quadratic field K = Q(v/D) with D = 2,3 (mod 4) so that O = Z[v/D], we see that
N(a+ bV/D) = a® — Db?, so the element a + by/D is a unit if and only if a®> — Db?> = £1. When D =1

(mod 4) so that O = Z[1*+¥L], we see that N(a+b*YL) = a® + ab+ 15202, so the element a + bv/D
is a unit if and only if a® + ab + :52b? = £1.

o The unit behavior actually is quite different for real and imaginary quadratic fields. Imaginary quadratic
fields have only finitely many units:

o Exercise: Show that when D < 0, the only units of OQ(\/E) are 1, except in the case D = —1 with
units +1, +i and in the case D = —3 with units +1, +(3, (3.

o However, real quadratic fields always have infinitely many units: we will show more general results later,
but this claim follows from the fact that Pell’s equation® a? — Db? = 1 always has a nontrivial solution

(i.e., one with b > 0) for any squarefree positive integer D. If u = a 4+ bv/ D represents such a solution,
then since u > 1 we see easily that the powers u"™ yield infinitely many distinct units in OQ( VD)

e We now exploit the trace and norm maps to establish some other basic information about the structure of
Ok as an additive abeliam group and as a module.

o Recall in particular that we showed earlier that for every element o € K there is some nonzero d € Z
such that da is an algebraic integer.

e Proposition (Additive Structure of Ok): Suppose K is a number field.

1. The ring of integers Ok is a torsion-free, finitely generated abelian group.

o Proof: Clearly Ok is torsion-free since it is a subset of C; it remains to show finite generation.

o Suppose K/Q has degree n and let ag,...,a, be a Q-basis for K; by scaling these basis elements
by integers as needed, we may assume the «; are elements of Og.

o For each nonzero 3 € K, consider the map @3 : K — Q given by pg(a) = Trg/g(Ba). This map is
Q-linear and nonzero since @g(3~') = Trg (1) = n, and so the map from the vector space K to its
dual space K= Homg (K, Q) sending 8 to ¢g is injective. However, because both vector spaces are
n-dimensional, it is in fact an isomorphism.

o Therefore, we see that every linear functional on K is of the form ¢z for some g € K.

o Consider the elements of,...,a), € K giving the dual basis to aq,...,a,: in other words, with
Trg/g(ajay) =1 for i = j and 0 otherwise. (Such elements exist because any linear functional, such
as the one mapping all of the basis elements «, ..., a, to zero except for o; which is mapped to 1,
is of the form ¢, for some «;.)

o Since of, ...« are then clearly linearly independent, they are a Q-basis for K.

o Now suppose (3 is some element of Ok: since {af,... ] } is a basis for K, there exist some ¢; € Q
with 8 =1 + -+ + cnal,.

o Multiplying by o; and taking the trace then yields Trg /g (Ba;) = c1Trg /gy )+ - +c, Trg g (asas,).
But all of the traces are 0 except for the trace of oo which equals 1, so the trace is simply ¢;. But
because Sa; is an algebraic integer, its trace is an integer, so we see each ¢; € Z.

o We conclude that 8 € Zo| +Zaob+- - -+ Za,, so O C Za +Zab+- - -+ Za,. Thus O is contained
in a finitely generated abelian group, hence is itself a finitely generated abelian group.

2. If K/F is an extension of number fields of degree n, then Ok is a torsion-free Op-module of rank n.

o Note here that the Op-module structure of O is inherited from the ring structure of Og.

3To summarize this argument: first one shows (via the pigeonhole principle or via continued fractions) that for any real number z
there are infinitely many p/q € Q with |z — p/q| < 1/¢%. Taking x = /D yields infinitely many positive (p,q) with ’\/D - p/q‘ < 1/¢?

whence |p? — Dg?| < 2v/D + 1. Picking some r for which p? — Dg? = r has infinitely many solutions, if (p,q) and (p',q’) are solutions
congruent mod r then (a,b) = (pp’ — Dqq’, |pqg’ — p'q|)/r has a®> — Db? =1 and b > 0.



o Proof: To show that it has rank n, suppose that K = F'(«), where (by rescaling) we may assume «
is an algebraic integer.

o Then the set {1,q,...,a" '} is F-linearly independent and consists of elements of O, so it yields
an Op-linearly independent set in Og. Thus Ok has rank at least n.

o On the other hand, if 51, ..., B,+1 are any elements of Ok, then there exists some F-linear depen-
dence 181 + -+ + ¢ny1Bny1 =0 for ¢; € F.

o Scaling by an appropriate integer d such that dc; € Op for all ¢ yields an Op-linear dependence of
these B;. Thus the maximal size of an Op-linearly independent set in O is n, so since by (1) Ok
is finitely generated, we see that Ok has rank n.

3. If K is a number field of degree n over Q, then O is a free abelian group of rank n: in other words,
there exist 81, 08s,..., 8, € Ok such that O = ZB1 ® ZPs & --- ® L.

o Proof: By (1) we know that Ok is a torsion-free finitely generated abelian group, and by (2) we
know it has rank n. by the structure theorem for finitely generated abelian groups, such an abelian
group is free of rank n.

o The second statement is then simply the definition of a free rank-n abelian group.

o Exercise: Show more generally that if Op is a PID, and K/F has degree n, then Ok is a free
Op-module of rank n.

o Remark: In general, Ok need not be a free Op-module. (In other words, although there exist
Op-linearly independent sets of size n, none of them span Of, but rather, will give some proper
submodule.) Later, once we study the multiplicative structure of rings of integers further, we will
be able to give explicit examples, which (per the exercise above) can only happen when Op is not a
PID.

4. The ring Ok is Noetherian (i.e., every ideal is finitely generated).

o Proof: Any ideal I of Ok is (a fortiori) an additive subgroup of O, which per (3) is a free abelian
group of rank n. Then I is also a free abelian group of rank at most n, and a set of additive-group
generators for I certainly also generates I as an ideal.

o Hence every ideal I is generated by at most n elements, so Ok is Noetherian.

o Remark: This bound of n generators is not sharp: in fact, as we will show later, every ideal of Ok is
generated by at most two elements. (And of course, saying that O is a PID is the same as saying
every ideal is generated by just one element.)

e While the general results we have just shown are useful in understanding the abstract structure of Ok as
an abelian group (and to some extent as a ring), they are not sufficiently explicit to allow us to compute an
actual integral basis for Ok. In order to make calculations, we require one more tool: the discriminant.

e Definition: Let K/F be an extension of number fields of degree n, and let o1,...,0, : K — C be the
complex embeddings of K fixing F. For an ordered n-tuple (ag,...,a,) € K, we define the discriminant
o1(ai) o1(az) -+ oi(an)
. . 0’2(0[1) 02(012) Ug(an)
discg/p(ai,...,a,)of thetuple (aq, ..., ap) tobedisck/p(ar, ..., o) = ) . . . ,
on(a1) op(a2) - on(an)

the square of the determinant of the n x n matrix whose (i, j)-entry is o;(c;).

o We note immediately that taking the square of the determinant means that the ordering of the em-
beddings o; and of the elements «; is irrelevant, since swapping rows or columns will not affect the

value.
1 vz [
o Example: For K = Q(v/2) we have discy/q(1,V2) = ‘ | 3| 8 and discx/g(1 + 2v/2,3) =

‘1+2\/§ 3

2
= 3' — 288.

1 vz Vi [
o Example: For K = Q(v/2) we have discx/g(1, V2, V4) =| 1 (V2 (3V4 | =-108
1 GV2 V4
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e Here are some basic properties of the discriminant:

e Proposition (Properties of Discriminants): Let K/F be a degree-n extension of number fields.

1. discx/p(aa,...,n) is equal to the determinant of the n x n matrix whose (i, j)-entry is trx/p(a;o;).
In particular, discg/p (a1, ..., a,) € F.
o Proof: Let M be the matrix whose (i, j)-entry is o;(a;), so that discg/p(ai,..., a,) = det(M)>.
o Then the (i, j)-entry of the product MTM is 3, or(os)ow(oy) = Y f_y on(eia;) = trg/r(aoy).
The result follows immediately by taking determinants.

o The second statement follows immediately from the fact that the discriminant is the determinant of
a matrix with entries in F' (since the traces are all in F').

2. If aq,...,ap € Ok, then discg/p(u,...,a,) € Op. In particular, disck/g(u,...,q,) is always an
integer.
o Proof: From (1) we see that discgx/p(a1,...,a,) € F. Furthermore, if all of the a; are algebraic

integers, then so are all of the entries in the determinant expression (either the one from the definition
or the one in (1)), so the discriminant is also an algebraic integer.

3. The discriminant discg/p(a1,...,a,) = 0 if and only if the o; are F-linearly dependent.

o Proof: Clearly if the «o; are F-linearly dependent, then so are the columns of the matrix with
entries o;(c;), since the embeddings o; preserve F-linear dependence, and so the determinant (hence
discriminant) will be zero.

o Conversely, suppose discg/p(a1,...,a,) = 0: then the rows of the matrix {trg/p(cic;)}ti<ij<n
are F-linearly dependent, so there exist some ¢; € F, not all zero, with citrg/p(ora;) + -+ +
entrg/p(ana;) = 0 for each 1 < j <n.

o But by linearity of the trace, for § = ciay + .-+ + ¢y, this means trg p(Ba;) = 0 for each
1 < j < n. However, this implies 8 = 0, since as we noted earlier, the linear map g : K — F given
by ¢s(a) = Trg/p(Ba) is nonzero for 3 # 0.

o This means there exists some ¢; € F, not all zero, with c;a;+- - -4cpa,, = 0, so the a; are F-linearly
dependent.

4. If ag.....0n € Ok and discg/p (1, ..., an) # 0, then Opa; © Opaz © - - © Orpa,, is an Op-submodule
of Ok of finite index (as an additive group).

o Proof: By (3), if disckx/p(1,...,a,) # 0 then ay,...,a, are F-linearly independent (hence Op-
linearly independent, so they generate a free submodule M = Opa; & Opas @ - -- & Opa,, of Ok of
rank n.

o But as we proved earlier Of is finitely generated and has rank n, so the quotient O /M is finitely
generated and has rank 0: in other words, it is finite.

5. Suppose that ay,...,a, € Ok and fq,...,B, € Ok span the same additive subgroup of O: Za; &
@ Loy =Ly © -+ D LBy, Then disck g, ..., a,) = disck (B, ..., Bn)-
o Proof: If the subgroup has rank less than n, both discriminants are zero by (3). So now assume
both subgroups have rank n. By hypothesis, there exist n x n integer matrices A and B with
B aq Qg B
=4 =B| ;
B om o B
o Then since each set is an F-basis of K (since the rank is n) we see AB = I,, and so det(A4) =
det(B) = £1 since both matrices have integer determinant.

oi(B1) oi(ar)
o Applying o; to each side of the first matrix equation yields : =A :
O—z(ﬂn) Ui(an)
o ThLIS, diSCK/Q(ﬁh e ,ﬁn) = det[{ai(ﬁj)}lgingn]Q = det[A{Ui(aj)}lgi’anP = det(A)zdiSCK/Q(Oél, ey O[n),
and since det(A) = £1 the result follows.

6. Suppose ay, ..., a, and By, . .., B, are two integral bases for Ox. Then disck g(a1, ..., a,) = disck/o(B1; - - -, Bn)-

o Proof: Immediate from (5).

11



0.5 (Sep 12) Discriminants 2

e From (6) above we see that the discriminants for any two integral bases of the ring of integers O are the
same, and more generally (5) says that the same is true for any rank-n subgroup of Ox. We may therefore
view the discriminant as an invariant of the ring of integers (or, as is exceedingly common) the number field
K itself:

e Definition: For a number field K, the discriminant of K (or of its ring of integers Of) is defined to be the
discriminant of any integral basis of Ok . The discriminant is variously denoted disc(K), disc(Ok), or D,
or Ag. When S is a subgroup of finite index in Ok, we likewise define disc(S) to be the discriminant of any
integral basis of §.

o We will mention here that we can also define the discriminant for a relative extension K/F, but it is
more complicated because Ok need not possess an Op-basis. Instead, the approach is to consider the
discriminant ideal Dk, an ideal of OF, generated by the discriminants of all n-tuples of elements of

Ok.

e Example: For K = Q(v/D), we have an integral basis for O given by {1,v/D} when D = 2,3 (mod 4) and

1 D
by {1, %f} when D =1 (mod 4).

o For D = 2,3 (mod 4) we have disc(K) = disc(1, \/5) = ‘ 1 \/\/i%

1+vD. |1 (1+VD)/2
2 )_‘1 (1-+vD)/2

e We would now like to use discriminants to construct integral bases for additional rings of integers Ok . To do
this, it is useful to broaden our focus to the wider array of rank-n subgroups of Ok.

=4D.

2
o For D =1 (mod 4) we have disc(K) = disc(1, ‘ =D.

e Definition: Suppose K is a number field of degree n over Q with ring of integers Ox. An order of Ok is a
rank-n subgroup S of Og.

o Since O is also free abelian of rank n, orders in O are necessarily free abelian groups of rank n, hence
are of the form Za; @ - - - ® Za, for some (necessarily linearly-independent) ay, ..., a, € Ok; conversely,
any such subgroup is an order of Ok.

o We can also see easily that for any order S, the quotient group Ok /S is finite, since it is a quotient of
two finitely-generated abelian groups of the same rank, and as we will see, the index [Ok : 5] is closely
related to the discriminant.

e Let us now illustrate further how discriminants arise in the context of an integral basis for Ok:

e Proposition (Discriminants and Bases): Let K be a number field of degree n over Q.

1. Suppose that aq,...,a, € Ok are Q-linearly independent. Then any 5 € Ok can be written in the form
8= (01a1 + -+ + cpry) Where d = discg/g(a,. .., an) and each ¢; € Z, where furthermore d|c? for
each z

o Proof: Since aq,...,a, are a Q-basis for K, we may write § = ey + - - - + e, for unique e; € Q.

o Now let o1,...,0, be the complex embeddings of K, and observe that applying each o; to the
equation above yields a system of n linear equations of the form o;(8) = ejo1(a1) + -+ + enoi ()

for1<i<n.
o1(a1) o1(ag) o1(an)
det(M; oa() oz(az) - oa(an)
o Solving this system using Cramer’s rule yields e; = M where M = . ) ' ]
det(M) : :
On (al) UTL(OQ) t Un(an)

and M; is the matrix obtained by replacing the ith column of M by the vector [o1(f),...,0,(8)]T.
det(M) det(M;)

o Multiplying numerator and denominator by det(M) yields e; = 7

where d = discg /g(a1, ..., ).

12



o Observe now that since the entries in M and M; are algebraic integers, det(M) det(M;) is an algebraic
integer, and since e; and d are both rational, det(M ) det(M/;) must also be rational, hence it is some
integer c;.

o Finally, for the last statement, observe that ¢?/d = det(M;)? is both rational and an algebraic
integer, hence is also an integer.

o Remark: We can see in this argument that the discriminant naturally arises in this context of trying
to express 0 € Ok as a Q-linear combination of the «;, and specifically in attempting to compute
the denominators of these expressions. The point is that the initial denominator det(M) is not
necessarily rational, but (as we showed) its square is, and this gives a convenient uniform choice for
all of the denominators we need to use.

o Exercise: Use the result above to prove directly that Ok is a free Z-module of rank n.
2. If S is any order of Ok, then discx/q(S) = [Ok : S]*disck g(Ok).

o Exercise: Suppose G is isomorphic to Z" and H is a subgroup of rank n. Show that G/H is
isomorphic to a direct sum of n finite cyclic groups. [Hint: How many generators does it have?]

o Proof 1: By the exercise, we see that Ok /S is isomorphic to a group of the form (Z/d1Z) ® --- @

(Z/d,Z).
o Letting f1,...,08, € Ok be preimages of the generators of each component, we see that f1,..., 5,
is an integral basis for Ok while d; 51, ...,d, 3, is an integral basis for S.
o1(dipr) - o1(dnfn) 2 o1(B1) - o1(Bn) 2
o Then disck,o(S) = = (didy---dy,)? =
on(difr) -+ on(dnfBn) on(B1) - on(Bn)
[Ok : S]2disck g(Ok), as desired.
o Proof 2: Let a1, ..., a, be an integral basis for S and f1, ..., 3, be an integral basis for Ok. Since
a B1
B1,- .., By is an integral basis for Ok, there exists an integer matrix 7" such that : =T :
a"l Bn
By the volume-transforming property of the determinant, we then see that [Ok : S] = |det T|.
o Applying each of the complex embeddings o1, ..., to each side and combining into a matrix then
or(an) -+ ouam) o1(f1) -+ o1(Bn)
yields . =T )
on(ar) -+ on(an) on(B1) - on(Bn)
o Taking determinants and squaring then yields discx /g (S) = (det T')*disc/q(Ok) = [Ok : S]*disck/(Ok ),
as claimed.

3. If S is any order of O, we have S = Ok if and only if discx/q(S) = disck /(O ). Equivalently, a set

at,...,an € Ok is an integral basis for O if and only if discx/g(a, ..., an) = disck/g(Ok).
o Proof: Immediate from (2), since S = Ok if and only if [Ok : S] = 1.
o Exercise: Show that for ay,...,a, € Ok, if discg/g(u, ..., ay) is squarefree, then O = Zay ©

e Let us now try to construct a convenient integral basis for Ok. If K = F(«) where by rescaling we can take
a € Ok, then certainly the “power basis” 1,a,a?,...,a" ! is a (field) basis for K/Q and generates an order
S=7Z®Za® - ®Za""L.

o We might hope that we can always find a basis for Ok of this form, but (unfortunately) that is not
always the case.

o Nonetheless, we can use this order as a starting point to try to find an integral basis. Obviously, we can
certainly find one where each element is a rational polynomial in «, for entirely silly reasons: namely,
because every element of K is a polynomial in « because K = Q(«).

o What we would like is to have more control on what these polynomials look like.

o It seems plausible that we should be able to do some sort of “replacement argument” (similar to Gram-
Schmidt), starting with the set of powers 1,«,...,a"~! that constructs an integral basis one polynomial
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at a time by dividing o by some integer d; (necessarily dividing disc(Of), since these are the worst
denominators needed per (1) above), and then taking a linear combination of the previous basis elements
to obtain another algebraic integer.

0.6 (Sep 16) Constructing Integral Bases for O

e Qur first order of business is to compute the discriminant for the order obtained from a power basis, and then
to modify it by introducing appropriate denominators to obtain an integral basis for Og:

e Proposition (Discriminants and Bases): Suppose K = Q(«) for an algebraic integer v and let .S’ be the order
of Ok generated by a, sothat S=Z @ Za @ --- @ Za" .

1. Suppose a has minimal polynomial m(z) € Z[z] with roots a,...,a, € C. Then disck/g(S) =
H1§i<j§n<ai - aj)2 = (‘Dnm_l)/zNK/Q[m/(a)]-

o

2. There exists an integral basis for Ok of the form

Note that [], <, <, (2 —a;)? is the polynomial discriminant of m(z), so we see that our use of the
same word for both quantities is consistent.

Proof: Label the roots a; so that a; = o;(«). Then discg,g(S) = disck/g(1, ..., 1) is the

n—1
1 (o751 e al .
1 ) N ag_
square of the Vandermonde determinant | .|, whose value is [, <; <, (@i — o),
-1
1 ay oy

yielding the first part of the formula.

For the second part, switch the order on half of the terms (a total of n(n —1)/2) to see disck /g (S5) =

(G Ve | [Lzi(ai — o).

Factoring m(z) = (2 — a;)qi(z) where g;(z) = [[,;(z — a;), now differentiate to see m’(z) =

qi(z) + (z — a;)q;(2): thus setting x = a; yields m’(a;) = gi(a;) = [ ;4 (cs — o).

Therefore we see [ [1;;(ci — a;) = [}, m/(a:) = Nk g[m'()], whence the second part of the

formula.

Exercise: If a3 + o+ 1 = 0, show that the ring of integers of Q(«a) is Z[a]. [Hint: Compute the

discriminant of {1, a, a?}.]

fola) file) fala) fr—1(a)
do 7 dy 7 dy 7T dpa

where each f;(x) €

Z|z] is monic of degree i and where the d; are positive integers with 1 = d0|d1\d;| e |dp—1|d.

o

1

Proof: Let d = disc/g(1,c,...,a""!). Foreach 0 <k <n—1,let F}, = E[Z@Za@ -+~ ®Za*] and
observe that F}, is a free abelian group of rank k + 1. Also let Ry = Ok N F} be the additive group
of algebraic integers in F.

fol) file)  filo)

We now show by induction that we can select d; and f; so that is an integral

do dy 77 dy
basis for Ry.
For the base case n = 0, start with 8y = 1.
Now suppose we have selected Sy, ..., Bk_1 that is an integral basis for Ry_1, where ; = fld(a) for
integers 1 = dp|dy| - - - |dx—1 and monic polynomials f;(z) € Z[z] of degree 1. '

Consider the linear functional T}, : K — Q mapping an element 3 =co+ -+ + ¢, 10"~ € K (with
1

the ¢; € Q) to its basis coefficient c; of o*. The image Ty (R},) lies inside T} (Fy) = 8Z’ which is an

infinite cyclic group. Furthermore, since o*~! € Ry, the image contains 1, so the image is itself an

1
infinite cyclic group of the form d—Z for some di|d.
k

1
We claim that we can choose any (i € Ry such that Ty (8x) = a0 and it will have the desired

k
properties.
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o We can see that for any = € Ry, if Ti(z) = 2—k then Ty (z — cxBr) = 0 whence the o*-coefficient of
k

x is zero. But then x — ¢ € Ri—1 so by the induction hypothesis we see x — ¢S is an integer
linear combination of Sy, ..., Sx_1, whence x is an integer linear combination of By,..., Sk_1, Bk-
fr(e)

for some
dy,

o Thus By, ..., Bk—1,0k is an integral basis for R;. Now we just have to show g =

monic fj € Z[z] of degree k, and that dj_1|d.

o For the second statement, observe that afkd;m) is an algebraic integer and in F}, hence in Rj. Then
k-1
_ 1 1 1
since fr_1 is monic of degree k — 1 we see Tk(afk 1(Ol)) = : this means € Ti(Ry) = —7Z
dp—1 di—1 di—1 dy,
and thus dj_1|dg.
dp . .. . . . fre—1(a)
o Now, observe that ﬂd is an algebraic integer and is in Fj, hence is in Ry, as is QT as noted
k—1 k—1
dip — _
above, hence so is their difference v = kﬁda—fklm).
k—1
d
o But since T [y] = —ka[ﬁ] - Tilafi—1(a)] = — = 0, the a®-coefficient of v is
dk,1 dkfl dk—l k—1
zero, so in fact v € Rg_1.
fola) fi(e) fa(a) fe—1(a)

o Thus, by hypothesis 7 is a Z—linear combination of , which since

do * di T ody 7T da

9(@) for some g(z) € Z[z] of degree at most k — 1.

k—1

d0|d1| cee ‘dk—la is of the form

o This (finally) means we may take fi(x) = zfr_1(z) + g(z) € Z[z]; since 5 = d—lk[afk_l(a) + g(a)]

and fi(z) is monic of degree k, we have shown all of the required properties.

o Remark: The integers d; are uniquely determined, but in fact there is a great deal of latitude to
choose the polynomials f;: in fact since the choice of § € Ry was arbitrary aside from requiring its
a¥-coefficient to be 1/d, we may take f; to be any monic polynomial in Z[x] of degree i such that
fi(a)/d; is an algebraic integer.

e In principle, the construction given in (2) above can be made mostly effective.

o To convert (2) to an algorithm clearly requires a way of computing coefficients with respect to an integral
basis: that is simply a special case of computing coefficients with respect to a Q-basis, which we can do
with linear algebra.

o We also require a way of computing what the terms dj are: in principle this could be done by searching
for algebraic integers with the desired properties and computing the denominators obtained, since we
know the worst possible denominators are the discriminant d. However, it would be more convenient if
we could calculate the terms dj directly, or at least describe them more explicitly.

e Proposition (Polynomial Bases): Suppose K is a degree-n number field, let o € Ok, and suppose Ok
fola) fi(a) fa(e) fo—1(a)
do 7 dir 7 ody 7T dy
degree ¢ and where the d; are positive integers with 1 = dg|dy|ds| - |dp—1|d = disc(K). Also let Ry =

1
OxkN=ZSZad® - ®Zak).

has an integral basis of the form where each f;(z) € Z[x] is monic of

d
1. The set, fo(a)7 fl(a), fa(@) sy fi(a) is an integral basis of Ry for each 0 <k <n — 1.
dy dy do dy,
o Proof: Since fo(a), fl(a), f2(a) e fu(@) is clearly linearly independent, it suffices to show that
do dy do dy,
it spans Ry. So let B € Ry: then because 8 € Ok we may write § = cofoaga) +c f1d(04) +
0 1
RS cn_lfz_il(a) for unique ¢; € Z, and because § € spang(l,a,...,a*) we may also write
n—1
B =eg fola) + e file) + o tep Tx(@) for unique e; € Q.
do dq dy,
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o Comparing the two expressions shows immediately that ¢; = e; for each i < k (and ¢; = 0 for i > k)
hence all of the e; are integers. The conclusion follows.

2. For each k, dj, is the smallest positive integer such that dip Ry C Z[a]. In particular, for fixed «, all of
the dj, are uniquely determined.

o Exercise: Suppose « is algebraic of degree n over Q. If f(x),g(x) € Q[z] are such that f(a) = g(«)
and both f, g have degree less than n, show that f(z) = g(z).

o Proof: Multiplying any element of Ry by dj clears all of the denominators d; from the integral basis
expression (thus yielding an integer polynomial in «), so certainly dy Ry C Z[a].

o On the other hand, since fi(a)/dr € Ry by (1) and because fj is monic, no smaller multiple of
fx(a) can yield a polynomial with integer coefficients in a (which by reducing modulo its minimal
polynomial we can assume is of degree less than n) by the exercise above.

o Thus, dj, is the smallest positive integer such that dp Ry C Z[a].
3. For S=Z&Za® - ®Za* !, wehave dy - d,_1 = [Ok : 5.

o Proof: Since f; is monic of degree i, it is easy to see that fo(«), fi(«a),..., fn(®) is an integral
basis for S (the change-of-basis matrix is triangular with 1s on its diagonal). We can then see that
Ok /S = (Z/dZ) x --- x (Z/d,7Z); taking cardinalities yields the result immediately.

o Remark: Note in fact that the divisibility condition d;]---|d,, implies that this product of cyclic
groups is the elementary divisor form of the finite abelian group O /S, which gives another proof
that the dj are unique.

4. We have didjldi+j-

fila) fi(@)
d; d;

in « of degree i + j, so it is an element of R, ;.

o Proof: Note that v = is an algebraic integer and (when multiplied out) it is a polynomial

fo(a) fitj(@)

-
do ditj

1
must be an integer multiple of ——, which is to say, d;d; divides d; ;.

i i+j
5. The discriminant disc(S) is divisible by dI'"~ ",
o Proof: By a trivial induction using (4) we see that d¥|dj for each k. Multiplying these and then
squaring, we see that d?("fl) divides the product (dids - d,—_1)?, which by (3) equals [Of : S]*.
o But by our earlier results we know that disc(S) = [Ok : S]2disc(Ok), so the result follows.

; comparing coefficients of a’*7

o By (1), v is then an integer linear combination of

then shows that

o Remark: The point here is that we can actually compute disc(S) = £Ng g[m’(a)] where m(x) is
the minimal polynomial of «, and so we obtain a (typically short) list of possible values for d;. We
can use (4) to establish similar divisibility properties for the other d; which likewise help narrow
down their possible values.

0.7 (Sep 18) Some Examples of Integral Bases for Ok
e After all of that effort, we can now actually compute some integral bases for some other O

o Even in the relatively straightforward situation of cubic extensions, we generally still need to do some
nontrivial calculations in order to find the values of d; and ds to ensure we have the full ring of integers.

o A centrally useful tool here is the trace map, since it allows us to extract information about individual
coefficients. (In cases of extensions having nontrivial proper subfields, the relative trace maps to the
subfields are also quite useful, of course.)

e Exercise: Show that the discriminant of the cubic polynomial p(z) = 2® + ax + b is —4a® — 27b%.
e Example: Show that the ring of integers of Q(«) for a® — a + 1 = 0 is Z[a], with integral basis {1, a, a?}.

o The generator a has minimal polynomial m(z) = 23 — 2 over Q as this polynomial is clearly irreducible.

o By the exercise above, we have disc(a) = —23.
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fi(e) fola)
di 7 dy
(dyd2)? divides disc(a). So we must have d; = dy = 1 hence we may take fi(a) = a and fo(a) = o?.

o From our results we know that Qg has an integral basis of the form 1, with dy|ds and where

o We conclude that {1,a,a?} is an integral basis for the ring of integers, meaning it is simply Z[a].

e Exercise: More generally, suppose m(z) € Z[z] is monic, irreducible, and has squarefree discriminant. If « is
any root of m(x), prove that the ring of integers of K = Q(«) is Z[a].

e Example: Show that the ring of integers of K = Q(~/2) is Z[v/2], with integral basis {1, v/2, V/4}.

o The element o = /2 has minimal polynomial m(z) = 2° — 2 over Q as this polynomial is clearly
irreducible.

o Since m/(z) = 322 we see disc(a) = (—1)3Ng g (3 - 22/3) = —22. 33.
fi(@) fa(e)

o From our results we know that Ok has an integral basis of the form 1, T4 where d;|da|d and
1 2
where d$ divides disc(a). So we must have d = 1 and may then clearly take fi(a) = a.
o We also know that (did2)? = d3 divides disc(a), so dy divides 6: thus the other basis element is of

co+cra+ 02a2

the form 8 = 5 for some integers cp,c1,ca. Then tr(8) = ¢o/2 so ¢g is even. Then

2 3 3
vy=38—co/2 = aat e’ is also an algebraic integer, but now 3 = @ has trace Z(c‘;’ +2¢3),
which can only be an integer when both ¢; and c; are also even.

ey +eja+ 62a2

3
(€3 + 2e1e2) + (2e0e1 + 2€3)a + (€2 + 2epez)a”

o We conclude that in fact g = for some integers eg, e1, es.

o Squaring yields 3% = . In order for this quantity to be

an algebraic integer, each of €3 + 2ejea, eger + €3, and €2 + 2egep must be divisible by 3 (this follows
because dz|3, so we cannot have denominators of 9). If any of eg, e1, e2 is zero mod 3, all of them must

be zero mod 3; otherwise, in the event all are nonzero, we see €2 = e = €2 = 1 (mod 3), whence
eres = egea = —epe; = 1 (mod 3). But this is a contradiction since the first two equalities require

eg = e1 = ez mod 3, which contradicts the third condition.

o Therefore, all of eg, e1,e2 are zero mod 3, and (thus, finally) we see that 5 € Z[«]. We conclude that we
may take 3 = a? and so we obtain our integral basis {1, /2, V/4}.

e We remark that one may compute the ring of integers of Q({/m) for general (cubefree) m using a similar
approach. Here are two examples:

e Exercise: Show that the ring of integers of Q(+/5) is Z[+/5]. [Hint: First note d; = 1, then show dy|15.
Eliminate the possibility that ds is divisible by 5, then show that d; = 3 leads to an eventual contradiction
modulo 3.]

1+ /10 + /100
e Exercise: Show that the ring of integers of Q(+v/10) has integral basis {1, v/10, i 3+ }. [Hint: First

note d; = 1, then show d3|30. Use traces to eliminate the possibility that dy is even or divisible by 5, and
then conclude dy = 3.]

1+v5 V2410

e Example: Show that the ring of integers of K = Q(v/2,+/5) has integral basis {1, /2, 5 5 }.

o Note that K has the three quadratic subfields Q(v/2), Q(v/5), Q(v/10) with respective rings of integers
1+6
2lva), 21+ 5Y2), 2]

o The Galois group of K/Q is isomorphic to the Klein 4-group, with generators o, 7 obtained by lifting
the conjugation automorphisms in the two subfields Q(v/2) and Q(v/5): thus ¢(v/2,v5) = (—v2,V5)
and 7(v2,v5) = (v2,-V5), so o7(v/2,V5) = (—\/5,—\/5). (Note that o7 fixes the other quadratic
subfield Q(+/10).)
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o Then the algebraic integer a = v/2 + /5 is a generator for this extension, since its Galois conjugates
+v/2 ++/5 are all distinct. One option would then be to attempt to construct an integral basis using the
powers of a.

o However, in this situation, since we already know that the ring of integers of Q(v/2) is Z[/2], that the
1
ring of integers of Q(1/5) is Z[L\/g], and that the ring of integers of Q(+/10) is Z[+/10], a more natural

choice would be to use the elements from these integral bases as a starting point.
o So let us instead suppose that a = a + bv/2 + ¢/5 + dv/10 is an algebraic integer, for a,b, ¢, d € Q.

o Then in particular, the relative traces (and norms) of « from K to each of the quadratic subfields must
be algebraic integers.

° 80, try q(yva (@) = a+7(a) =2a + 2bv/2 must be in Z[v/2], so 2a and 2b are integers.
1+6
N t t == = 1
o Next, tr /g /15)(@) = o+ o(a) = 2a + 2¢y/5 must be in Z] 5
also be an integer.
o Finally, try/q.,15) (@) = &+ o7(a) = 2a + 2dV10 must be in Z[v/10], so 2a and 2d must be integers.

p+qV2+rV5+ 510 1+x/5_8¢§+\/ﬁ_
2 2 2 n

|, so since 2a is an integer, 2¢ must

o Hence we must have o =

(p—r)+(g—95)V2
2
form u + vv/2 for integers u, v.

for integers p, ¢, 7, s. Then a—r

is also an algebraic integer, but this is an element of Q(1/2) hence must be of the

1 2++v1
o We conclude that @ = u+vv2+r +2\/5+s f—; 0

is an integral basis for the ring of integers, as claimed.

1++v5 V2410

for integers u, v, r, s, and so 1, /2, > 2

1+v5 1+V13

e Example: Show that the ring of integers of K = Q(v/5,v/13) is Z| 5 5

1+v5 1+v13 (1+V5)(1+13)
{1, 2 2 ’ 4 -

], with integral basis

o Note that K has the three quadratic subfields Q(v/5), Q(+v/13), Q(+v/65) with respective rings of integers

25 g VIS LV

o The Galois group of K/Q is isomorphic to the Klein 4-group, now with generators o, 7 such that
O—(\/ga m) = (_\/5; \/ﬁ) and T(\/57 \/ﬁ) = (f; _\/ﬁ) and 0'7—(\/5, m) = (_f; _\/ﬁ)
o Now suppose that o = a + bv/5 + ¢v/13 + dv/65 is an algebraic integer, for a,b,c,d € Q.

1 5
o Then try g5 (a) =a+7(a) =2a+ 2b+/5 must be in Z| +2f], so 4a and 4b are integers of the same
parity.
1++v1
o Also, try /g 13) (@) = a + o(a) = 2a + 2¢v/13 must be in Z[—i_Tg], so 4a and 4c¢ must be integers of
the same parity.
1+ 65
o Also, trq(65) (@) = @+ o7(a) = 2a + 2¢v/65 must be in Z[%], so 4a and 4d must be integers of

the same parity.

5+ rv13 4 sv65
o Hence we must have a = Pt q\f+r4 ts for integers p,q,7,s all of the same parity. By
1 5)(1 + 65 1 5+ 5v13+ 65
subtracting (1+ \[)i + ) _ 1 V5 + 1 + if all of p,q,r,s are odd, we can make all of
) . P4+ ¢V5+1"V13+ V65 (1++/5)(1 +/65)
p,q,7, s even, in which case a = 2 +2x 1 forz =0or 1.
1 1 /1 1 / A A N
o Then a—¢ +2\/5 -7 +2 5 s +2 05 _1r -4 5 " 7% just be an (actual) integer u, meaning
1 5 1+ /13 1465 1 5)(1++v13
that a = u + ¢ +\f+7"’ + +5 + +x( +VE)(L+ )forintegersu,q’,r’,s’,x.

2 2 2 4
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o Finally we note that 342

1465
2

, so the extra element

1+V65 _ (1+\/5)(1+\/®71+\/5751+\/ﬁ
2 2

4 2

can be written in terms of the other four.

1+V5 1+V13 (14+V5)(1+V13)

Wi lude that {1
o We conclude that {1, 5 5 1

as claimed.

} is an integral basis for the ring of integers,

e Exercise: Show that the ring of integers of Q(v/3,1/7) has integral basis {1

}.

e Exercise: Compute an integral basis for the ring of integers of Q(v/2,v/3). [Hint: Tt’s bigger than Z[v/2,v/3].]

1 21
W RUERU RSt

0.8 (Sep 19) The Ring of Integers in Q((,)

e Our other major source of examples where we can make explicit calculations is the cyclotomic fields Q(¢p).
We will now build up to our main result in this case, which is that the ring of integers of Q(¢,) is in fact just

Z[Gn]-

o For completeness, we may as well build up our stockpile of information about Q(¢,,) from the beginning.

o We recall that an nth root of unity is a complex number z with 2™ = 1. For d|n, any dth root of unity is
also an nth root of unity, and the primitive nth roots of unity are those nth roots of unity that are not
dth roots of unity for any proper divisor d of n.

e Proposition (Cyclotomic Fields): Let n > 2 and let ¢,, = ¢*™/" be a primitive nth root of unity. The following
hold:

1. There are n distinct nth roots of unity, forming a cyclic group of order n under multiplication denoted g, .
The primitive nth roots of unity are the generators of this cyclic group, of the form (2 for ged(a,n) = 1.

o Proof: Suppose z € C has 2" = 1. Then |z| = 1 and so z = ¢* for some 6; then 2" = 1 is equivalent
to €? = 1 whence 0 = 2kn/n for some integer k, which is to say, z = ¢*.

o So these ¢* are the nth roots of unity, and since the group homomorphism ¢ : Z — u,, with p(k) = ¢*
is clearly onto and has kernel nZ, the group p,, is isomorphic to Z/nZ.

o Then the primitive nth roots of unity are the ones which have order exactly n (rather than some
proper divisor), so they correspond to the ¢(n) elements of (Z/nZ)* under the isomorphism: in
other words, they are the powers (2 for a relatively prime to n.

2. Let @,(2) = [[,c(z/nz)x (z — () be the nth cyclotomic polynomial, whose roots are the primitive nth
roots of unity. Then ®,,(z) has integer coeflicients.

o Exercise: Show that 2" — 1 = [];,, ®a(x). [Hint: Group together the roots of unity of each order
d|n.]
o Exercise: Show that ®,(z) = [T, (¢? = 1)*"/% where j(n) denotes the M&bius y-function p(n) =

0 if n is not f
{ 1715 oL Squateiee . Use this recurrence to calculate ®¢(z) and ®go(z).

(—=1)F if n = p;---py for distinct primes p;

o Proof: Using the recursion provided by the exercises above, we can see by induction on n that ®,,(z)
will always have integer coefficients. The base case n =1 is trivial.

o For the inductive step, observe that [] dln,d<n ®,(z) is monic, has integer coefficients, and divides
2™ — 1 in Q(¢)[z]: hence it divides 2™ — 1 in Q[z] since both polynomials have coefficients in Q.
Then by Gauss’s lemma, [, 4<, Pa(x) divides 2" — 1 in Z[z], so the quotient ®;,(x) has integer
coefficients.

3. The polynomial ®,,(x) is irreducible and is therefore the minimal polynomial of (,, over Q.
o Exercise: For a prime p, show directly that ®,(z) = 2P~ + 2P=2 + .-+ + 2 + 1 is irreducible. [Hint:

1P -1
Use Eisenstein’s criterion on ®,(z + 1) = M]
x
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o Proof: Suppose that we have an irreducible monic factor of ®,(z) in Q[z]. By Gauss’s lemma, this
yields a factorization ®,,(z) = f(z)g(z) where f(z),g(z) € Z[z] are monic and f(z) is irreducible.

o Let w be a primitive nth root of unity that is a root of f, and let p be any prime not dividing n.
Since f is irreducible, this means f is the minimal polynomial of w.

o By properties of order, we see that w? is also a primitive nth root of unity, hence is a root of either
forofg.

o Suppose w? is a root of g, so that g(w?) = 0. This means w is a root of g(a?), and so since f is the
minimal polynomial of w, it must divide g(z?): say f(z)h(x) = g(zP) for some h(x) € Z[x].

o Reducing modulo p, we see f(x)h(z) = g(zP) = g(z)P in F,[z], so by unique factorization we see
f(z) and g(z) have a nontrivial common factor in F[x].

o Then since ®,,(z) = f(z)g(x), reducing modulo p yields ®,(x) = f(x)g(z) and so ®,(z) would have
a repeated factor, hence so would 2™ — 1. But this is a contradiction because since ™ — 1 is separable
in F,[z] (its derivative is nz"~!, which is relatively prime to 2™ — 1 because p does not divide n).

o Hence we conclude that wP is not a root of g, so it must be a root of f. Since this holds for every
root w of f, we see that for any a = p1ps - - - p that is relatively prime to n, then w® = ((wP?)P2) Pn
is a root of f.

o But this means every primitive nth root of unity is a root of f, and so ®,, = f is irreducible as
claimed.
4. Both @, (x) and Q(¢,)/Q have degree ¢(n), and ®,(x) is the minimal polynomial of ¢, over Q.
o Proof: By definition ®,,(x) has degree ¢(n). Since ®,, is irreducible by (3), ®, () is then the minimal
polynomial of (, hence [Q((,) : Q] = deg(®,,) = p(n).
5. The extension Q(¢,)/Q is Galois with Galois group isomorphic to (Z/nZ)*. Explicitly, the elements of
the Galois group are the automorphisms o, for a € (Z/nZ)* acting via o,(¢,) = (2.
o Proof: Since K = Q((,) is the splitting field of 2™ — 1 (or ®,(x)) over Q it is Galois, and
#Gal(K/Q) = [K : Q] = ¢(n).
o Furthermore, any automorphism ¢ must map (, to one of its Galois conjugates over @, which are
the roots of ®,,(z) by (4): explicitly, these are the ¢(n) values (2 for a relatively prime to n.

o Since there are in fact ¢(n) possible automorphisms, each of these choices must extend to an auto-
morphism of K/Q. Hence the elements of the Galois group are the maps o, as claimed.

o Since 04(04(¢n)) = 04(¢8) = ¢, the composition of automorphisms is the same as multiplication of
the indices in (Z/nZ)*, and since this association is a bijection, the Galois group is isomorphic to
(Z/nZ)*.

e Let us now prove our main result about the ring of integers in Q((,):

e Theorem (Cyclotomic Ring of Integers): Let n > 2, let (, = €2™/" be a primitive nth root of unity (so ¢, is
a root of ™ — 1). The following hold:

1. For any prime power p? > 2 we have Na(¢,a)/a(Gpa) =1 and Ny ,)/0(1 = Gpa) = p.

o Exercise: For any prime power p?, show that ®,4(z) = @p(xpdfl). [Hint: Show both sides equal
p—1, pi=1 %

Hi:1 (v - Cp)']

o Proof: By the exercise above, we know that the minimal polynomial of (,a is ®,4(z) = Qp(mpd_l) =

ayd—1 oyd—1 d—1 . .

PP g (P=2PT o 4 2P" 41, and we also have the factorization @, (z) = ec@/pazyx (®—
).

o Thus, a®P= VP 4 2=2p"" g™ 1 = ae(z/pazy< (@ = CGa)-

o Now, setting « = 0 yields 1 =[], (7/paz) (—Gpa) = (—l)ﬂa(pd)N(de) = N((pa) since p(p?) is even.

o Also, setting z =1 yields p = [[,¢z/paz)x (1 = (a) = N(1 = (o).

2. For any odd prime p with K = Q((,) and S = Z[(,], we have discx q(S) = (—1)P@=D/2pr=2,
o Proof: For brevity, all norms and discriminants are from Q(¢,) to Q.

o By our results on discriminants we know that disc(S) = (—1)?®~YD/2N[m’((,)] where m(z) =
P, () =2P~ 1 + 2772 + ... + 2+ 1 is the minimal polynomial of (.
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o

A direct evaluation of m/({,) using the expansion above is rather unpleasant. Instead, note that
(x—1)m(z) = 2P —1: then differentiating and setting = = ¢, yields m((,)+ (¢ —1)m/((p) = p¢2~! =

p/Cp, whence m'(¢p) = since of course m((,) = 0.

P
Gp(1=¢p) -
jelds disc(S) = (— 1P V2N [m! ()] = (~1)pe-D/2— NP yp-y/2p0-2
Then (1) yields disc(S) = (—1) N[m/(¢)] = (—1) NGIN =G (-1 pP=.
Exercise: Let p be an odd prime. Show that Q({,) contains a unique quadratic subfield and that
it is Q(1/(—1)®=1/2p). [Hint: Use Galois theory for uniqueness, and discriminants to get the field
itself.]
Exercise: Show that every quadratic field is a subfield of some cyclotomic field Q(¢,,). [Hint: Take
a composite of Q(¢s) and the Q((,) for various p.] This is a special case of the Kronecker-Weber
theorem: every number field K with abelian Galois group over Q is a subfield of some cyclotomic
field.

3. For any n > 2 and S = Z[(,], the discriminant discgc,)/q(S5) divides ne™,

o

o

Proof: For g(z) = [y, 4<n( — ¢%), we have 2" — 1 = ®,,(v)g(z). Differentiating and then setting
x = (p, ylelds nC L= (Cn) (Cn) + q)n(Cn)gl(Cn) = q);(gn)g(gn)

Taking norms from Q(¢,) to Q (noting that N (¢, ') = =£1 since it is a unit) then yields +n®(") =
No(c)/al®5(Gn)] - Nogc,)/al9(Gn)l, and so No,)/o[®5,(Cn)] divides n# ().

The desired result then follows immediately from disc(S) = (—1)"»=D/2N[®/ ((,)] .

4. For any prime power p?, the ring of integers of K = Q((,4) is Z[(,q)-

(e]

o

Proof: For brevity write ¢ = (,a. First, since Z[¢] = Z[1 — (] = Z®Z(1 — () @ --- & Z(1 — ¢)#®")
since the minimal polynomial for ¢ (hence 1 — ¢) has degree (p?), by (3) we know that disc(1 — ()
divides p%®*"), which is a power of p.
Then from our earlier results on discriminants, we know that any element of Ok can be written in
d
co + Cl(]- — C) + 4 Cgo(pd)(]' — C)W(p )
P
If O # Z[(pa], then by scaling the expression above by an appropriate power of p, we may suppose
co + 01(1 - C) + -+ Cw(pd)(l — C)‘p(pd)
p

the form for some integer k.

where not all of

there is an element in Ok of the form o =
the ¢; are divisible by p.

As calculated in (1) we have N(1 — (,a) = p, which explicitly says (1 —¢)---(1— (pd’l) = p. Since
each of the p(p?) terms on the left-hand side is divisible by 1 — ¢ in Z[¢], we see that (1 — C)‘p(”d)
divides p in Z[(].

e _
(1=9)
co(1=C) " 1 (1=0) "+ et (1=C)+ - e (1—¢)#®")=i_ Since the terms from ¢; onward
are clearly algebraic integers, subtracting them yields that co(1—¢) ~*+cy (1—=) =i+ 4,1 (1-¢) 71
is an algebraic integer for each ¢, and then by an easy induction, this implies ¢;—1/(1 — ¢) is an
algebraic integer for each 1 < i < ¢(p?).

Thus, we see p/(1 — C)W(pd) is an algebraic integer, hence for each 1 < i < p(p?) so is

But now taking norms yields that N(1—¢) = p divides N(¢;—1) = cf_(’{d), hence each ¢;_; is divisible
by p. This is a contradiction, and so we must in fact have O # Z[(ya].

Exercise: For a prime p, show that p = u(1 — gpd)“’(pd) where v is a unit in Z[(,a].

5. Suppose K and L are number fields such that disc(K) and disc(L) are relatively prime and such that
[KL:Q]=[K:Q]L:Q]. Then Ok = Ok - Or.

o

o

Proof: Suppose Ok has an integral basis ag, ..., «, and O, has an integral basis S, ..., 5, where
we note [K : Q) =n and [L : Q] = m.

Then since [KL : K] = [L : Q] the set a1, ..., ay, is a basis for the field extension K L/K, and so the
set of mn pairwise products ay 1, ..., a, B, is a basis for the extension K L/Q, so in particular, it
is linearly independent.
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o Since each product «;f; is an algebraic integer and there are mn = [K'L : Q] of them in total, we see
that these products generate an order in the ring of integers Ok : we now show this order equals
the full ring of integers Ok ..

o So let v € Oky: since the o;f; are a Q-basis for KL, taking out common denominators allows
us to write v = Z?zl Z?zl C?T’]alﬂj for some integers c¢; ; and some positive integer d, where
ged(d,c11,. .- 0nm) = 1.

o It suffices to show that d divides disc(K), since then by symmetry it also divides disc(L) hence must
be 1 since disc(K) and disc(L) are relatively prime.

o Let o be any complex embedding of K. Since [KL : K| = [L : Q] there are exactly [L : Q] complex
embeddings of KL that extend o: say they are 71,..., 7. If 7|, = 75| then Ti_lT]‘ would fix both
K and L hence all of KL, hence must be the identity. Thus, the restrictions of the 7; to L are all
distinct, but since there are only [L : Q] = m possible embeddings, all m complex embeddings of L
must occur exactly once.

o So now consider the complex embedding of KL that restricts to o on K and to the identity on L,
which (by mild abuse of terminology) we also call o.

o Then o(a) = 331", >0, %a(ai)ﬂj =Yy o(ei)z; where z; = 370 Cz‘l,j B;. Running over all of
the complex embeddings of K yields n linear equations in the n variables x1, ..., x,.

det(M;)  det(M;)det(M)

det(M) disc(K)
matrix with (i, k)-entry equal to o (c;) and M; is the matrix obtained by replacing the ith column
of M with [oy(a),...,on(a)]T.

o Then disc(K)z; = Y71, %‘SZC(K)

an integral basis for O, each of the coefficients

o Solving the system using Cramer’s rule yields z; = where M is the n xn

B; is an algebraic integer for each ¢, but since the 3; are

¢; idisc(K
iy disc(K) must be an integer. But now since

ged(d,c11,- -+, Cn,m) = 1, this implies d divides disc(K), as desired.
o Remark: In the situation where Ax = disc(K) and Ap = disc(L) are not relatively prime, we do

still obtain the weaker statement that OO C O, € —————— 0O Oy .
ged(Ag,Ap)

6. For any positive integer n, the ring of integers of Q((,) is Z[(y].

o Proof: By (4) we already know this result holds when n is a prime power.

o Now suppose n = p}' ---py? for distinct primes p;; we wish to apply (5) recursively.

o Observe that Q((,) is the compositum of the fields Q(Cp;’-i) for 1 < i < d, and since p(n) =
o(pl") - - p(pg?) the degree requirement from (5) is satisfied.

o Additionally, from (3) we know that the discriminant of Q(Cp?i) is a power of p;, so the discriminants
of the fields are all pairwise relatively prime. Thus the discriminant requirement from (5) is also
satisfied for each composition of fields.

o We conclude that the ring of integers of Q(¢,) is the product Z[C,e1] - - Z[szd] = Z[(,], as desired.

o Exercise: If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that

1 D1 E
the ring of integers of Q(v/D, VE) is Z[ +2\F, +2\F

], and compute an integral basis for it.

0.9 (Sep 23) Student Presentations of HW1 Problems

0.10 (Sep 25) Unique Factorization in O

e Now that we have a moderately good idea of the additive structure of Ok, we turn our attention now to the
multiplicative structure of O. A natural starting point is the question of when O has unique factorization
of elements (more precisely, when Ok is a unique factorization domain).

o We first observe that in O, every nonzero nonunit can be written as a finite product of irreducible
elements; this follows by an easy induction on the norm of the element (and indeed this essentially the
same argument establishing existence of prime factorizations in Z itself).
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o

Thus, the only manner in which O can fail to have unique factorization is if some elements have multiple
inequivalent factorizations.

e In some situations, the ring Ok is a principal ideal domain and even Euclidean, such as for the field K = Q(z),
with ring of integers the familiar Gaussian integers Z][i].

(¢]

e}

Explicitly, recall that in Z[i] we may obtain the quotient of « € Z[i] by a nonzero § € Z[i] by computing
a/p € C and then “rounding” to the nearest Gaussian integer ¢ (simply round the real and imaginary
parts of a;/f3 to the nearest integer); the remainder is then the “leftover” r = a— gf3, and one then readily
verifies that N(r) < N(8)/2.

A similar procedure can be used to show that O, 4 is Euclidean for D = —2,2,3, and by instead
rounding to the nearest element of O, 7, the method can be adapted to show O /5 is Euclidean for
D =-3,-7,—11 as well.

e In other situations, the ring Ok can fail to have unique factorization.

(¢]

(e}

As we have already mentioned, Og(y=5) 1s not a unique factorization domain:

Example: In Og,/=5) = Z[v/—5], observe that we can write 6 = (1 +v/—5)(1 —v/—5) = 2- 3. Each of
1+ /-5, 2, and 3 is irreducible in Z[v/—5] since their norms are 6, 4, and 9 respectively and there are
no elements in Z[y/—5] of norm 2 or 3, and none of these elements are associate to one another. We
therefore have two inequivalent irreducible factorizations of 6 in Z[v/—5].

Indeed, many of the imaginary quadratic fields lack unique factorization:

Exercise: If D > 4 is squarefree and —D = 2,3 (mod 4), show that O —5 = Z[v/—D] is not a unique
factorization domain. [Hint: If D is odd, use 2- (1+ D)/2 = (1++—D)(1 —+/—D), and if D is even use
2-(D/2) = V=D (~V-D)]

The situation for real quadratic fields is more complicated, since the argument in the exercise above does
not generally yield non-unique factorizations due to the presence of more elements of small norm.

Example: In Z[v/7], we seemingly have a non-unique factorization 6 = (1++/7)(—1++/7) = 2-3, but in
fact none of 1+£+/7, 2, and 3 are irreducible: we have 2 = (3+/7)(3—V/7), 1 £/7 = (3£ V7)(-2+£V7),
and 3 = (2 + v7)(—=2 + V/7), and so we can see that our factorizations of 6 both reduce to different
arrangements of 6 = (3 +v/7)(3 — V7)(2 + V7) (=2 + V7).

We can still find examples of non-unique factorizations in real quadratic fields, however.

Example: In Z[v/10] we have 2-3 = 6 = (24++/10)(2—+/10), and in fact 2, 3, and 24++/10 are all irreducible
since there are no elements in Z[v/10] of norm +2 or +3 (as can be seen by reducing a? — 10b? = +2, +3
modulo 5).

The presence of additional units in real quadratic fields also adds some additional complications.

Example: In Oy /5, we can observe that 4 = 2-2 = (1+ V/5)(—1+4+/5) and that both 2 and +1 ++/5 are

irreducible (as there are no elements of norm +2, similarly to in Z[v/10]). But in fact these factorizations
145 1+5
5 an

are equivalent, since 1 ++/5 =2 - d € O /5 is a unit (its norm is —1).

2

e Analyzing factorizations of higher-degree rings of integers is, if anything, even more difficult, since the norm
functions even in the case of cubic fields are substantially more complicated.

o

o

For instance, in the ring of integers Z[¥/2] of Q(+¥/2), the norm is N (a-+b+/2+cV/4) = a®+2b%+4c* —6abe.
We can certainly use the norm to identify some irreducible elements: for instance, ¥/2 and 1+ /2 are
both irreducible since their norms are 2 and 3 respectively.

But it is much harder to try to decide (for instance) whether the elements 5 and 7 of respective norms
53 and 7% are irreducible. In fact, 5 is reducible (it factors as 5 = (1 4+ /4)(1 +2- ¥/2 — ¥/4)) but as it
turns out, 7 is irreducible (though this is not so easy to prove!).
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0.11 (Sep 26) Dedekind Domains

e It would appear that we are essentially at an impasse regarding factorization of elements. However, shifting
our focus instead to ideals, we will be able to show that Ok does always possess unique prime factorization
on the level of ideals, rather than elements.

o In fact, this is where the name “ideal” originally arose: in Kummer’s study of unique factorization, he
constructed “ideal numbers” (essentially as sets of linear combinations of elements of O ) and proved that
they did possess unique prime factorization. These “ideal numbers” were the prototype of the modern
definition of an ideal.

o To illustrate using an example from above, the element 6 € Z[/—5] has two different factorizations into
irreducibles, which we can recast using ideals: (6) = (2)-(3) = (1 ++v/=5) - (1 —+/=5).

o However, as ideals, we can factor further: explicitly, one can verify that (2) = (2,1 + /=5)?, that
(14++/=5)=(2,1++/=5)- (3,1 £+/-5), and that (3) = (3,1 ++/-5) - (3,1 — v/=5).

o For an example of one of these calculations: we have (2,1 + v/=5) - (3,1 ++/~=5) = (6,2 + 2v/-5,3 +
3v/—5,—4+2y/—5). We can reduce the generating set by observing that this ideal contains (34 3+v/—5) —
(2+2v/—5) = 1++/—5, and that each of the four generators of the product ideal is a multiple of 1+ +/—5:
thus, in fact, (2,14 v/=5) - (3,1 ++v/=5) = (1 + v/=5), as claimed. (The other calculations are similar.)

o On the level of ideals, therefore, we see that these two factorizations are really “the same” both of them
reduce to the factorization (6) = (2,1 ++/—5)%- (3,1 ++v/=5)- (3,1 —/=5).

o Furthermore, each of the ideals (2,14 v/—5), (3,1 ++/—5), and (3,1 —+/—5) is prime (the quotient ring
of Z[v/—5] by each is isomorphic to Z/2Z, 7./3Z, and Z/3Z respectively).

e QOur goal is to show that the behavior in the example above holds in general: namely, that we can write any
nonzero ideal in Ok as a product of prime ideals, and that this factorization is unique up to rearrangement.

o For no additional cost, however, we can show the same results in the broader class of rings known
as Dedekind domains (which were, historically, analyzed by Dedekind for precisely these reasons of
understanding the class of rings possessing unique ideal factorization).

o To motivate the definition of a Dedekind domain, we make some basic observations about the rings Ok.
e Proposition (Ring Properties of Ok): Let K be a number field of degree n over Q with ring of integers Ok.

1. Every ideal of Ok is finitely generated, which is to say, Ok is Noetherian.

o Proof: We already showed this result earlier in our discussion of the additive structure of Og: any
ideal is an additive subgroup of the free rank-n abelian group Ox hence is finitely generated as a
group (thus also certainly as an ideal).

o Exercise: If R is an integral domain, show that the following are equivalent:
(a) Every ideal of R is finitely generated.

(b) Every ascending chain I; C I, C --- C I, C --- of ideals of R is eventually constant (i.e., there
exists N such that I,, = Iy for all n > N).

(c) Every nonempty collection S of ideals of R contains a maximal element (i.e., an ideal I such
that if J € S has I C J then J =1).
2. Ok has Krull dimension 1, which is to say, every nonzero prime ideal of O is maximal.

o Recall that the Krull dimension of a ring is the maximum length of a chain of prime ideals, so saying
that the Krull dimension is 1 is equivalent to saying that nonzero prime ideals are maximal and that
the ring is not a field.

o Exercise: Show that a finite integral domain is a field.

o Proof 1: We show that if I is a nonzero ideal of Ok, then Ok /I is finite.

o Let a € I be nonzero and let m = Ng /g(a); note m is a nonzero integer. Then m/a is an algebraic

integer (being a product of Galois conjugates of o with one « excluded) and is in K, hence it is some
B8€ Og. Thenm=ap e I.
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o Then since [ is an ideal we have mOg C I, and so choosing an integral basis 1, . .., 8, for Og we see
that I contains the order mQOg with basis mfy,...,mfB,. Then [Ok : I] divides [Ok : mOg] = m™,
which is finite, so Ok /I is finite (and indeed has cardinality dividing m™).

o To finish, if now P is a nonzero prime ideal, then Ok /P is a finite integral domain by the above, so
by the exercise it is a field. This means P is maximal, as claimed.

o Exercise: Suppose S is an integral ring extension of the commutative ring R with 1 (i.e., every
element of S is the root of a monic polynomial in R[z]).
(a) Show that if @ is a prime ideal of S, then P = Q N R is a prime ideal of R.

(b) Show that if S is a domain then R is a field if and only if S is a field. [Hint: Use the monic
polynomial satisfied by a nonzero element to construct an inverse for it.|

(¢) Show that an ideal @ of S is maximal in S if and only if P = @ N R is maximal in R. [Hint:
Note S/Q is an integral extension of R/P.]
o Proof 2: Essentially by definition, we see that O is an integral ring extension of Z.

o Then if @ is any prime ideal of Ok, by the first part of the exercise we see that Ok NZ is a prime
ideal of Z which is necessarily of the form (p) for some prime p since Ox N Z is nonzero.

o But (p) is a maximal ideal of Z, so by the third part of the exercise, that implies @ is a maximal
ideal of Ok, as desired.

3. The ring O is integrally closed in its field of fractions K.

o We have previously noted (as an exercise) that the field of fractions of Ok is K. (It is quite obviously
contained in K.)

o Exercise: Suppose that R is a commutative ring with 1 and S is a ring containing R. Recall that
the integral closure of R in S consists of the elements of S containing R, and R is integrally closed
when its integral closure is just R itself.

(a) Show that the integral closure of R in S is a subring of S containing R. [Hint: If s, ¢ are integral
over R, then R[s] and RJ[t] are finitely-generated R-modules, hence so is R[s,t].]

(b) Show that the integral closure of R in S is integrally closed in S. [Hint: Show that integrality is
transitive.|

o Proof 1: By definition, O is the integral closure of Z in K. But by the second part of the exercise
above, the integral closure is integrally closed.

o We can also give a more explicit argument (which really is embedded in the general argument above):

o Proof 2: Suppose « is in the integral closure of Ok: then « is the root of some monic polynomial
with coefficients in Oy, say with a? 4+ B4_1a?"t 4+ .. 4+ By = 0 for some f; € Ok.

o Then the ring R = Z[fo,. .., 4—1] is a finitely-generated Z-module (since indeed it is contained in
Ok), and Z[a] is a finitely-generated R-module (since is generated by {1,a,...,ad"1}).

o We deduce that Z[a, 5o, ...,B4—1] and hence Z[a] is therefore a finitely-generated Z-module, and
this implies « is an algebraic integer. So, « is an algebraic integer in K whence o € Ok

e In the proposition above, we have proved that the ring of integers Ok is a Noetherian, integrally closed domain
in which nonzero prime ideals are maximal. We now consider this more general class of rings:

e Definition: A Dedekind domain is a Noetherian, integrally closed domain in which nonzero prime ideals are
maximal.

o Our proposition above shows that the ring of integers of a number field is a Dedekind domain.
o Exercise: Show that principal ideal domains are Dedekind domains. [Hint: Use the general fact that
UFDs are integrally closed.]

e QOur goal now is to establish that in a Dedekind domain, every nonzero ideal can be written as a product of
prime ideals (with the usual convention that the empty product represents the entire ring).

o It is possible to give a more direct approach for this, but we will first develop some facts about fractional
ideals, since the notion of a fractional ideal allows us to state some useful alternative characterizations
of Dedekind domains.
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e Definition: Let R be an integral domain with fraction field K. A fractional ideal of R is an R-submodule of

0.12

K of the form A = d—'I for some nonzero d € R and some ideal I of R.

o Equivalently, a fractional ideal is an R-submodule A of K such that dA C R for some nonzero d € R.

(This definition is equivalent to the one above because dA is then an R-submodule of R, which is to say,
an ideal I of R, and then A = d'1.)

o Example: The fractional ideals of Z are the Z-modules of the form 22 for integers ¢ and d. More

generally, if R is any PID, then the fractional ideals are the sets gR where ¢, d € R.

o Any ideal of R is a fractional ideal of R, with d = 1. (For emphasis we can call them “integral ideals”.)

o We have a natural notion of the product IJ of two ideals I and J: namely, as the set IJ of all finite

sums 1187 + - -+ + 7S, where each r; € I and s; € J. This notion extends easily to fractional ideals by
taking (d=1I)(e71J) = (de)~11J.

o The ring R = 17 'R serves as a multiplicative identity under this product operation on fractional ide-

als, and since products are obviously associative and commutative, the set of fractional ideals forms a
commutative semigroup under multiplication.

o The invertible elements in this semigroup are the invertible fractional ideals: in other words, the fractional

ideals A such that there exists another fractional ideal B with AB = R.

o The utility of invertible fractional ideals is that they allow us to do cancellation when we have statements

involving products of integral or fractional ideals, and (as such) arise very naturally in the proof of
uniqueness of ideal factorizations.

(Sep 30) Ideal Factorization in Dedekind Domains

e We can establish some basic properties of fractional ideals:

e Proposition (Fractional Ideals): Let R be an integral domain with fraction field K, and let A be a fractional

ideal of R.

1. If A is invertible, then the inverse of A is unique.

o Proof: If AB = AC = R, then B= BR = B(AC) = (BA)C = (AB)C = RC =C.

2. For any nonzero x € R, the principal fractional ideal zR is invertible with inverse 2~ R.

o Proof: We have (zR)(z7'R) = (zz7')RR = R.

3. If A+#0, then the set A’ = {r € K : zA C R} is a fractional ideal of R, and AA" C R.

o Proof: It is easy to see that A’ is an R-submodule of K, since it contains 0 and is closed under
subtraction and R-scaling.

o Furthermore, for any nonzero d € A we see that dA’ C R, so dA’ is an R-submodule of R (i.e., an
ideal I), and then A’ = d~'I, so A’ is a fractional ideal.

o Finally since dA’ C R for any d € A that means AA’ C R.

4, With A’ = {z € K : A C R}, A is invertible if and only if AA’ = R, and in that case A=1 = A’.

o Proof: If A is invertible with AB = R, then B C A’ by definition of A’; then R = AB C AA' C R
so we have equality everywhere hence AA’ = R.
o Conversely, if AA’ = R then by definition A is invertible with inverse A= = A’.

5. Invertible fractional ideals are finitely generated.

o Proof: If A is invertible then by (4) we have AA’ = R. Thus there exist some aq,...,a; € A and

al,...,a), € A" with a1a] +--- + agaj, = 1.
o Then for any a € A we have a = (aa})a; + - - - + (aa},)ar, and each term aa; € R by definition of A’.
Hence a is an R-linear combination of aq,...,ax, meaning that a1, ..., a; generates A.

6. The invertible fractional ideals of R form an abelian group under multiplication.

o Proof: Obvious from the above discussion, (2), and the fact that (AB)~! = B~tA~%
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e It is natural to ask: for which rings are all of the nonzero fractional ideals invertible? In fact, these are
precisely the fields (rather trivially) and the Dedekind domains:

e Proposition (Invertible Fractional Ideals): Suppose R is an integral domain with fraction field K # R. If
every nonzero fractional ideal of R is invertible, then R is a Dedekind domain.

o

Exercise: If R is a Noetherian integral domain, show that fractional ideals of R are the same as finitely-
generated R-submodules of K. [Hint: Put things over a common denominator.|

Exercise: Suppose P is a prime ideal of an integral domain and IJ C P for some ideals I and J. Show
that I C P or J C P. (Note that this property is the ideal analogue of the prime divisibility property
plab implies p|a or pl|b.)

Proof: Suppose that every nonzero fractional ideal of R is invertible. Then since invertible fractional ide-
als are finitely generated as we have already shown, in particular every integral ideal is finitely generated,
so R is Noetherian.

To show R is integrally closed, suppose « € K is integral over R. Cousider the ring R[«]: it is a finitely
generated R-submodule of K because « is integral over R, so by the first exercise above, it is a fractional
ideal of R, hence invertible by hypothesis.

But now observe that R[a]? = R[a] because R[] is a ring. Since R[a] is invertible, multiplying by its
inverse then yields immediately that R[a] = R, whence o € R and so R is integrally closed.

Finally, suppose P is a nonzero prime ideal, and consider a maximal ideal M containing P.

Then by hypothesis M is invertible, in which case we see that PM~! C MM~ = R. Therefore PM !
is some ideal of R, say I, and multiplying by M yields P = M.

Then by the second exercise above, we see that I C Por M C P. If I C P multiply PM~' C P by P!
to see M~! C R whence R C RM = M, which is impossible because M is maximal (hence not equal to
R). We must therefore have M C P, and so P = M is maximal.

e Our goal now is to analyze the factorization of ideals in Dedekind domains with the ultimate goal of showing
that every nonzero ideal can be written uniquely as a product of prime ideals.

e Theorem (Ideal Factorizations): Let R be a Dedekind domain with fraction field K # R.

1.

2.

If I is any nonzero proper ideal of R, then there exist prime ideals Py, ..., Py of R such that P;--- P, C
ICPN--NPF.
o Proof: Suppose otherwise and let F be the set of all nonzero proper ideals of R that cannot be so
written.

o Then since R is Noetherian, F contains some maximal element I. Clearly I cannot be prime since
otherwise we could take I C I C I.

o Since I is not prime, there exist some r, s € R such that rs € I but r,s & I.

o Now let I, =T+ (r) and Iy = I + (s), and observe that I,.J; = I + (rs) = I and I C I, N I, so
LI, CICI.NI.

o Furthermore, I, and I are clearly nonzero, and they are proper since if one of them were equal
to R then their product would simply be the other, but neither I,. nor I is contained in 7 by the
assumption that r,s & I.

o Therefore, I, and I, are nonzero proper ideals of R properly containing I so they are not in F:
therefore, there exist prime ideals P;,..., P, and Q1,...,Q; with P, --- P, C L. C P N---N P, and

Qi QCLCQinN:---NQs.
o But then Py -- - PQ1--- Qi CICPN---NP.NQiN---NQs, so in fact I does have the desired
property, contradiction. So all ideals have the claimed property.
Every nonzero prime ideal of R is invertible (as a fractional ideal).
o Proof: Let P be a nonzero prime ideal of R. For any nonzero a € P, by (1) there exist prime ideals
Py, ..., P, of Rsuch that P;--- P, C aR.

o Observe that because a € P and P is prime, at least one of the P; must contain P, but since nonzero
primes are maximal, that means P; equals P; without loss of generality take P; = P.
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e}

Now choose a in such a way that & is minimal. If £k = 1 then we have P C aR so since P is maximal
and aR is proper we have P = aR and thus P is invertible with inverse a 'R (as we have previously
noted, principal ideals are invertible).

Now assume k > 2. We have P(Py---P;) C aR and by minimality the product Ps--- Py is not
contained in aR, so let b € Py--- P;,\aR. Then b ¢ aR so that ba~! ¢ R.

Also, Pb C PPy --- P, C aR whence (ba~!)P C R. Recalling our definition P’ = {z € K : P C R},
we therefore have ba=! € P’. Since ba~! ¢ R and clearly R is contained in P’ (since RP = P) this
means P’ is strictly larger than R.

But now consider PP’: it is an ideal of R that contains P (since 1 € P’), so it is either P or R. If
it were P, then PP’ = P would imply P(P’)™ = P for all n > 1 by a trivial induction.

Then for any nonzero z € P and y € P'\R we would have zy"™ € P C R for all n, which would imply

zR[y] C R and hence that xR[y] is some ideal of R.
Then since R is Noetherian, this ideal is finitely generated (say by a1, ..., a,,) and then the R-module
R[y] would also be finitely generated (by z~'ai,...,2 ta,,): but this says y is integral over R, so

since R is integrally closed, we would have y € R, contradiction.
Therefore we must have PP’ = R and so P is an invertible fractional ideal, as claimed.

3. Every nonzero proper ideal of R is a product of prime ideals.

(e]

Proof: By (1), for any nonzero proper ideal I there exist prime ideals Py, ..., Py such that Py --- P, C
I. We show the result by induction on k.

The base case k = 1 is easy: if P; C I then since P; is maximal and [ is proper we have P; = 1.
For the inductive step now suppose k£ > 2 and let M be a maximal ideal containing I. Then by the
same argument as in (2) above, M must equal one of the P;; without loss of generality take M = P;.
By (2), M is invertible; multiplying by M ~! yields Py--- P, C M~ I C M~'M = R.

Thus, M~'I is an ideal of R that contains the product Ps--- P, so by the induction hypothesis
it has some prime ideal factorization M~1] = Q1 ---Q;. Then I = M@ ---Q; is a prime ideal
factorization of I.

4. Every nonzero fractional ideal of R is invertible.

(e]

o

o

Proof: From (2) and (3) we see every nonzero integral ideal is invertible.
Then for any fractional ideal d~ 11 we see that (d~1I)I~!(dR) = R, so d~'I has an inverse I~ 1(dR).

Remark: Earlier we showed that if every nonzero fractional ideal is invertible then R is a Dedekind
domain. This result supplies the converse statement.

5. Every nonzero ideal of R can be written uniquely as a product of prime ideals, up to reordering.

o

Proof: Clearly (3) shows existence of such a factorization. So now suppose we have two factorizations
of a nonzero ideal I = Py -+ P, = Q1 - - - Q;; we show uniqueness by induction on k.

The base case k = 0 is trivial, since the empty product R cannot be written as a product of one or
more prime ideals, since such a product is a proper ideal of R.

For the inductive step now suppose that products of k — 1 prime ideals have unique factorization
and suppose I = Py --- P, = Q1 ---Q;. Then Q1 ---Q; = Py --- P, C P; hence since Pj, is prime, one
of the @; is contained in Pj; by reordering suppose it is ;.

But nonzero primes are maximal, so since P, and (); are nonzero and prime, in fact we must have
P, = Q.

By (2), P is invertible, so multiplying by P, ' yields Q1+ Qi1 = Q; ' = P, 'I = Py -+ Py_1,
and now applying the inductive hypothesis to the ideal J = P;--- Py_1 = Q1 ---@Q;—1 yields the
result immediately.

Exercise: If I is a nonzero ideal of a Dedekind domain R, show that I can be written uniquely in
the form I = [[p e P Where the product is taken over all prime ideals of R and the a; are
nonnegative integers only finitely many of which are positive.

Exercise: Show that the group of fractional ideals in a Dedekind domain is a free abelian group
generated by the nonzero prime ideals.

6. For any ideal I of R, there exists some nonzero ideal J of R such that I.J is principal.

o

Proof: If I = 0 the result is trivial, so assume [ is nonzero.
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o Then by (4), considered as a fractional ideal of R, I is invertible, say with some fractional ideal
inverse d~'.J. Then I(d~'J) = R, which is to say, IJ = (d). (Note of course J is nonzero, since
I(d='0) =0.)

7. A Dedekind domain is a principal ideal domain if and only if it is a unique factorization domain.
o Proof: Any PID is a UFD so the forward direction is immediate. (Alternatively, we could simply

apply (5), since if R is a PID then ideal factorizations are the same as element factorizations, up to
associates.)

o Now suppose that R is a UFD. Since the zero ideal is principal and every nonzero ideal is a product
of prime ideals by (3), it suffices to show that every prime ideal is principal.

o So let P be a prime ideal; by (6) there exists some nonzero ideal J such that PJ = (a) is principal.

o Let a have unique factorization a = p; -- - py for some irreducible elements p;,...,pr € R. Then
since irreducibles are prime in a UFD, each of the ideals (p;) are prime, and so we have the equality

PJ = (p1)--- (px)-

o Hence by uniqueness of prime ideal factorizations (5), we must have P = (p;) for some 4, and so P
is principal, as desired.

e We can see from the last item in the proposition above that every example of non-unique factorization of
elements in a Dedekind domain, ultimately, arises from the presence of nonprincipal ideals.

o This explains the behavior we observed in our earlier examples of non-unique factorization in the various
rings of integers Ok: the existence of nonprincipal ideals in these rings leads directly to the failure of
unique factorization, and inversely.

0.13 (Oct 2) Ideal Divisibility in Dedekind Domains

e Now that we have established that Dedekind domains have the properties that every fractional ideal is invert-
ible and every nonzero ideal has a unique prime ideal factorization, let us establish some other properties of
ideals.

o In keeping with our goal of establishing ideal analogues of properties of elements, we can easily develop
the basic properties of ideal divisibility.

e Definition: If A and B are ideals of an integral domain R, we say that A divides B and write A|B when there
is some ideal C of R such that B = CA.

e Proposition (Ideal Divisibility): Suppose A and B are ideals of a Dedekind domain R.

1. We have A|B if and only if B C A.
o This property is often phrased as “To divide is to contain”: A divides B precisely when A contains
B.
o Proof: If A|B then B=CA C A.

o Conversely, if B C A then since B is invertible, as fractional ideals we have B~'A C B~'B = R and
therefore B~1A = C is some ideal of R: then A = CB so A|B.

o Exercige: If A is any ideal in a Dedekind domain R, show that there are only finitely many ideals of
R that contain A.

2. We have A|B and B|A if and only if A = B.
o Proof: Obvious from (1).

3. For ideals A and B we say that D is their ideal ged if D|A and D|B, and also for any other common
ideal divisor D’ with D’|A and D’| B, we have D’|D. The ideal gcd exists and is unique, and it is equal
to the ideal sum A + B.

o Proof: By (1), D is an ideal gcd of A and B precisely when D contains both A and B, and for any
other D’ containing both A and B, we have D C D’.

o But the sum ideal A + B is the smallest ideal of R containing both A and B, so it satisfies the
requirement of being a ged.
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o Uniqueness follows from (2) since two geds would divide each other.

4. For ideals A and B we say that L is their ideal lem if A|L and BJ|L, and also for any other common
multiple I’ with A|L’ and B|L’, we have L|L’. The ideal lcm exists and is unique, and it is equal to the
ideal intersection AN B.

o Proof: By (1), L is an ideal lcm precisely when L is contained in both A and B, and for any other
L’ contained in both A and B we have L' C L.

o The intersection ideal A N B clearly has this property, and uniqueness follows from (2) since two
lcms would divide each other.

5. If A and B have prime ideal factorizations A = P{"* --- P'* and B = P P,fk where the P; are distinct
prime ideals, then A|B if and only if a; < b; for each .

o Proof: If a; < b; for each 4, then taking C'= P;* --- P.* with ¢; = b; — a; yields B = CA.

o Conversely, if B = CA then if C has prime ideal factorization P;*---P.* (we may assume the
factorization has this form by adding additional prime ideals with exponent zero in the expressions
for A and B if necessary), then by uniqueness of factorizations we necessarily have ¢; = b; — a; and
so a; < b; for each 1.

6. If A and B have prime ideal factorizations A = P{* --- P and B = P}* - -- P,i”“ where the P; are distinct
prime ideals, then ged(A, B) = P (@000 pmin(abi) g g jem(A, B) = pprax(enty) .. pmax(asbe),

[e]

Proof: By (5) we see P™(@1:b0) . P,zni“(a’“b’“) is a common divisor of A and B.

oIf D= Pld1 -~P,f’° is any other common divisor, then by (5) we see that d; < a; and d; < b; hence
min(a1,b1) Pmin(ak,bk)
k

d; < min(a;, b;), hence by (5) again that means D divides P;
in fact the ged.

, so this ideal is

o The lem statement follows analogously.
o Exercise: For any ideals A and B in a Dedekind domain, show that AB = (A + B)(A N B).

7. We say ideals A and B are relatively prime when gcd(A4, B) = R. Two ideals are relatively prime if and
only if they are comaximal (i.e., A+ B = R) if and only if AB = AN B.
o Exercige: If I and J are ideals in a commutative ring with 1, show that IJ C I N J, and also that if
I+J=Rthen IJ=1INJ.

o Proof: By (3) the statement gcd(A, B) = R is equivalent to A + B = R. The second equivalence
follows immediately from the exercise above.

e Let us now examine the quotient structure of a Dedekind domain by its ideals.

e Proposition (Quotients of Dedekind Domains): Let R be a Dedekind domain and A be an ideal of R.

1. If A has prime ideal factorization A = Py --- P'*, then R/A = (R/P{"") x --- x (R/P.*).

o Proof: This is simply an application of the Chinese remainder theorem for rings?. The statement
follows immediately from the observation that the prime powers P/ are pairwise relatively prime
(per their factorizations) and are therefore pairwise comaximal.

2. For any pairwise relatively prime ideals Ay, ... , A; of R and any elements r,...,r4 of R, there exists a
solution to the congruences x = r; (mod A4;) and the solution is unique modulo Ay, ..., A,.
o Note as usual the statement = r; (mod A;) means z —r; € A;.
o Proof: The result is immediate upon factoring each of the A; into prime powers and then applying
(1)-
3. If A is nonzero, then every ideal in the quotient ring R/A is principal.

o Proof: Equivalently, by the lattice isomorphism theorem, if B is any ideal containing A, then we
need to show that B = A 4+ bR for some b € B.

4The statement we use is as follows: let R be commutative with 1 and Iy, I, ..., I, be ideals of R. Then the map ¢ : R —
(R/I1) X (R/I2) x --- X (R/Iy) defined by p(r) = (r+ I, 7+ I2, ..., r+ I) is a ring homomorphism with kernel I NIo N---NI,. If
all of the ideals I, I2, ..., I, are pairwise comaximal, then ¢ is surjective and 1 NIoN---NI, = [112--- In, and thus R/(I1I2--- I) =

(R/I1) X (R/I2) x --- x (R/Iy).
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0.14

o Now, if B is an ideal containing A, then B|A. Thus, if A has prime ideal factorization A = P/ --- P,'*
then B must have a factorization B = Plb1 e P,i”“ where each b; < a;.
o Now choose any r; € Pib'i\Pib'“|r1 (such an element exists because Pibf = Pibi‘”'1 would contradict

unique factorization) and let b be a solution to the simultaneous congruences b = r; (mod P ") for
each 4, which exists by (2).

o Then we see immediately that P/’ is the exact power of P; dividing b, and so gcd(bR, A) = B. But
the ideal gcd is simply the sum, and so we have B = A + bR, as claimed.

4. If A is nonzero, then for any nonzero a € A there exists some b € A such that A = aR+bR. In particular,
every ideal of R is generated (as an ideal, or equivalently as an R-module) by at most two elements.

o Proof: The first statement follows immediately upon applying (3) to the ideals A = aR and B = R.

o The second statement is immediate since the zero ideal is principal and any nonzero ideal is of the
form A = aR + bR = (a,b) in the usual notation for ideals.

(Oct 3) Ideal Norms, Primes in Extensions

e We can also make some observations about the cardinality of the quotient ring of a Dedekind domain by an

ideal I:

e Definition: For an nonzero ideal I of a Dedekind domain R, we define the ideal norm N (I) to be the cardinality

of the quotient ring R/I (equivalently, the index [R : I]). For completeness we also define the norm of the
zero ideal to be 0.

o In general, the ideal norm in arbitrary Dedekind domains can be infinite, such as for R = F[t] and I = ()
where F' is any infinite field.

o However, when R is the ring of integers in a number field, as we have shown previously, the quotient R/I
is finite whenever I is a nonzero ideal.

e Proposition (Ideal Norms): Suppose R is a Dedekind domain.

1. If P is a nonzero prime ideal of R, then for any nonnegative d, the quotient ring P?/P*! is isomorphic
as an additive abelian group to R/P.

o Exercise: Let R be an integral domain and let M be a maximal ideal of R. For any d > 0, show that
M?/M*! is an R/M-vector space.

o Proof: Let a € P¥\ P4*! and consider the additive group homomorphism ¢ : R — P?/P*! given

by o(r) = ar + PI+1,

Note (immediately from prime ideal factorizations) we have ged(aR, P*!) = P9, which is to say,

aR + P! = P? This observation immediately implies that ¢ is onto, since for any t € P? it says

there exists some s € R such that as + P! = ¢ 4 pdtl,

Additionally, for » € R, since the largest power of P dividing (a) is P? by construction, we see

rekeryp < arc P «— Pl divides (a)(r) <= P divides (r) <= r € P.

Therefore, by the first isomorphism theorem, ¢ descends to an isomorphism from R/P to P?/P+!,

as desired.

[}

o

o

2. For any nonzero prime ideal P, we have [R: P4] = [R : P]%.
o Proof: By (1) each of the quotients R/P, P/P?, ... , P4~1/P% is isomorphic as an additive group
to R/P, so they all have the same cardinality as R/P.
o Taking indices and using multiplicativity yields the result immediately.
3. The ideal norm is completely multiplicative: N(IJ) = N(I)N(J) for all ideals I and J.
o Proof: If I or J is zero the result is trivial.
o Otherwise, by the Chinese remainder theorem, if I = P/ --- P;* then N(I) = N(P/")--- N(P.*),

and by (2) we see N(P{*") = N(P)% for any P;. The result then follows immediately upon multiplying
the prime ideal factorizations of I and J and taking norms.
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4. If R = Ok is the ring of integers of a number field K, then for any o € Ok, for the ideal I = (o)) = aOg
we have N(I) = [Nk q(c)|: thus, our use of the word “norm” here agrees with our earlier usage.

o Proof: Let 1, ..., 8, be an integral basis of O. Then afy, ..., aB, is an integral basis of I, so by our
earlier results on discriminants we immediately have discg /g (a1, ..., aB,) = N(I)ZdiscK/@ (B1y--, Bn)-

oi(af) o oiaBy) [T | ol@)on(B) o or(@)oi(Ba) [
o But disck/g(api,...,ab,) = =
on(afr) - on(afn) on(@)on(B1) -+ on(@)on(Bn)
ol(B) - o) |
on(a)? : = Ng o) disck g(B1s - -, Bn)-

Un(ﬂl) Un(/Bn>

o Therefore, since N(I) is nonnegative, we see N(I) = |Ng/g(a)| as claimed.

0’1(04)2 L.

e Now that we have established many useful facts about the ideal structure in Dedekind domains, let us return
back to use these tools to study the ideals in rings of integers of number fields.

o So far we have established the existence of prime ideal factorizations, but we would like to be able to
compute these factorizations explicitly.

o Of course, even in Z, actually computing prime factorizations efficiently is a difficult computational
problem, so we should not expect to find any factorization procedures that operate more effectively than
integer factorization.

o Since the ring of integers O is an integral extension of Z, its prime ideals all arise naturally from the
prime ideals of Z. For essentially the same effort, we can describe the behavior of primes for a general
extension L/K rather than simply for K/Q:

e Proposition (Primes in Extensions): Let L/K be an extension of number fields with respective rings of integers
O, and Ok.

1. If Q is a prime ideal of Oy, then QN Ok = P is a prime ideal of Ok, and the quotient Ok /P is a subring
of O1/Q.

o Proof: Consider the injection homomorphism ¢ : O < Op. Then QN Ok = = 1(Q) is an ideal of
Ok (inverse images of ideals are ideals), and ¢ therefore induces a homomorphism from Ok /p~1(Q)
to Or/Q which is clearly also injective.

o Since @ is prime, Or,/Q has no zero divisors, and therefore the subring O /¢ ~*(Q) also has no zero
divisors, so P = ¢~ 1(Q) is a prime ideal of Of.
2. If @ is a prime ideal of O and P is a prime ideal of O, the following are equivalent (when they hold,
we say @ lies over P and P lies under Q):
(a) Q divides PO, (b) @ contains PO,  (c) Q contains P (d) QNOx =P (e) QNK =P
o Proof: (a) and (b) are equivalent by the equivalence of divisibility and containment.

o (b) and (c) are equivalent since @ is an ideal of O and POy, is the smallest ideal of Of, containing
P.

o (d) obviously implies (c). For the converse note that if @ contains P then @ N Ok is an ideal of Ok
containing P and it cannot be all of Ok (since this would imply 1 € @), but since P is maximal this
forces the intersection to be P.

o Finally, (d) and (e) are equivalent because Q N K = Q N Ok since @ only contains algebraic integers
(explicitly, QNOx COQNK =(QNO)NK =QN0Ok.)
3. Every nonzero prime ideal @ of Op lies over a unique nonzero prime ideal P of Ok, and indeed P =
QNOk.
o Proof: This is immediate from (1) and (2) along with the observation that if o € ) is nonzero, then
Np/g(c) is a nonzero integer in @) hence also in P, so P is nonzero also.

4. Every nonzero prime ideal P of Ok lies under at least one prime ideal @ of Op. There are finitely many
primes @ lying over P, and they are the prime ideal factors in Oy, of POy .
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o Proof: All of this is immediate from the equivalences in (2) and the observation that POy, has prime
ideal factors since it is a proper ideal.

o For this, suppose that POp = O and consider the fractional ideal inverse P’ of P in Ok: it cannot
be an integral ideal, so choose any « € P’ that is not in O hence not an algebraic integer. Then
we would have aPOj, C aOy, C O, which is impossible since « is not an algebraic integer.

e Applying (4) in the proposition above to the situation K = Q, we see immediately that every nonzero prime
ideal of Oy, lies above a unique integer prime p, and these prime ideals of Oy, are precisely the prime ideal
factors of pOy,.

[¢]

We may therefore understand the prime ideals of O, by studying how the ideal pO;, = (p) factors in
Op. This is our next task.

e In some individual cases we can work out an essentially explicit description of the prime ideals in the ring of
integers using ad hoc methods:

e Example: Characterize the prime ideals in Z[i].

e}

(¢]

Since Z[i] is Euclidean and therefore a PID, ideal factorizations are equivalent to element factorizations.

If p is an integer prime then either (p) is already a prime ideal or p = rs has some nontrivial factorization.
In the latter case, taking norms yields p? = N(r)N(s) so since N(r) and N(s) must be greater than 1,
we must have N(r) = N(s) = p, in which case the elements r and s are both irreducible (hence prime,
hence generate prime ideals), so we get the factorization (p) = (r)(s).

Explicitly, for r = a + bi we see p = a® + b? is the sum of two squares, and conversely if p = a? + b? then
certainly p = (a + bi)(a — bi) so we get the ideal factorization (p) = (a + bi)(a — bi).

It remains to characterize these primes that are the sum of two squares (which was first done historically
by Girard and then followed later by Fermat): they are p = 2 and the primes congruent to 1 modulo 4.

Clearly 2 = 12 4 12 is the sum of two squares, so we obtain the ideal factorization (2) = (1 + i)(1 — ).

Note here that because 1+ 4 and 1 — 4 are associates, in fact (1 +14) = (1 —4), so as ideals we actually

have (2) = (1 +1i)2.

For odd primes p, if p = a? + b? then reducing modulo p and rearranging yields (a/b)?> = —1 (mod p)

so —1 must be a quadratic residue modulo p. But by Euler’s criterion we have the Legendre symbol
1

evaluation (‘7) = (—1)P=1/2 (mod p) which is only +1 when p = 1 (mod 4), so we must have p = 1
(mod 4).
In this situation, there exists an integer r with 7> = —1 (mod p). Then clearly p divides neither r + i
nor 7 — i in Z[i], yet it divides their product (r +i)(r —i) = 72 + 1, so p is not a prime element, hence it
must factor in Z[i] by the above.
We conclude that the prime ideals in Z[i] are as follows:

1. The ideal (1 + i), of norm 2, with (2) = (1 +i)2.

2. The prime ideals (p) of norm p? where p is a prime congruent to 3 mod 4.

3. The two ideals (a + bi) and (a — bi) of norm p where a? + b* = p is a prime congruent to 1 mod 4.
We mention also that the argument above gives an explicit way to compute the factorization of p in
Z[i] when p = 1 (mod 4): namely, find a solution to 7> = —1 (mod p), which can be done by taking

r = uP~D/% for any quadratic nonresidue u, and then observe that as ideals we have (p,r +1) = (a+ bi),
so we may find a + bi using the Euclidean algorithm to compute ged(p, r + ).

e Exercise: Show that the prime ideals of Z[v/—2] are as follows: the ideal (/—2), the ideals (p) where p is a
prime congruent to 5 or 7 modulo 8, and the two ideals (a + by/—2) and (a — by/—2) where a? +2b* = pis a
prime congruent to 1 or 3 mod 4.
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0.15 (Oct 7) Ramification Index and Inertial Degree

e The methods we used to identify the prime ideals in Z[i] and Z[v/—2] do not extend well to general rings of
integers: one obvious difficulty is that we made substantial use of the fact that those rings are principal ideal
domains, which many other rings of integers are not.

(e}

o

o

So let us pause for now our discussion of how to compute factorizations and return to the more abstract
question of understanding how primes decompose in extensions.

Exercise: If P is a prime ideal of Ok that lies above the integer prime p, show that N(P) is a power of
p.

Exercise: We have previously observed that an element o € O of norm +p for a prime p is irreducible.
Show in fact that such an element is prime.

e Definition: Let L/K be an extension of number fields. If @ is a prime ideal of Oy, lying above a prime ideal
P of Ok, the ramification index of Q over P, denoted® e(Q|P), is the largest power of @ that divides POy.

[¢]

More explicitly, if Q1,...,Q are the prime ideals of Op lying over P, then we have a factorization
PO, = Q7" ---Q}F: the ramification index e(Q;|P) is then simply the exponent e;.

Since @ lies above P if and ouly if @ divides POy, we see that e(Q|P) > 1. When e(Q|P) > 1 we say
that @ is ramified over P, and when e(Q|P) = 1 we say that @ is unramified over P.

Example: In Ok = Z[i], for the primes P = 2Z and Q = (1+i)Ox we have e(Q|P) = 2 since (2) = (1+1i)?2
in Z[i]. If p = 3 (mod 4) is a prime, then for P = pZ and Q = pOk we have e(Q|P) = 1. f p=1
(mod 4) is a prime with p = a? + b2, then for P = pZ, Q1 = (a + bi)Ok, and Q2 = (a — bi)O we have
e(@1|P) = e(Q2|P) = 1 since POk = (1Q2 and the two prime ideals Q; and Q2 are not equal.
Example: In Ok = Z[v/—5], as we have previously noted, each of the ideals P, = (2,1 ++/=5), P; =
(3,1+v/-=5), P, = (3,1—v/—=5), and Ps = (5,v/—5) = (v/—5) is prime (the quotient has prime cardinality
in each case). Since we also have (2) = P#, (3) = P3P;, and (5) = P2, we see that e(P|2) = 2,
e(Ps]3) = e(P4]3) = 1, and e(P5]5) = 2.

Exercise: Let p be a prime. Show that (1 — (,) is a prime ideal of Z[(,] that lies above p € Z. |Hint:
Z[Cp)/(1 = (p) is isomorphic to Z[z]/(1 — z, Dp(x)) ]

Example: In Ok = Z[(,], for Q = (1 — (,)Ok, noting that Q is a prime ideal lying above P = pZ by the
exercise above, we have e(Q|P) = p — 1 since (p) = (1 — (,)P~! in Z[(,), as noted in an earlier exercise.

e Definition: Let K be a number field and P be a nonzero prime ideal of Ok. The residue field associated to
P is the quotient ring O /P.

(¢]

Note of course that the residue field is indeed a field because P is maximal, and in fact it is a finite field
because the quotient ring by a nonzero ideal is finite (as we have shown previously).

Therefore, to understand the structure of the residue field (up to isomorphism), we really just need
to determine its cardinality, since there is only one finite field of any given prime-power order (up to
isomorphism).

Example: In Z[i], the residue field for (1 + ) is Z[¢]/(1 + ¢) which is isomorphic to Fa, the residue field
for (p) for a prime p = 3 (mod 4) is Z[i]/(p) which is a field of cardinality p? hence is isomorphic to F 2,
and the residue field for (a £ bi) where a? +b? = pis a 1 mod 4 prime is Z[i]/(a + bi) which can be shown
to have cardinality p, hence is isomorphic to F,,.

Example: In Ok = Z[V/=5|, again with P, = (2,1 + v/=5), Py = (3,1 4+ v/=5), P{ = (3,1 — /=5), and
Ps = (v/=5), the residue field for P, is isomorphic to Fa, the residue fields for Py and P} are isomorphic
to F3, and the residue field for Pj is isomorphic to Fs.

Example: In O = Z[({p], with Q = (1 — (,)Ok, the residue field of @ has cardinality p hence is
isomorphic to F,,.

Notice in all of the examples that the residue field of each prime ideal P was an extension of the field
I, where p is the prime of Z lying below P. In fact, a more general observation holds in any extension
L/K of number fields.

5For notational convenience, when P = (p) = pZ is an ideal of Z we will simply write e(Q|p).
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o Explicitly, if @ is a prime of Of, lying over P in O, then because QNOx = P, if we compose the injection
Ok — Oy, with the projection O, — O /Q, the kernel of this composition is simply Ox N Q = P, and
therefore we have a natural injection of Ok /P into OL/Q.

e Definition: Let L/K be an extension of number fields. If @) is a prime ideal of Oy, lying above a prime ideal
P of O, the inertial degree of Q over P, denoted f(Q|P), is the field extension degree of O /Q over Ok /P.

o Example: In Z[i], for P, = (1 + i) we have f(P2|(2)) = 1, for a prime p = 3 (mod 4) and P = (p) we
have f(P|(p)) = 2, and for the prime ideals P = (a + bi) and P’ = (a — bi) where a? + b> = p is a 1 mod
4 prime we have f(P|p) = f(P'|p) = 1.

o Example: In Ok = Z[\/=5], again with P, = (2,1 ++/=5), P3 = (3,1 ++/=5), P = (3,1 — v/=5), and
Ps = (V=5), we have f(P2|2) =1, f(P3|3) = f(P%]3) = 1, and f(P5]5) = 1.

o Example: In O = Z[(,], with Q = (1 — (,)Ok, we have f(Q|p) = 1.

e Let us now establish some properties of the ramification index and inertial degree.

o Exercise: Let L/K/F be an extension tower of number fields with R a prime ideal of Of, lying over the
prime ideal @ of O lying over the prime ideal P of Op.

1. Show that the ramification index is multiplicative in towers: e(R|P) = e(R|Q)e(Q|P).
2. Show that the inertial degree is multiplicative in towers: f(R|P) = f(R|Q)f(Q|P).

e Theorem (The ef-Theorem): Suppose L/K is an extension of number fields of degree m, where K/Q has
degree n.

1. Let P be a prime ideal of K lying over the integer prime p. Then N(P) = pf (Plp),

o Proof: By definition of the inertial degree, Ok /P is a finite field of degree f(P|p) over Z/pZ, so it
has cardinality p/(”IP). Then by definition, N(P) = [Ok : P] = p/(FIP).

o Exercise: More generally show that if @ is a prime ideal of L lying over P, then N.(Q) =
NK(p)f(Q\P),

2. Let p be an integer prime and suppose (p) has prime ideal factors Py, ..., P, in Og. Then Zle e(P;|p) f(Pilp) =
n=[K:Q).
o Proof: Suppose that p has prime ideal factorization pOg = P;* --- P* in Ok, where by definition
e; = e(P;|p).
o By (1), for fi = f(Pi|p) we have N(P;) = [Of : P;] = p¥i, so since the ideal norm is completely
multiplicative we see N(pOg) = N(Py)¢ --- N(Py)%* = pef1 ... pexfr,
o But since pOg = (p) is principal we also have N(pOg) = p™, so n =e1f1 + - - + e fr as claimed.

3. For any prime ideal P of O, we have [0, : POL] = [Ok : P|™. Equivalently, N;(POp) = Ng(P)LK]L

o Proof: Note that Oy, /POy, is a vector space over the finite field Ok /P (it is in fact a ring extension);
the claimed result will then follow by showing the dimension of this vector space is equal to m.

o First we show the dimension is at most m, so suppose that ai,...,nt1 € Op. Then since the
dimension of L over K is m, there exist (1,...,08m4+1 € K not all zero such that Sy + -+ +
Bm+10mi1 = 0.

o By rescaling we may take all of the 5; € Ok. Now let B be the ideal of Ok spanned by the 5;, which
is an invertible fractional ideal and therefore there exists some fractional ideal C' with BC' = Og.

o Choosing any ¢ € C such that ¢B is not contained in P, multiplying by ¢ yields (¢f1)a; + -+ +
(¢Bm+1)@m+1 = 0: now each of the coefficients is contained in BC' C Ok, and not all of them are
in P, so the reduction modulo P of this equality yields a nontrivial R/P-linear dependence of the
images @71, ...Qmy1 in O /POj,. Hence the dimension is at most n, as desired.

o For equality, suppose P lies over the integer prime p, and let pOg have prime ideal factorization
pOx = P --- P.*, where e; = e(P;|p).

o We have shown above that dime, /p, (Or/P;Or) < m = [L : K], and therefore by taking norms we
have Ni(P,OL) < Ng(P)™ = p™¥i by (1), where f; = f(B;|P).
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o Then we have pOj, = (P,Op)° - -+ (P,Op)%, and so taking ideal norms yields p™" = N (pOp) =
N(P,Op) -+ N(P,Op)% < pmlerfittenfe),

o But by (2) we have Zle eifi =n =[K :Q], so we must have equality everywhere above. Hence in
fact we have dimp, /p,(Or/P;Or) = m for all prime ideals P; above p, including P.

4. Let P be a prime ideal of Ok prime and suppose POy, has prime ideal factors Q)1,...,Qr in Op. Then
> e(QilP)f(QilP) =m = [L: K].

o Proof: Taking norms of the prime ideal factorization PO, = Q' - - - Q" where as usual e; = e(Q;|P)
yields NL(POL) = NL(Q1)€1 s NL(Qk)ek.

o By the exercise following (1) we have Np(Q;) = Nx(P)/: for f; = f(Q;|P), and by (3) we have
NL(POp) = Ng(P)™.

o Putting these together we see Ni(P)™ = N (P)*f1 ... Ng(P)®f* whence e1fi + -+ + exfx = m
as claimed.

e We can use the ef-theorem to classify the possible prime ideal factorization behaviors in extensions. The
simplest situation is the case of a quadratic extension:

o Suppose L/K is a quadratic extension of number fields. Then for any prime ideal P of O, we have a
prime ideal factorization of POr = Q7" --- Q. For f; = e(Q;|P), we then have e; f; +--- +erpfr = 2,
so since all of the e; and f; are positive integers, there are only three possibilities:

1. k=1, e; =2, fi = 1. In this case we say P is ramified: its factorization in Oy, is POy = Q? for
some prime ideal Q.

2. k=1,e; =1, fi = 2. In this case we say P is inert: effectively, P remains prime as we extend from
K to L, since its factorization is simply POy = POy,

3. k=2and e; = f; = ey = fo = 1. In this case we say P is split: its factorization PO = Q1Q2 splits
apart into several distinct prime ideals.

o Example: In Z[i], the prime 2 is ramified since (2) = (1 +4)?, the primes congruent to 3 modulo 4 are
inert, and the primes congruent to 1 modulo 4 are split since they factor as (p) = (a + bi)(a — bi) where
the two ideal factors are not equal.

o Example: In Z[y/—5], the primes 2 and 5 are ramified since (2) = (2,1+/=5)? and (5) = (v/—5)? while
the prime 3 is split since (3) = (3,1 + v/—5)(3,1 — v/—5) and the two ideal factors are not equal.

e In extensions of higher degree, we may obtain prime ideal factorizations that mix all of these various kinds of
behaviors. Some extremal cases of note in an extension of degree n are as follows:

1. We have k = 1, e; = n, fi = 1, in which case the prime ideal factorization is PO = Q". In this
situation we say P is totally ramified: it ramifies to the maximum extent possible.

2. We have k =1, e; =1, f; = n, in which case the prime ideal P remains prime in Op. In this situation
we say P is totally inert: its factorization does not change at all in the extension from K to L.

3. We have k = n and all e; = f; = 1, in which case the prime ideal factorization is POy = Q1Q2 - Q. In
this situation we say P is totally split: its factorization splits apart into the maximum possible number
of factors in the extension from K to L.

0.16 (Oct 9) Computing Prime Ideal Factorizations, I

e In order to give further examples, we need a more general procedure for computing ideal factorizations.
Consider first the simpler case of an extension K/Q where Ok has a power basis: i.e., where Ox = Z[a] for
some a.

o If m(x) is the minimal polynomial for a over Q, then Z[a] is ring-isomorphic to Z[x]/(m(x)) via the
association of a with z, since the evaluation homomorphism ¢, : Z[z] — Z[e] mapping = to « is clearly
onto and has kernel (m(z)) hence it descends to an isomorphism ¢ : Z[z]/(m(z)) — Zla].

o Suppose that P is a prime ideal of O = Z[«] that lies above the integer prime p. As we have shown
previously, for any nonzero element a of an ideal I in a Dedekind domain, there exists some other b in
that ideal with (a,b) = I. Applying this to a = p, we see that there exists some polynomial b(«) € Z[a]
such that P = (p,b(«)).
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Now using the isomorphism ¢, we obtain an isomorphism of Z[a]/(p) with Z[z]/(m(z),p). But by
the third isomorphism theorem, Z[z]/(m(x),p) is isomorphic to (Z[x]/p)/[(m(z),p)/(p)] = Fplz]/(m(z))
where m(z) represents the reduction of m(x) modulo p.

By the Chinese remainder theorem applied to the prime ideal factorization (p) = Pi*--- P.* in Ok
we have Z[a]/(p) = (Ok/P') x -+ x (Og/P;*), while applying it to the irreducible factorization
m(@) = fi(z)® - fi(x)" in Fp] yields Fyla]/(m(z)) = (Fylz]/fi") x - x (Fpla]/ fi").

The point now is that these two decompositions must be equivalent to one another, because the decom-
position of this finite ring into indecomposable factors, as obtained from the Chinese remainder theorem,
is unique. (More precisely, this follows from the structure theorem for modules over principal ideal
domains.)

Therefore, after rearranging the factors if necessary, we see that we must have k£ = [, and that the
isomorphisms must send F,[z]/(f;(z)%) to Ok /Pf* for each i.

Following the various isomorphisms from F,[z]/(m(x)) back to Z[a]/(p), we see that the polynomial
fi(z) € F,[z] generating the prime-power factor f;(x)% in the factorization of 7 (z) maps to the (prime)
ideal f;(a) 4+ (p) = (p, fi(«)) in Z[a]/(p), and therefore we should take P; = (p, f;(«)) and e; = d; for
each i.

In other words, to compute the factorization of (p) in O = Z[a], we factor the minimal polynomial m(z)
of @ modulo p as m(x) = f1(x)°* - - - fx(x)°* for distinct irreducibles f;(z) € Fp[z]: then for P; = (p, fi(a))
we have (p) = P{* --- Px.

We can also easily obtain the ramification index and inertial degree for each prime in these factorizations:

Exercise: Show that if Ox = Z[a] and the minimal polynomial m(x) of a factors modulo p as m(z) =
fi(@)er - fir ()%, then for P; = (p, fi(a)) we have e(P;[p) = e; and f(Pi|p) = deg(fi).

e Let us illustrate how these calculations work in the situation of the Gaussian integers, where we already know
the general answer:

e Example: For K = Q(¢), find the prime ideal factorizations of (2), (3), and (5) in Ok = Z[i].

(¢]

The minimal polynomial of o = i over Q is m(z) = 22 + 1, so we need to factor 2 + 1 modulo 2, 3, and
.

Modulo 2 clearly 22+1 = (z+1)? so we obtain the ideal factorization (2) = (2, 14+a)?. For P, = (2,1+a),
since 1 + « divides 2 we can see in fact that P, is principal and generated by 1 + «. Here, 2 is ramified,
since (2) = P2

Modulo 3 the polynomial z2 + 1 is irreducible, so P; = (3) is already a prime ideal of Of: 3 is inert,
with e(P3|3) = 1 and f(P5|3) = 2.

Modulo 5 we have 22 +1 = (2+2)(z+3) so we obtain the ideal factorization (5) = (5, a+2)(5, a+3). For
Ps = (5,a+2) since a+2 divides 5 we see Ps is principal and generated by 2+«. For P! = (5, a4+ 3) it is
not the case that a+3 divides 5 (the quotient is in fact (3—1)/2), but another element « —2 = («+3)—5
in the ideal does divide both generators, so P = (« — 2) is also principal.

We see that 5 is split: for both ideals Ps and P} we see that e(P|5) = f(P|5) = 1.

Remark: Of course, we already have shown that Z[i] is a PID (since it is Euclidean); the point is that

even when the prime ideals we obtain in our factorizations actually turn out to be principal, we may
have to do some amount of work to find a generator.

e Example: For K = Q(v/—5), find the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ox = Z[v—5].

e}

(¢]

(¢]

The minimal polynomial of a = /=5 over Q is m(x) = 22 + 5, so we need to factor 22 + 5 modulo 2, 3,
5,7, and 11.

Modulo 2 clearly 2 + 5 = (z + 1)? so we obtain the ideal factorization (2) = (2,1 + «a)? = PZ for
P, =(2,14+a)=(2,1++/-5): this means 2 is ramified. Additionally, P, cannot be principal, since if
P, = (B) then we would have N ,o(8) = Nk (P2) = 2, but there are no elements of norm 2 in Og.
Modulo 3 we have 22 +5 = (z—1)(z+1) so we obtain the ideal factorization (3) = (3,14+a)(3, —~1+a) =
PsPj for P3 = (3,1 + ) and P{ = (3,—1+4 o) = (3,1 — «): this means 3 is split. We see neither P; nor
P4 can be principal, since Ng(P3) = Nk (P4) = 3 but there are no elements of norm 3 in Ok.
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o Modulo 5 we have 22 +5 = x2 so we obtain the ideal factorization (5) = (5,a)? = P2 for Ps = (5,/=5),
so 5 is ramified. Since v/—5 divides 5 in fact Ps = (1/—5) is principal, as well.

o Modulo 7 we have 22 +5 = (z+3)(x — 3) so we obtain the ideal factorization (7) = (7,3+a)(7, -3 +a) =
P; P} for P, = (7,3 + «) and P, = (7,-3+ «) = (7,3 — a): this means 7 is split. As above, neither P;
nor P7 is principal since there are no elements of norm 7 in Ok.

o Finally, modulo 11 the polynomial 2% + 5 turns out to be irreducible, so (11) is itself prime, meaning 11
is inert in Ok.

e Exercise: Compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok for K = Q(v/—2),
Q(v/=3), and Q(v/5). Identify which primes ramify, split, and remain inert in each case.

e In higher-degree extensions, we can see additional kinds of behaviors:

e Example: For K = Q(4/2), find the prime ideal factorizations of (2), (3), (5), (7), and (31) in Ok = Z[V/2].

o The minimal polynomial of o = /2 over Q is m(z) = 2* — 2, so we need to factor z> — 2 modulo 2, 3,
5, and 7.

o Modulo 2 clearly z® — 2 = 22 so we obtain the ideal factorization (2) = (2, a)3. Here we can see that the
prime ideal P, = (2, v/2) is principal and generated by /2, and so we see that 2 is totally ramified in
OKZ 6(P2|2) = 3.

o Modulo 3 we have 23 — 2 = (z + 1)? so we obtain the ideal factorization (3) = (3,1 + «)3. In fact we can
check that 3 = (1 + «)(1 — a + o?) and so the ideal P; = (3,1 + «) is principal and generated by 1+ a.
We see likewise that 3 is totally ramified in Og: e(P3|3) = 3.

o Modulo 5 we have 2® —2 = (2 +2)(22 4+ 32 +4) so we obtain the ideal factorization (5) = (5,2+ ) (5,4 +
3a+ a?). For the ideal Ps = (5,2 + ) we have e(P5|5) = f(P5|5) = 1 whereas for P! = (5,4 + 3a + a?)
we have e(P5]5) = 1 but f(Ps|5) = 2. Here we see that 5 splits partially, but not completely, in Ok .

o Modulo 7 we can verify that 23 — 2 is irreducible, so P; = (7) is already a prime ideal of O . Here, 7 is
totally inert: f(P%|7) = 3.

o Modulo 31 we can check that 2 — 2 = (x — 4)(x — 7)(x + 11) so we obtain the ideal factorization
(31) = (31, — 4),(31,a — 7)(31, @ + 11). For the ideals Ps; = (31,a — 4), Pj; = (31,a — 7), and
P§; = (31, +11) we have e(F;|31) = f(P;]31) = 1 for each i. Here we see that 31 is totally split in Ok.

e Example: For K = Q(a) where a® + a + 5 = 0, compute the prime ideal factorizations of (2), (3), (5), (7),
and (97).

o The discriminant of 23 + z 4+ 5 is —4 — 27 - 52 = —7 - 97, so since the discriminant of « is squarefree by
an earlier exercise we know that Ox = Z[a].

o So, to compute the desired prime ideal factorizations, we simply factor the minimal polynomial x>+ x+5
modulo 2, 3, 5, 7, and 97.

o Modulo 2, the polynomial is irreducible, so 2 is totally inert and P» = (2) is prime: e(P2|2) = 1 and
f(P2[2) =3.

o Modulo 3 we have 23 +z+5 = (z+1)(2%+22+2) so we obtain the ideal factorization (3) = (3, 1+a)(3,2+
2a + a?). We see that 3 splits in O but not completely: for Py = (3,1 + «) and P = (3,2 + 2a + a?)
we have e(Ps3|3) = e(P4]3) = 1 and f(P5|3) = 1 while f(P4|3) = 2.

o To decide whether Pj is principal we can first try dividing 3 by 1 + «: using the Euclidean algorithm in
Q[z] we can determine that £(—2+4 x — 2?)(z + 1) + (5 + 2 + 2°) = 1 and thus substituting 2 = a we
see 3/(1+a) = -2+ a—a?. Thus, P3 = (3,1 + a) = (1 + «) is indeed principal, and then P} is also
principal with generator 3/(1 + a) = —2 + a — o, which is indeed in Pj.

o Modulo 5 we have 3 + 2 + 5 = z(z + 2)(z + 3) so we obtain the ideal factorization (5) = (5,«)(5,2 +
a)(5,3 4 «), so that 5 splits completely in Ox. We can again attempt to determine whether the factors
are principal by trying to find generators for each ideal; after some calculation we can find 5/a = —1—a?
so Ps = (5,a) = (), and also 5/(2+ a) =5 —2a+a?so Pt = (5,2+a) = (2+ ). But 5/(3+a) =
1(10 — 3+ a?) s0 3+ « is not a generator of the third ideal factor P’ = (5,3 4+ «). Instead, using the
other two ideals’ generators, we can instead compute 5/(a(2 + «)) = —3 + a — a? and then check that
indeed P/ = (5,3 + a) = (-3 + a — a?).
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o

(e}

e}

Modulo 7 we have 23 +z+5 = (z—1)(z—3)? so we obtain the ideal factorization (7) = (7,a—1)(7,a—3)?,
so that 7 is partially ramified and partially split.

For P; = (7,a — 1) we can compute similarly that 7/(a — 1) = =2 — a — a? so P; = (a — 1) is principal.
However, to determine whether P, = (7, a —3) is principal is trickier, since 7/(a—3) = (=10 —3a—a?)
so a — 3 is not a generator of this ideal. With some additional effort, however, one may verify that both
7 and « — 3 are divisible by o — 2 and that a® — 2 € P}, so that P, = (a? — 2).

Finally, for (97) we have 23 + 2 +5 = (z + 56)%(z + 82) so we obtain the ideal factorization (97) =
(97,56 + )?(97,82 + ). We can see that 97, like 7, is partially ramified and partially split in O.

e Exercise: For K = Q(+/5), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok. (Recall
that Ox = Z|a] as noted in an earlier exercise.)

e Exercise: For K = Q(«) where «

3 —a+1 =0, compute the prime ideal factorizations of (2), (3), (5), (7),

and (23) in Ok. (Recall that O = Z[a] as noted in an earlier exercise.)

e Example: For K = Q((5), compute the prime ideal factorizations of (2), (3), (5), (7), (11) in Ok.

(e}

[¢]

o

Per our results we know O = Z[(5] and that the minimal polynomial of (5 is ®5(z) = z*+ 23+ 22 +2+1.
Modulo 2, 3, and 7 the polynomial ®5(x) is irreducible, so (2), (3), and (7) are all inert.

Modulo 5 we have ®5(x) = (x — 1)* so for Ps = (5, —1 + (5) we see (5) = P2, so (5) is totally ramified.
Indeed, since (5 — 1 divides 5, we see Ps = (1 — (5) is actually principal.

Modulo 11 we have ®5(x) = (x + 2)(z + 6)(xz + 7)(x + 8) so we see that (11) is totally split, with
(11) = (11,2 + ¢5)(11,6 + ¢5)(11, 7 + (5) (11,8 + G5).

Some of these ideals we can readily verify are principal, since Nk /q(2 + (5) = ®5(—2) = 11, 50 2+ (5
divides 11 and so (11,2 +(5) = (2+ (5). Indeed, from this calculation we can in fact conclude that all of
the ideals are principal, since 11 = (2+ (5)(2+ ¢2)(2+ ¢3)(2 + ¢#) and so since each factor is an element
of norm 11, each element generates a prime ideal. (Try to identify which factor corresponds to which of
the four prime ideal factors of (11) given above!)

We can in fact determine the general features of the factorization of an arbitrary prime ideal (p), which
requires determining how the polynomial ®5(x) splits modulo p.

Consider the field extension F,((5)/F,, where (5 represents a primitive fifth root of unity over F,. Since
all finite fields are splitting fields, as soon as we adjoin one root, we get all the others, so all the irreducible
factors of f must be the same degree, and this degree equals the degree d of the extension F,((s)/Fp.

Since then F,((5) = F,«¢, we need only determine the smallest power p® such that F,a contains an
element of multiplicative order 5. But since the multiplicative group of IF,,« is cyclic of order p?—1, we
are equivalently seeking the smallest d for which 5 divides p? — 1, which is simply the order of p as an
element of (Z/5Z)*.

That order is 1 when p =1 (mod 5), 2 when p = 4 (mod 5), and 4 when p = 2,3 (mod 5).

We conclude that (p) splits completely as (p) = Py P, P3Py with e(P;|p) = f(P;|p) =1 when p =1 (mod
5), that (p) splits as a product of two ideals (p) = Q1Q2 with e(Q;|p) = 1 and f(Qi|p) = 2 when p =4
(mod 5), and (p) is inert with (p) = R when e(R|p) = 1 and f(R|p) =4 when p = 2,3 (mod 5).

e Exercise: For K = Q(¢;7), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok.
Determine also the general factorization behavior of (p) in terms of the residue class of p modulo 7.

0.17 (Oct 10) Student Presentations of HW2 Problems

0.18 (Oct 16) Computing Prime Ideal Factorizations, II

e Let us now generalize the prime factorization method we have been using so that it can apply to the general
situation of a ring of integers in an arbitrary number field extension. Here is the main result:
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e Theorem (Dedekind-Kummer Factorization): Suppose that L/K is an extension of number fields and oo € Oy, is
nonzero with minimal polynomial m(z) over K; note that the coefficients of m(z) are algebraic integers hence in
fact lie in O. Further let P be any prime ideal of Ok lying over an integer prime p not dividing [Of, : Ok [a]],
and suppose that m(z) factors in the residue field Ok /P as m(x) = fi(x)® -+ fr(x) for distinct monic
irreducible polynomials fi,..., fx € (Ok/P)[x]. Define the ideals Q; = (P, f;(a))) = PO + fi(a)OL

1. For each i either @Q; = Op, or O1/Q; is a field of degree deg(f;) over Ok /P.

o Proof: Consider the quotient (Ox/P)[x]/(fi(x)), which is in fact a field of degree deg(f;) over
Ok /P since f;(x) is irreducible. This quotient is isomorphic to Ok [z]/(P, fi(x)) since it is obtained
by taking the quotient of Ok [z] by P and then by (f;(z)), and this is clearly equivalent to taking
the quotient by the ideal generated by P and f;(x).

o Now consider the ring homomorphism ¢ : Ox[x] = Or/Q; sending x — « + Q;. The kernel of this
homomorphism is generated by m(z) and @; hence it contains both f;(x) and P by hypothesis, and
therefore also contains the ideal (P, f;(x)) that they generate.

o This means ¢ descends to a homomorphism of Ok |[z]/(P, fi(x)) = Or/Q;. We claim this map is
onto, which is to say that Op = Ok[a] + Q;. For this note that p € Q; since Q; lies over P and P
lies over p: and then the index of Ox[a] + Q; divides both the index [Of, : Ok[a]] and the index
(O, : pOL] = p= @ but these are relatively prime by hypothesis.

o Now, finally, because Ok[z]/(P, fi(z)) is a field, the first isomorphism theorem yields the desired
result: either O /Q; is the trivial ring (in which case Q; = Or) or Or/Q; is isomorphic to the field
Oxlx]/(P, fi(x)) of degree deg(f;) over Ok /P.

2. The ideals Q1, ..., Qs are pairwise comaximal: @; + Q; = O, for all i # j.

o Proof: By the Euclidean algorithm in (Og/P)[z], since f;(x) and f;(x) are relatively prime, there
exist polynomials h;(z) and h;(z) such that h;(z)f;(xz) + hy(z)f;(z) =1 (mod P), which is to say,
there exists r € P such that h () fi(z) + hJ( )fi(x) —r =1

o Now setting z = « yields h;(«)fi(a) + hj(a)fj(a) —r =1, whence 1 € (P, fi(a)) + (P, f;(a)) as
desired.

3. The ideal POy, divides Q7' --- Q7.

o Proof: First note that because Hle fi(x)¢ = m(x) modulo P, setting x = « yields that Hle fila)® =
m(a) = 0 modulo POy.

o Now since Q; = (PO, fi(a)) we see that Q7' --- Q" is contained in (POy, Hle fila)®) = POy,
by the observation above. Since divisibility is equivalent to containment, the result follows.

4. The prime ideal factorization of POr is PO, = Q7' ---Q}F, and also e(Q;|P) = e; and f(Q;|P) =
deg(f;)-

o Proof: By (1), each of the ideals Q; is either equal to Oy, or a prime ideal of Oy, that lies over p with
f(Q;|P) = deg(fi). (In the former case, which as we will see does not actually occur, we can view
f(Q:|P) as being zero.)

o Additionally, by (2) we see that all of the prime ideals among @1, ..., @ are distinct.

o Finally, by (3) we know that POy, divides Q7" --- Q}*, and therefore the prime ideal factorization of
POy, must be of the form Q‘fl e QZ’“ for some integers d; < e;.

o By the ef-theorem, we then have n = [L : K] = Zle d; - f(Q;|P) < Zle e; deg(f;) = deg(m) = n.
But this forces us to have equality everywhere, so we must have e(Q;|P) = d; = e; for each i, and
also f(Q;|P) = deg(f;) for each i.

o In particular, none of the @); can equal Op, so they are all prime ideals, and then so the prime ideal
factorization of POr is PO = Q7" --- Q".

e Aside from applying in general extensions and not just over Q, the other main improvement in this theorem
is that it does not require us to compute a basis for the ring of integers O, over Ok, which may not exist at
all!

o Of course, there is a tradeoff: we are free to choose any o € Oy, that is not in Ok and compute with
respect to «, but the method does not allow us to compute the factorization of any prime ideal above
a prime p dividing the index [O}, : Ok|[a]]. Fortunately, there are only finitely many such primes, and
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we may certainly try to factor those remaining ideals by choosing another o whose index is different.
(Unfortunately, this may not always succeed: there exist examples where every choice of « yields an
index divisible by p.)

o In the situation where O, = Ok |a] for some «, we of course have no difficulties, but there may not exist
such an « for general extensions L/K.

e Example: For K = Q(+4/10), find the prime ideal factorizations of (2), (5), (7), (11), and (3) in O =
Z[1, /10, 1+\3/T03+i"/ﬁ}_

o We first try using a = /10 with minimal polynomial m(z) = 2* — 10.

o Using the integral basis {1, a, 5(1+a+a?)} computed in an earlier exercise, we can calculate disc(K) =
—300 and discg/g(a) = —2700 so that [Of : Z[a]] = 3 (which agrees with the fact that d; = 1 and
dy = 3 for this «).

o Therefore, the Dedekind-Kummer method will apply with « to any prime p # 3.

o For p =2 we see m(z) = 23 (mod 5) so 2 is totally ramified with (2) = P§ where P» = (2, ). One may
check in fact that P» is principal and generated by —2 + a, which has norm 2.

o For p =5 we see m(z) = 23 (mod 5) as well so 5 is also totally ramified with (5) = P2 where P5 = (5, a).
One may check in fact that Ps is principal and generated by 5 + 2a + o, which has norm 5.

o For p =7 we see m(z) is irreducible modulo 7, so 7 is totally inert.

o For p = 11 we see m(z) = (x + 1)(2®> — 2 + 1) (mod 11), so 11 is partially split with (11) = Py, Pj,
where Pj; = (11,1 + «) and P{; = (11,1 — a + o?). One may similarly check that Pi; = (1 + «) and
P{, = (1 — a+ a?) are both principal.

o In order to factor the ideal p = 3, however, we cannot use the order Z[a] since its index is divisible (in
fact equal) to 3.

o Looking around for another simple order, we can try using the order Z[5] where 8 = %(1 +a+a?), which
we have already shown is also an algebraic integer. In fact this will work, because after some calculation
we can find discx/g(8) = —300 whence [O : Z[f]] = 1. (This means in fact we could have just used
Z[3] for all our calculations.)

o We can find the minimal polynomial for 5 by computing the characteristic polynomial of the multiplication-
by-8 map on K with respect to the field basis {1, a,a?}; this yields the minimal polynomial M (z) =
23— 2% -3z — 3.

o Then for p = 3 we see M(z) = z?(x — 1) (mod 3), so 3 is partially ramified and partially split with
factorization (3) = P?Pj where P3 = (3,3) and P, = (3,—1 + ). One may then verify that P3 = ()
and P} = (8 — «) are both principal.

o Remark: If we had attempted to use the factorization procedure to factor (3) using the order Z[a], the

resulting factorization would be incorrect, since 23 — 10 = (z — 1)3 (mod 3), but in fact the ideal (3) is
not totally ramified.

e Example: For K = Q(v/5,V/13), find the prime ideal factorizations of (3), (5), (13), and (2) in O =
ztt V5 1413
2 2

]. Compare these factorizations to the corresponding factorizations in Op for F' = Q(v/5).

o Using the integral basis {1, 1+2\/5’ 1+5/ﬁ7 (1+\/5)511+‘/ﬁ)} we obtained earlier for Ok, we can compute
disc(K) = 52132.

o To compute factorizations we try using a = M € Ok, which does have K = Q(«) since the four

Galois conjugates of a are a; = %

o Then the minimal polynomial of o over Q is m(z) = [[,(z — ;) = 2* — 927 + 4 and discy/g(a) =
[Tic;(ci — a;)? = 2652132, and so [Ok : Z[a]] = 26.

1S

o In F = Q(+/5) we have instead the minimal polynomial M (z) = 22 — 2 — 1 for the generator 3 = 1%

o For p =3 we see m(z) = (22 +x —1)(2? —x — 1) (mod 3), so 30k = Q3Q% where Q3 = (3, -1 +a+a?)
and Q = (3,—1 — a + a?).

41



o In F = Q(v/5) since the polynomial M (x) = 2 — x — 1 is irreducible mod 3, we see that 30p = P5 is a
prime ideal of O ,/—. Thus, in the extension tower K/F/Q, the prime 3 is inert from Q to F, but splits
from F to K.

o For p =5 we see m(z) = (22 + 3)? (mod 5), so 50k = Q2 where Q5 = (5,3 + a?).
o In F, since 22 —z — 1 = (z + 2)? (mod 5), we see that 50 = P2 where P5 = (5,2 + «). Thus, in the

extension tower K /F/Q, the prime 5 ramifies from Q to F', but the ramified prime P5 remains inert from
Fto K.

o For p = 13 we see m(z) = (2% + 2)? (mod 13) we see that 130, = Q3%; where Q13 = (13,2 + o?).

o In F, since 22 — x — 1 is irreducible mod 13, we see 130 = P;3 is a prime ideal of O\/TE)' Thus, in the
extension tower K/F/Q, the prime 13 is inert from Q to F, but then ramifies from F to K.

o To find the factorization of p = 2 we cannot directly use Dedekind-Kummer, but instead we can exploit
the intermediate field F. Explicitly, in O since M (x) = 22 — x — 1 is irreducible modulo 2, we see that
20fr = P5 is a prime ideal in Op.

1+v13
2

the extension K/F. To do this we must factor the minimal polynomial m(z) =z
in the residue field O /Py 2 Fy.

o We can see that m(z) does factor over Fy (since Fy is the degree-2 extension of Fy, all quadratic poly-
nomials split in Fy): explicitly, with O /P, = Z[B]/(2) = Fa[y]/(y* — y — 1) where y corresponds to

o Now since O = O]

], we may use Dedekind-Kummer to find the factorization of 20k = PoOk in

2 _ 1413
—x—3ofy=

B = ”2‘/5, we obtain the factorization m(xz) = (x4 y)(z +y+1) (note that all of the coefficients are still
modulo 2).

o Therefore, we see that 20k = Q2Q% where Q2 = (2,7 + ) and Q5 = (2,7 + B+ 1).

o Exercise: For K = Q(+/5,v/13), compare the prime ideal factorizations of (2), (3), (5), and (7) in K to
those in the other two subfields Q(v/13) and Q(+/65).

V3+ VT

e Exercise: For K = Q(v/3,/7), find the prime ideal factorizations of (2), (3), (5), and (7) in Ox = Z] 5 ].

Compare these factorizations to the corresponding factorizations in Op for F = Q(+/3).

0.19 (Oct 17) Factorizations and Ramification

e In fact, as originally shown by Dedekind, the only primes for which we may fail to obtain a factorization using
the Dedekind-Kummer method are fairly small.

e Theorem (Dedekind): Suppose K is a number field and p is a prime integer. If pOk has prime ideal factor-
ization P{*--- Pg* in Ok, then there exists some o € Ok with p not dividing the index [Ok : Z[a]] if and
only if there exist distinct monic irreducible polynomials g1 (z), ..., gx(z) € Fplz] such that deg(g;) = f(P;|p)
for each 1 < i < k. As a consequence, if there does not exist any such «, then p < [K : Q].

o If there exists such an «, then by the factorization theorem proven earlier, then the polynomials

g1(z), ..., gr(x) can simply be taken as the irreducible factors of m(z), since as we noted in the proof of
that theorem, we have deg(g;) = f(Pi|p).
o We only sketch the proof of the converse: suppose we have distinct monic polynomials g1 (z), ..., gx(z) €

Z[z] whose reductions are irreducible modulo p and where deg(g;) = f(F;|p). For each P; let I; =
[T P so that pOg = P{*I;.

o Now choose a; € Oy such that g;(a;) = 0 (mod P;), gi(a;) # 0 (mod P?), and a; = 0 (mod I;): such
a choice is always possible because the field Ok /P; is a finite field of degree f(P;|p) = deg(g;) over F,
which is the splitting field of all irreducible polynomials of that degree, so g; has some root a; mod P;.
If this root gives g;(a;) = 0 (mod P?) then simply add any element of P; not in P? to it: since g; is
irreducible it cannot have a repeated root modulo P;, so the new choice must have g;(a;) #Z 0 (mod P?).
Finally, the third condition a; = 0 (mod I;) can be added via the Chinese remainder theorem.

o Finally, use the Chinese remainder theorem to construct an element o = a; (mod P?) for each 1 <i < k
that generates K /Q (this last condition can be included by the exercise below). With a somewhat tedious
calculation, one may then show p does not divide [Ok : Z[a]], so this element has the desired property.
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Exercise: Let K be a number field and let I be a nonzero ideal of Ok with ¢ € Ok arbitrary. Show that
there are infinitely many elements a = ¢ (mod I) such that K = Q(a). |Hint: Let b € Ok generate K/Q
and N = N(I). Show that infinitely many c¢; = a + kNb for k € Z are generators of K/Q.]

For the bound p < [K : Q] we first recall another fact:

Exercise: Let p be a prime and let f,(n) be the number of monic irreducible polynomials of degree n in
F,[z]. Show that f,(n) = %Zd‘nu(d)p"/d where p denotes the M6bius p-function.

To prove the bound, suppose that p > [K : Q]. Then for any 1 < m < [K : Q], by the ef-theorem there
can be at most [K : Q]/m < p/m prime ideals in the factorization of pOx with inertial degree f equal
to m.

But by the exercise above, we have f,(m) > p™/m > p/m, and so there do exist at least as many monic
irreducible polynomials in I, [x] of degree m as prime ideal factors of pOk having inertial degree m. The
converse theorem above then immediately yields that there exists some a € Ok with p not dividing the
index [Ok : Z[a]], as required.

Exercise: Suppose that K/Q is an extension of degree 3. Show that if p is an odd prime, then there
exists some a € Ok such that [Ok : Z[a]] is not divisible by p. Show also that if 2 splits completely in
K, then for any a € Ok, the index [Ok : Z[a]] is divisible by 2.

e We will mention also that there is a way to extend the Dedekind-Kummer factorization method to handle the
situations where p divides the index [O : Z[a]], as shown by Ore in 1926:

e Theorem (Ore Factorization Theorem): Let K = Q(«) where oo € Ok has minimal polynomial m(z) over Q,
let p be an integer prime lying below a prime ideal P of Ok, and suppose that p? is the exact power of p

dividing the discriminant of «v. If m(x) has a factorization modulo p

d+1 of the form m(z) = g1(z) - - - g, () for

irreducible polynomials g1, ..., g, then the prime ideal factorization of p in O is pOg = P{* - -+ Pt where
the P; are distinct prime ideals and e(P;|p) f(P;|p) = deg(g;)-

e}

This theorem also extends naturally to the situation of a relative extension L/K, which we will not
bother with.

We will not prove this theorem, but the fundamental idea is to lift the isomorphism given by the Chinese
remainder theorem that we described in the Dedekind-Kummer factorization procedure from Z/pZ to
the p-adic ring Z,,.

More explicitly, the distinct components of the p-adic factorization of m(z) will correspond to the distinct
prime powers P{?, so there are the same number of each and then comparing the extension degrees of
the corresponding local residue fields yields the second statement. Finally, one uses Hensel’s lemma to
show that the factorization of m(x) modulo p* for increasing k stabilizes for k > d + 1, and therefore
the factorization structure of m(z) modulo p?*! will be the same as the p-adic factorization structure of
m(z) obtained by taking an appropriate inverse limit of factorizations modulo p* as k — oc.

We will note that factoring polynomials over Z/p?Z is not as convenient as factoring them in Z/pZ, since
factorizations are no longer unique (their structures, however, still are): for instance, the polynomial
22 — 1 has four roots and four different factorizations over Z/87Z, namely as (z —r)? for r = 1,3, 5,7, but
each individual factorization only has a single repeated factor.

Example: For K = Q(+/10) using o = /10, we may observe that disc(a) = —223352 so the exact power
of 3 dividing the discriminant of « is 3%. Factoring m(x) = x® — 10 modulo 3* we find a factorization
(x —13)(z2+ 132 +7), and so by Ore’s theorem we see that 30 is the product of two prime powers, one
of which has ef = 1 and the other of which has ef = 2. In fact, because 3 is ramified in K (as follows
from results we will establish shortly), at least one factor must have ramification index greater than one;
thus, we can conclude that 30x factors as P2 P, for some prime ideals P; and P, each of norm 3.

e Our goal now is to study the phenomenon of ramification. To motivate some of the constructions, let us first
review the examples of ramified primes we have already found.

(¢]

o

In Q(4), of discriminant 2, the only ramified prime is (2) = (1 +4)2.

In Q(v/—5), of discriminant —20, the primes (2) = (2,1 + /=5)? and (5) = (/—5)? are ramified. The
primes 3, 7, and 11 are unramified.
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o In Q(+/2), of discriminant —108, the primes (2) = (/2)% and (3) = (1 + ¥/2) are totally ramified, while
the primes 5, 7, and 31 are unramified.

o In Q((3), of discriminant 625, the prime (5) = (1 — (5)* is totally ramified, while the primes 2, 3, 7, and
11 are unramified.

o In Q(+/10), of discriminant —300, the primes (2) = (=2 + v/10)3 and (5) = (5 + 2v/10 + v/100)? are
totally ramified, while (3) = P#P} was ramified (but not totally).

o In Q(v/5,1/13), of discriminant 52132, the primes 5 and 13 ramify, but only partially: 5 ramifies from Q
to Q(v/5) while 13 ramifies from Q(v/5) to Q(v/5,v/13).

e We can see quite clearly that in all of our examples, the ramified primes are precisely the ones dividing the
discriminant of the field. In the situation where Ok = Z[a] we can show this quite directly:

e Exercise: Suppose K = Q(a) where O = Z[a]. Prove that an integer prime p is ramified in K if and only if
p divides the discriminant disc(K). [Hint: Note disc(K) = disc(m(x)) where m(x) is the minimal polynomial
of a over Q, and apply Dedekind-Kummer.]

e In the general case, we have to expend a bit more effort. Let us prove half of the main result now:

e Proposition (Ramification and Discriminants): Suppose K is a number field and p is an integer prime. If p
ramifies in K, then p|disc(K).

o Proof: Suppose P is a prime ideal of Ok lying above p € Z with e(P|p) > 1, and write pOx = PI where
by hypothesis I is a product that includes all of the ideals lying above p, hence is contained in all of
these ideals.

o Let a be an element of I not in pOg (note I properly divides hence properly contains Ok): then by
hypothesis « is contained in all primes of Ok lying above p, but « is not an Ox-multiple of p.

o Let L be the Galois closure of K/Q: then since « is contained in all primes of Ok lying above p, it is
also contained in all primes of Of, lying above p.

o For any o € Gal(L/Q) and any prime ideal Q of Of, lying above p, we can see easily that o~1(Q) is also
a prime ideal lying above p, hence o~1(Q) contains «, and so @ contains o(«).

o Now choose an integral basis 1,..., 8, of Ok: then a = a15, + - -+ + a, B, for some a; € Z, where not
all of the a; are divisible by p because o € pOk. Suppose without loss of generality that p does not
divide a;.

oi(a) o1(B2) - 01(Ba)
. , o2(a) o2(B2) - 02(Bn)
o Then letting o1, ..., 0, be the complex embeddings of K, we have . . . . =
Un(a) O'n(ﬁZ) """ Un(ﬂn)
a1o1(B1) + -+ ano1(Bn) 01(B2) - 01(Bn) o1(B1) o1(B2) - o1(Ba)
a102(B1) + -+ anoa(Bn) 02(B2) - 02(Bn) oa(B1) o2(B2) - 02(Ba)
. . . . =a . . ) . and
alan(ﬁl) + -+ anan(ﬁn) Jn(ﬂ?) """ O-n(ﬂn) O—n(Bl) o'n(BZ) """ Un(ﬁn)

so disc(a, B2, - - -, Bn) = addisc(Bi, . . ., Bn) = a3disc(K).

o Now by our calculations above, we know that o;(«) € @ for every prime ideal @ of Oy, lying over p,
hence ) also contains disc(«, 2, ..., 8,). But since disc(a, fo, ..., [,) is an integer, it is contained in
QNZ=pZ.

o Finally, since a; is not divisible by p, we conclude that p|disc(K), as desired.
e We would like to establish the converse of this result, and extend it to relative extensions.

o As motivation, note that for K = Q(+/5,v/13), the primes 5 and 13 ramify in different ways: we can
see that 5 ramifies in the subfield Q(v/5) and is unramified from Q(+/5), while 13 is unramified in the
subfield Q(v/5) and then ramifies from Q(v/5) to K. (Additionally, the situation is entirely reversed in
the subfield Q(v/13).)
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0.20 (Oct 21) Ramification and Differents, I

e In order to study ramification in relative extensions, we will need to construct a discriminant associated to
an extension L/K.

o However, we cannot easily adapt the definition we used for the discriminant over Q, since it ultimately
relies on the existence of an integral basis of O over Z, but a general extension Op, over Ok may not
possess an integral basis.

o We will take an approach involving the construction of a related object known as the different:

e Definition: Let L/K be an extension of number fields. For a fractional ideal A of L, we define its codifferent
A* to be the set A* = {z € L : try x(zA) C Ok} of all elements of L such that the trace of z times all
elements of A lies in Ok (equivalently, is an algebraic integer).

o We can see that when A is generated as an Og-module by ay, ..., a,, then A* = {z € L : trp, x(za;) €
(’)Kforlgign}.

o Example: For L = Q(i), K = Q, and A; = Z[i], we see that A} consists of all x + iy € Q(¢) such that
tr(z +1iy) = 22 and tr(i(z+iy)) = —2y are integral, so that A} = $Z[i]. For Ay = (1+1)Z[i], we see that
A3 consists of all z+iy € Q(4) such that tr((1+4)(z+1iy)) = 2(z—y) and tr((—1+i)(z+iy)) = —2(x+y)
are integral, so that A3 = LHZ[i].

e Let us establish some basic properties of the codifferent:

e Proposition (Properties of Codifferents): Let L/K be an extension of number fields and A be a nonzero
fractional ideal of L/K.

1. The codifferent A* is a nonzero fractional ideal of L/K.

o

o

Proof: Suppose x1,22 € A*, r € Op, and a € A. Note then that ra = b is also an element of A.

We have trp g ((x1 + r22)a) = trp g(r1a) + tr /g (220) € O since both traces are in Ok by
assumption. Therefore, 1 + rzo € A* as well, and so since trivially 0 € A* we see that A* is an
R-submodule of L.

To see it is a fractional ideal we must construct some nonzero d € Oy, with dA* C Oy..

For this, choose a field basis a1, ..., a, for L/K where each o; € Oy, and let b be a nonzero element
of AN Ok (e.g., Np k of a nonzero element in AN Or).

We claim that the choice d = bdiscy/x (1, ..., an) = det[{trp x (ij) }1<i j<n] Works: it is nonzero
since the «; are linearly independent, and is in O, since b and the «a; are.

For any x € A*, since the «; are a basis for L/K we may write x = cjaq + -+ + ¢pa,, for some
c; € K. Observe that ba; € A for each i and thus tryx(zba;) € O by assumption that z € A*.
But now by linearity of the trace we have try g (rba;) = bZ;-Lzl cjtrp i (wiw;) for each 4. Solv-
ing the resulting system for the c¢; using Cramer’s rule shows that ¢; = w where M =
{trp Kk (ciaj) }1<ij<n and M; is the matrix obtained by replacing the ith column by try g (zba;)/b.
Then det(M;) € b='Ok and so ¢;d = c;bdet(M) € Ok for each i. Hence drx = (dei)aq + -+ +
(den)an € Of, so the given choice of d does work, as claimed.

Finally, if A = e~ 'I, then eA C O, whence tr i (eA) € Ok, so e € A* yields a nonzero element of
A*.

2. The codifferent A* satisfies AA* = O7.

(e]

(e]

o

Proof: Observe x € A* <= try/x(zA) C Ox <= try/x(2A0L) C O <= 2AC 0] <=

r e ATO;.
Thus, A* = A710y, so AA* = O;.

Exercise: If A is a nonzero fractional ideal of Op, show that A** = A.

3. If I is any nonzero integral ideal of O, then (I*)~! is also an integral ideal of O, and in fact it is
contained in [.

o

Exercise: Suppose A is a nonzero fractional ideal of Oy. Show that A=! C A*.
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o

Exercise: Suppose A, B are nonzero fractional ideals of Op. Show that if A C B then B~' C A~!
and B* C A*.

Proof: If I C Oy, by the first exercise above we have I~! C I*. Then by the second exercise we see
(I*)"* C(I7Y)~! =1, and so (I*)~! is an integral ideal of Oy, contained in I.

*

4. When K = Q, if A has an integral basis a1, ..., a, with dual basis a7, ..., a;, (so that try q(a;a}) =0
for i # j and 1 when i = j), then af,...,a; is an integral basis for A*.

(e]

(e]

(e]

As we have previously noted in our earlier discussion of discriminants, the dual basis always exists
and can be computed by solving the associated linear system using Cramer’s rule.

Proof: Let z € L and y € A. Then there exist unique z; € Q with z = 101+ - - + z,, and unique
¥i € Z with y = y1a7 + -+ + ypo,.

Then trp g(zaf) = trp (> i, micia) = Y 1L witrp g(eua) = x5, so we see x € A* if and only if
each z; is an integer.

Exercise: In K = Q(v/=5), compute a basis of A* for A = Ok and for A = (2,1 + /-5)Ok.

e By (1) in the proposition above, we can see there is a relationship between the codifferent A* and the
discriminant.

o In particular, if we consider the codifferent O, then since 1 € Oy, we may take b = 1 in the argument
in (1) to see that OF C d='0y, where d = discy/k(a1,...,ap) for any field basis ai,...,a, of L/K
consisting of algebraic integers.

o Taking inverses, we see that the inverse codifferent satisfies (03)~! D (d71O0L)~! = dOy.

o We can see, then, that a somewhat natural candidate for an analogue to the discriminant for the extension
L/K would be the ideal (O} )~!, since it contains all of the discriminants discy,/x (a1, . . . , ay,) of n-tuples
of algebraic integers in Of.

e Definition: Let L/K be an extension of number fields. For any nonzero ideal I of O, we define the
different of I, Dy ,x(I), to be the ideal (I*)~!, and we define the different of L/K, denoted Dy, to be
the ideal Dy, x(Or) = (03) 1.

o Exercise: Show that for any ideal I of Or, we have Dy, /i (I) = Dk - I: thus, we may view the notation
Dy, (I) as representing a product or a function, interchangeably.

o We will generally use the Dy, /i notation for differents instead of the star notation, since the star notation
does not indicate the underlying field extension.

e Proposition (Properties of Differents): Let L/K/F be an extension tower of number fields.

1. The different Dy, equals the product Dy /g Dg/p.

(e]

(¢]

o

Proof: Recall first that for any o € L we have try, p(a) = trg p(trr k(o).

Now let a € D;(}F (so that @ € K and trg/p(aOk) € Of) and b € DZ}K (so that b € L and
trL/K(bOL) C Ok).
Then trL/F(ab) = trK/F(trL/K(ab)) = trK/F(atrL/K(b)) S trK/F(aOK) - OF.

has trace in Op, so D; . Db C Dle whence Dy p C

Thus, every element of D71 D} L/ kY K/F L/

L/KYK/F
Dk Dg/F-
For the other containment, suppose ¢ € DZ}F, so that trp g (cOr) C OF.
Then trg p(try x(cOL)) = trp p(cOL) € Op, so by definition this means try,x(cOr) C D!

K/F
hence Dy ptry (cOL) C OF hence try )k (Dg/rpcOr) € Op C Ok hence Dy /pc C DZ}K hence
ceD;} D}

L/KYK/F-

We conclude that DE}F - DE}KD;(}F whence Dy, gDy r C Dy, /p, so we obtain equality.

2. If L/K is Galois and o € Gal(L/K) is any Galois automorphism, then o(Dr k) = Dy, /x-

o

Proof: For any = € O}, observe that tryx (0(2)Or) = trp k(o1 (Or)) = trp/k (¢Or) € Ok and

so o(x) € O3 also.
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o Thus, 0(0;) C Of. Similarly we see 0=1(0%) C O hence applying o we see OF C o(O%) so
01 = a(01).

o Finally, since Galois automorphisms clearly commute with taking inverses of fractional ideals, we
have o(Dp/x) = 0(07) ™" = [0(07)] ' = (0)"! = Dp/x.

3. For any ideals I of O and J of O, we have try i (J) C I if and only if J C DZ}KI.

o Proof: Observe trp i (J) C I <= I 'tryx(J) C Ok <= tryx(I7'J)C O < I'JC
D} = JC Dl

L/K L/K
4. We have Ng/o(Dg /) = |disc(K)|.

o Exercise: Suppose o, ..., o, is a basis of K/Q with dual basis o, ..., a. Show that disc(af,...,a)) =
disc(aq, ..., a,) "t [Hint: Show that the product of the matrices {o;(c;)}1<i j<n and the transpose
of {oi(a])}1<i,j<n is the identity matrix.|

o Proof: Let aq,...,a, be an integral basis of Ok with dual basis af, ..., a}, which by (4) of our
previous proposition we know is an integral basis for O} = DI_(}Q.

o Let m be a positive integer such that maj,...,ma}, are all integers, and consider the ideal I =
mD;(}Q of Ok; then D;(}Q =m™1I.

Nikjo(m)*

o By properties of ideal norms and the exercise above, we have NK/Q(DK/Q)2 =

|disc(K )| m?" B |disc(K)|
discyg(mas,...,maf)  disckglof,. .. af)

Ni/q(I)?
= discg g, .. ., o) [disc(K)| = |disc(K)[*.

o Rearranging and taking the square root then yields N ,q(Dk/q) = |disc(K)| immediately.
5. For any extension L/K of number fields, disc(K)[“%] divides disc(L).
o Proof: By (1) with F' = Q, we have Dy g = Dp/xDg/q. Taking norms yields Ny ,o(Dr/q) =

NL/Q(-DL/K)NL/Q(DK/Q) = NL/Q(DL/K)NK/Q(DK/Q)[LK]
o Now applying (4) yields disc L = £Np/q(Dy/x ) (disc KK so disc(K) K divides disc(L).

6. Suppose that L = K(«) for a generator o € Or, and let m(z) € Ok|x] be the minimal polynomial of «
over K. For the (fractional) ideal A = O[a] = Ox ® Oga® - ® Oxga™ ! where n = [L : K], we have
1

Ar =

m’(c)
o Proof: Let 71,...,r, be the various complex embeddings of a. Since m(z) =[], (z —r;), differen-
tiating and setting « = r; yields m/(r;) = [[,,;(r; — i) = m(z) lo=r, -
r—Ty

m(z)

o Thus, the polynomial
m/(r;) x —r;

evaluates to 1 when & = r; and (clearly) to 0 when z is equal

to any other r;.
1 . . . n Tf“ m(x)
and then summing over j then shows that the polynomial > i1

o Multiplying by r**
! m!(rj) & —r;

evaluates to rf“ for each 1 < j < n. But the same is true for the polynomial Ftlfor1 <k < n—2,
and therefore since each polynomial has degree at most n — 1, they must be equal. For kK =n —1 we
can see that the same statement holds for ™ — m(x) in place of z".

phtl m(z) {xk“ for0<k<n-—2

no 'y
o We conclude that >, )T -1 ") fork—n—1
a

C oy o1 s T m©) [0 for0<k<n-2
m/(a) g=1 m/(rj) m(O) J=1 m’(rj) f?“j 1 fork=n-1 ’

T

o Setting x = 0, we see trp, /x (

k
1
Therefore, B € A* for each 1 <k <n—1. Hence ——A C A*.
m/(c) m/ ()
o Conversely, suppose b € A*, and suppose m(z) = 2" + ¢, 12" 1 + --- + ¢o. Then for p(z) =

)
Zi:l bix o

n j—1 i fe—
p(x) =351 ¢ >k aFtry i (bad =R,

where b; is the ith complex embedding of b, we see from the calculations above that
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o Since b € A* each of the traces is in Ok, so p(z) € Ok|[z]. Then bm/(a) = p(a) € Aso b € A.

1
m'(a)

1
This means A* C —— A, so we get equality as claimed.
m(a)

7. Suppose that L = K(a) for a generator o € O, with minimal polynomial m(x). Then m’(a) € Dy /.
o Proof: Letting A = Ok|a], since A C Of, we see O C A*, which is to say, dz/lK C A*,
1

_ 1
o By (6) we have A* = m’(a)A hence dL/lK C WA hence m/(a) € d kA C dp k.

0.21 (Oct 23) Ramification and Differents, IT

e We can see from (6) and (7) in the proposition above that there is an interesting connection between the
different and derivatives.

o In fact, differents are quite closely tied to the general notion of a derivation in a commutative ring,
but giving a full discussion of this topic would take us somewhat far afield, so we will just give a brief
summary.

e Definition: Let R be a commutative ring with 1 and M be an R-module. A derivation is a function d: R — M
of additive groups such that d(r + s) = d(r) + d(s) and d(rs) = rd(s) + sd(r) for all r, s € R.

o In other words, a derivation is an additive function that also obeys the Leibniz formula for the product
rule.

o Example: For any commutative ring R, the usual derivative map D : R[x] — R[z] with D(f(z)) = f'(x)
is a derivation.

o Exercise: Suppose R is a subring of S and d : S — M is a derivation such that d(r) = 0 for all r» € R.
Prove the “chain rule” for polynomials: for any p(x) € R[x] and any a € S, show that d(p(a)) = p’(a)d(a)
where p’ is the usual formal derivative of p.

o When S is also a ring, a derivation d : R — S is essential when the image d(R) contains an element that
is not a zero divisor of S.

e Theorem (Derivations and Differents): Let L/K be an extension of number fields. If I is an ideal of Of, then
I divides the different Dy, /x if and only if there exists an essential derivation d : S — S/I vanishing on Of.

o We will not prove this theorem, as the details are rather technical and not especially enlightening.

e Our main result is the close connection between the different and ramified primes:

e Theorem (Differents and Ramification): Let L/K be an extension of number fields, and let @ be a nonzero
prime ideal of Of, lying over the prime ideal P of Ok, lying over the integer prime p.

1. The power Q*(?I”)~1 divides the different Dy, /.

o Proof: Let L be the Galois closure of L/K and let o1,...,0, be the complex embeddings of L,
viewed as elements of Gal(L/L).

o Also let POy, = Q*QIP) I where by definition Q does not divide I.

o Let € QI and take N such that p" exceeds the ramification index of any prime ideal dividing
POy. Then we have z¥" € (QI)pN CP.

o Applying o; yields O'i({L‘)pN C 0(POk) = P, and now summing over i shows trL/K(xpN) € P.

o Then trL/K(as)pN =X (@) = o2 = trL/K(xpN) (mod POy) since the p™th power
map is additive in characteristic p. But since both elements are in Ok, the congruence also holds
modulo P.

o Thus, we see that trL/K(x)pN € P. But since P is a prime ideal, that means try,x (z) € P.

o This means try/x(QI) € P, so by properties of the different, that implies QI C DZ}KP hence

Dp/xQI C P hence P = QQIP) T divides Dy kQI hence Qe(RIP) =1 divides Dy i, as claimed.
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2. If @ is tame (so that p does not divide e(Q|P)), then Q*(?/”) does not divide the different Dy, /.

(e]

Exercise: Let @ be a nonzero prime ideal of Or. Show that the zero divisors in O /Q° are the
elements of Q/Q°.

Proof: Suppose p does not divide e = e(Q|P) and let d : O, — O /Q° be a derivation.

By the previous theorem, the claimed result is then equivalent to saying that d(x) is a zero divisor
(or zero) for all x € Op.

Let 7 € P\P? and 11 € Q\Q?. Then the prime factorization of the fractional ideal A = (II~°r)
has no factors of Q, so A = b—1I for some b ¢ Q and some I not divisible by @, and thus letting
a = bII~°7m we see that a,b € Op\Q and m = II°a/b.

Now we have 0 = 7d(b) + bd(w) = d(wb) = d(II°a) = ell*~1d(II)a modulo Q¢, so since none of e,
I1°~1, or a are zero modulo Q¢ (here we use the fact that p does not divide €), that means d(II) is a
zero divisor (or zero) in Or/Q°.

Since the only zero divisors in Oy, /Q° are the elements of Q/Q¢ that means d(II) € Q/Q°.

Now if x € Of, has x € @, then using a similar argument as for 7= above, there exist r,s € O, and s
not in @ such that = = IIr/s: then sd(x) + zd(s) = d(sz) = d(IIr) = rd(II) + IId(r) € Q/Q°.

But since zd(s) € @Q/Q°, this means sd(z) € Q)/Q° and hence since s € @ that means d(z) € Q/Q°,
so it is a zero divisor.

Finally, if 2 ¢ @, then by Lagrange’s theorem in O /Q we know that zV(@~1 = 1 (mod Q), so
2N @=1 =1 4t for some t € Q.

Then d(t) = d(1 +t) = d(zVN @) = (N(Q) — 1)2V(@~1d(z) and since N(Q) is divisible by p,
neither N(Q) — 1 nor V(@)= is zero modulo @, so we must have d(z) € Q/Q¢ and so d(x) is again
a zero divisor.

3. For any prime ideal Q of Op, the exact power of @ dividing the different Dy is > e(Q|P) — 1, and

(e]

(e]

equality holds if @) is tame (i.e., tamely ramified or unramified).

Proof: Immediate from (1) and (2), along with the observation that if @ is wildly ramified, then
e(Q|P) is divisible by p hence e(Q|P) — 1 > 1.

Remark: We will later be able to give a formula for the power of @) dividing the different when @ is
wildly ramified as well.

4. There are only finitely many prime ideals of O, that are ramified in L/K, and they are precisely the

o

prime ideal factors of the different Dy, /.

Proof: By (3), we see that @ divides the different if and only if e(Q|P) > 1, which is to say when
@ is ramified. Since the different has only finitely many prime ideal factors, there are only finitely
many ramified primes.

5. For an extension K/Q, an integer prime p is ramified if and only if p divides disc(K).

o

Proof: Immediate from (4) and the different norm formula Ny ,o(Dg/q) = |disc(K)].

e As an application of the different, we can show that there exist unramified field extensions (i.e., field extensions
with no ramified primes).

o Exercise: Show that L/K is unramified if and only if disc(L) = +disc(K)FE],

e Example: Show that the extension Q(v/5,/13)/Q(v/65) is unramified.

e}

(¢]

(¢]

Taking a =

Letting L = Q(v/5,v/13) and K = Q(V/65), we see L = K(v/5) = K(1/13).

The different Dy, /g, by our results, contains m’(«) for any a € Of, generating L/K.

”T‘/g with minimal polynomial 22 — z — 1 shows V5 € D/ and taking o = % with

minimal polynomial 22 — 2 — 3 shows that 2o — 1 = /13 € Dy k.

But the ideal generated by /5 and /13 is all of O, since it contains 5 and 13 hence also their integer
ged 1. Thus, Dy/x = Or, and so by our results above, that means no primes ramify in the extension
L/K.
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o Alternatively, using the discriminant, we can compute that disc(L) = 52132 using an integral basis to see
that the only primes that ramify in L/Q are 5 and 13, so these are the only possible primes that could
ramify in L/K.

o But then we can just check directly using Dedekind-Kummer that neither 5 nor 13 ramifies in L/K, and
so L/K is unramified.

o Even if we did not have an integral basis for Of, already computed, we could just find the discriminant
of an element of Oy, generating L/Q, which would at worst add finitely many extra primes to check.

e Exercise: Show that the extension Q(v/—3,/5)/Q(v/—15) is unramified.
e Exercise: Let a® — a — 1 = 0. Show that the extension Q(«, v/—23)/Q(v/—23) is unramified.

0.22 (Oct 24) The Ideal Class Group

e Now that we have a better understanding of prime ideal factorizations and how to compute them, and about
ramification, let us return to study the question of unique factorization once more.

o As we have already discussed, a Dedekind domain is a unique factorization domain if and only if it is a
principal ideal domain, and thus any examples of non-unique factorization of elements necessarily arise
from nonprincipal ideals.

o We would now like to quantify more precisely how “non-unique” the non-unique factorization of elements
in a Dedekind domain can be.

o As motivation let us again consider Ok = Z[/—5], which we have shown not to be a PID by constructing
various nonprincipal ideals Iy = (2,14 v/=5), Is = (3,1 ++/=5), I} = (3,1 — v/=5), I = (7,3 + V/=5),
and I} = (7,3 — /-5).

o If we compute the products of various pairs of these nonprincipal ideals, however, we will quickly discover
that the products always end up being principal. Explicitly, here are various such calculations (note that
to find potential generators for the ideal products, we can search for elements of the appropriate norm):

I3 = (2), I3} = (3), and I7I% = (7) by Dedekind-Kummer.

II3 = (1 ++/=5) since II3 = I, N I3 D (14 /=5) but N(I2]3) = 6 = N(1++/=5).

LI, = (1 — \/=5) by conjugating the calculation above.

I3 = (9,3 + 3v/=5,—4 + 2¢/=5) = (2 — v/=5) since 2 — /=5 is in this ideal since 2 — /-5 =

9— (3+43v=5)+ (—4+2y/-5),and N(I3) =9 = N(2 —/-5).

(I})? = (2 + v/—5) by conjugating the calculation above.

x Inly = (14,6 + 2¢/=5,7 + 7/=5, =2 + 4y/=5) = (3 + /=5) since 3 + /=5 is in this ideal since
3+vV=5=2(6+2y=5)— (7T+7V/=5) — (=2 +4v/-5), and N(I>I;) = 14 = N(3 +/-5).

x IyIL = (3 — /=5) by conjugating the calculation above.

% I3l = (21,9 + 3v/=5,7+ Tv/—5,—1 + 4y/=5) = (1 — 2y/=5) since 1 — 2y/—5 = 21 — 3(9 + 3/=5) +
(7T+7v=5) and N(I3I7) =21 = N(1 — 2¢/=5).

* I3h = (21,9—3v/—=5, 7+7v/—=5,842y/=5) = (4++/=5) since 4+1/—5 = 21+(7+7/—5)—3(8+2v/=5)
and N(I315) =21 = N(4 ++/=5).

x I I; = (4 —v/=5) and I;I} = (1 + 2¢/=5) by conjugating the calculations above.

o These calculations suggest that there might actually be only one “class” of nonprincipal ideal in Z[/—5],
up to an appropriate notion of equivalence of ideals.

*
*
*
*

*

o We would like to declare that two ideals are equivalent if they differ by a principal ideal factor. We can
formulate an equivalence relation in this manner, but it is more natural to work instead with fractional
ideals rather than integral ideals, since the invertible fractional ideals form a group, rather than merely
a semigroup.

e Definition: Let R be a Dedekind domain and let Jr denote the multiplicative group of nonzero fractional
ideals of R. A fractional ideal A of R is principal when it is of the form A = d~'I for a principal ideal I of
R. Tt is easy to see that the nonzero principal fractional ideals form a subgroup Pg of the group of nonzero
fractional ideals: we define the ideal class group cl(R) to be the quotient group Jr/Pg of invertible fractional
ideals modulo principal fractional ideals.
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o We remark that the class group can be defined for any integral domain R in the same manner (namely,
as the quotient group of invertible fractional ideals modulo principal fractional ideals), but for rings that
are not Dedekind domains, there can exist non-invertible fractional ideals, whose behavior is then not
accounted for by the class group.

o Exercise: For a Dedekind domain R with fraction field K, show that the sequence of multiplicative groups

1— 05 — K* w2l g r — cl(R) — 1 is exact. (It is analogous to, and in fact generalizes, the exact

sequence 1 — k* — k(C)* frodig(f) Div?(C) — Pic’(C) — 1 for an algebraic curve C' defined over an
algebraically closed field k.)

o For integral ideals I and J, we can see that (the images of) I and J are equivalent in the class group
<= [J7!is a principal fractional ideal <= there exist nonzero a, 3 € R such that IJ=! = a~1(3)
<= there exist nonzero «, 8 € R such that (a)I = (8)J.

o We therefore see that equivalence in the class group precisely captures our desired notion of equivalence
of ideals up to principal factors.

o Inversely, this equivalence relation on integral ideals does capture the full structure of the class group of
fractional ideals as well (intuitively, we can just clear denominators when working with fractional ideals
to convert statements to ones about integral ideals). Explicitly:

o Exercise: For ideals I and J of a Dedekind domain R, write I ~ J when there exist nonzero o, € R
with (a)I = (8)J.
1. Show that ~ is an equivalence relation on the ideals of R.

2. Show that the multiplication operation [I][J] = [I.J] on equivalence classes is well defined and gives
the nonzero equivalence classes the structure of an abelian group G.

3. Show that the map ¢ : G — cl(R) given by ¢([I]) = I, where I denotes the image of I in the class
group Jr/Pr, is well defined and an isomorphism.

o Exercise: With the equivalence relation ~ on ideals as given in the exercise above, show that I ~ J if
and only if I is isomorphic to J as an R-module. (Thus, the isomorphism classes of ideals are the same
as the equivalence classes in the class group, yielding a third natural way to “discover” the class group.)

o We can see that the trivial class in the class group consists of the principal (fractional) ideals, and
therefore R is a principal ideal domain if and only if its class group is trivial.

o Nontrivial classes in the class group correspond to inequivalent classes of nonprincipal ideals, and so
we see that the class group gives a more precise way of measuring how badly R fails to have unique
factorization of elements.

e For an arbitrary Dedekind domain, the class group can be infinite: in fact, it is a theorem of Claborn that for
any abelian group G whatsoever, there exists a Dedekind domain whose class group is isomorphic to G.

o However, when R = O is the ring of integers of a number field K, the class group is always finite:

e Proposition (Finiteness of the Class Group): Suppose K is a number field of degree n over Q with com-
plex embeddings o1,...,0,. Let B1,...,58, be an integral basis of Ok, and define the constant cx =

[T [ o8]

1. If I is a nonzero ideal of Ok, then I contains a nonzero element « such that |[N(«a)| < cg N(I).
o Proof: Suppose K has degree n over Q and pick any integral basis f1,..., 8, for Og. Also let
m = |N(I)*/"|, so that m™ < N(I) < (m +1)".
o Then since the cardinality of R/I is N(I) < (m+1)™, by the pigeonhole principle at least two of the

(m + 1) elements {a181 + -+ + anBn : 0 < a,b < m} in R must be congruent modulo I, so their
difference is in 1.

o Thus, there exists a nonzero element « € I of the form o« = a181 + -+ - + a, B, where —m < a; <m
for each ¢. By the triangle inequality we see |N(«a)| =[], |oi(@)] < [T, [Z;’:l la;| - |ai(ﬁj)\] <

m"™ - [T, [Z;:l ‘O'i(/Bj)@ < N(I) - ¢k, as claimed.

2. Every ideal class of Ok contains an ideal J such that N(J) < ck.
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o Proof: Let C be an ideal class and let I be any ideal in the inverse class C~1.

o By (1), there exists a nonzero element o € I such that N(a) < c¢xN(I). Because o € I, by the
equivalence of divisibility and containment we see that I divides (a) and so () = IJ for some ideal

J.
N
o Taking norms yields N(a) = N(I)N(J), so N(J) = N((?)) < ¢k . Finally, taking ideal classes gives

1] = [()] = [{][J] so J € [I]7! = (C~1)~ =, as required.
3. The ideal class group of Ok is finite.

o Proof: By (2), every ideal class contains some ideal J with N(J) < ck.

o But there are only finitely many possible ideals J with N(J) < cg: there are only finitely many
possible prime ideals that could occur in the prime factorization of J (namely, the primes of norm
at most ¢k ) and the power to which each such ideal can occur is bounded (since a prime power P®
has norm N(P)?, we must have a <logypyck < log, Ck for all such P lying over p € Z).

o Thus, we have a finite list of ideals representing all ideal classes, so there are finitely many ideal
classes.

e Exercise: Let L/K be an extension of number fields. Use the fact that the class group of Ok is finite to give
another proof that Ny (IOx) = N (I)“K] for any ideal I of Ok. [Hint: What can be said about I"(%)?]

e This result is already enough to allow us to compute class groups in some cases.

o When K = Q(v/D), when D = 2,3 (mod 4) using the integral basis {1, v/ D} we obtain cx = (1++/D)?.
In fact, we can do slightly better just by estimating ’N(a + b\/ﬁ)‘ = |a* — Db*| < a®+Db? < m*(1+ D)
to obtain cx = 1 + D.

e Definition: If K is a number field, the class number of K is the order of the ideal class group of O. The
class number is often written as h(K).

o As we noted earlier, the class number of Ok is equal to 1 if and only if O is a principal ideal domain.
A larger class number corresponds to having more inequivalent types of non-unique factorizations.

o Our proof of (2) in the proposition above gives us an explicit way to calculate the ideal class group of
Ok: we need only compute all of the possible prime ideals having norm at most cg, and then determine
the resulting structure of these ideals under multiplication.

e Example: Show that the class group of K = Q(v/2) is trivial.

o From the proposition, we know that any ideal class contains an ideal J of norm at most 3.

o Then the only possible prime divisors of the norm are 2 and 3, so the only possible prime ideal divisors
of J are the primes lying above 2 and 3.

o Using the Dedekind-Kummer factorization theorem shows that in Z[v/2] we have (2) = (v/2)? while the
ideal (3) is inert and has norm 9, so the only possible ideals J are (1) of norm 1 and (v/2) of norm 2.

o Since both of these ideals are principal, we conclude that every ideal of Z[\/ﬁ] is principal and so the
class group is trivial (so that Z[/2] is a principal ideal domain).
e Example: Show that the class group of K = Q(1/—5) has order 2.

o From the proposition, we know that any ideal class contains an ideal J of norm at most 6.

o Then the only possible prime divisors of the norm are 2, 3, and 5 so the only possible prime ideal divisors
of J are the primes lying above 2, 3, and 5.

o We have already computed the factorizations (2) = (2,1 + v/=5)?, (3) = (3,1 ++v/=5)(3,1 — v/=5), and
() = (V=5)*

o Thus, the possible prime ideals dividing J are I = (2,1 + v/—5) of norm 2, I3 = (3,1 + v/—5) and
If = (3,1 — v/=5) both of norm 3, and Is = (v/—5) of norm 5.

o As we have previously shown, the ideal I, is not principal, so since I3 = (2) we see that [I] is an element
of order 2 in the class group.
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o We have also previously shown that IoI3 = (1 4+ v/=5), so [I3] = [[z]~! =[], and then since I31}; = (3)
we see [I5] = [I2] as well.

o Thus, since I5 is principal, we see that all of the nonprincipal ideals lie in the same class (namely, the
class [I2]) and so the class group of Z[v/—5| has order 2.

0.23 (Oct 28) Real and Complex Embeddings, Minkowski’s Lattice Theorems

e Qur ability to make effective class group calculations, like the ones above, requires being able to get a good
estimate on the norm of the smallest nonzero element in a nonzero ideal I.

o Saying that an element o« € I has small norm is the same as saying that the product of the absolute
values of the various complex embeddings o1, ...,0, of « is small.

o So let us make some brief observations about the complex embeddings of K first.

e Definition: If K is a number field and ¢ : K — C is an embedding of K, we say o is a real embedding if the
image of ¢ lies inside R, and otherwise we say ¢ is an imaginary embedding (or nonreal embedding).

o If 7 is a nonreal embedding, then 7 is also a nonreal embedding distinct from 7, so the nonreal embeddings
come in conjugate pairs.

o Often the term “complex embedding” is used to refer specifically to the nonreal embeddings, though we
have been using the term “complex embedding” to refer to any embedding, real or complex.

e Definition: If K is a number field with r real embeddings and 2s nonreal embeddings, the signature of K is
the ordered pair (r,s). Note that if K has degree n over Q, then r + 2s = n. A number field with s = 0 is
totally real (all its embeddings are real) while a number field with r = 0 is totally complex (all its embeddings
are nonreal).

o Example: The real quadratic fields Q(v/D) for D > 0 are totally real and have signature (2, 0), while the
imaginary quadratic fields Q(v/D) for D < 0 are totally complex and have signature (0, 1).

o Example: The field Q(¢/n) for any cubefree integer n has signature (1,1) since the minimal polynomial

23 — n has one real root and two nonreal roots.

o More generally, for K = Q(«), if the minimal polynomial m(x) of « has r real roots and 2s pairs of
complex conjugate roots, then K has signature (r, s).

o Exercise: Show that if K/Q is Galois, then K must be totally real or totally imaginary.

o Exercise: Show that if K has signature (r,s), then the sign of disc(K) is (—1)°. [Hint: What does
complex conjugation do to the discriminant matrix?]

o Now suppose K has r real embeddings o1,...,0, and 2s complex embeddings 71,77, ..., 7s, 75, Where
r 4 2s =n.

o We would like to consider all of the complex embeddings of a given element o« € K together. To do
this we only need the values of half of the complex embeddings, since the other half are their complex
conjugates.

o This suggests we should use the natural map ¢ : K — R"XC® via p(a) = (01(a), ..., 0. (), 11 (), ..., 7s(a)),
which is not only an additive group homomorphism but also a Q-linear transformation.

o By decomposing the copies of C into real and imaginary parts we may equivalently view ¢ as a homo-
morphism ¢ : K — R”, which in many cases will be more convenient for us:

e Definition: If K is a number field with r real embeddings and 2s nonreal embeddings, the Minkowski embedding
is the Q-linear map ¢ : K — R"™ defined by p(a) = (01(a), ..., or(a), Re[r ()], Im[r1 ()], ..., Re[rs ()], Im[rs(a)]).

o Example: For K = Q(v/D) with D > 0, the Minkowski map is ¢(a + bvD) = (a + bv/D,a — by/D).

o Example: For K = Q(v/D) with D < 0, the Minkowski map is ¢(a + bv/D) = (a, by/|D]).

o Example: For K = Q(D'/?), the Minkowski map is ¢(a 4+ bD'/? + ¢D?/3) = (a + bD'/3 + ¢D?/3,a —
1bDV3 — 1ep2/3 M3pD1/3 - ¥3.D2/3),

2
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o Clearly ker¢ = 0 so ¢ is injective (thus justifying our use of the word “embedding”).

o Thus, if we choose any Q-basis a1, ..., a, of K, then by Q-linearity the images p(ay),...,¢(a,) are a
basis for im(¢): thus, im(y) is an n-dimensional Q-vector space.

o We want to understand the image of Ok under ¢ as an additive group. If we choose an integral basis
aq, ..., an of Ok, then again by linearity as above, we see that ¢(ay), ..., ¢(a,) will be an integral basis
for (Ok): the elements clearly span, and they are linearly independent because aq, ..., «, are.

o Thus, ¢(Ok) is a rank-n additive subgroup of R™.

o Exercise: Suppose G is an additive subgroup of R™. Show that the following are equivalent (in such a
case we say G is discrete):

1. G is nowhere dense in R™.

2. Every compact subset of R™ contains finitely many points of G.

3. Some open neighborhood of 0 contains finitely many points of G.

4. The rank of G as an abelian group equals the dimension of G ®z R as an R-vector subspace of R™.

o We claim that ¢(Ok) is also discrete. To see this, consider the open neighborhood S = {(z1,...,2,) :
|z;| < 1/2} of the origin and suppose a € Ok has p(a) € S.

o Then |o;(a)] < 1/2 for each embedding o; (real or complex), but this would imply |[Ng,g(a)| =
[L loi(e)] < (1/2)™ < 1 but since the norm is an integer, it would have to be zero, implying o = 0.

o This means the only point of S in ¢(Ok) is the origin ¢(0), so by the exercise above, ¢(Ok) is discrete.

o Hence p(Ok) is a discrete rank-n additive subgroup of R™, which is to say, a lattice in R™.

o Exercise: Let K be a number field and ¢ : K — R™ be the Minkowski map. Show that ¢(K) is dense in
R™. [Hint: Replace integer coeflicients with rational ones.|

e Definition: A lattice in R™ is an additive subgroup given by the Z-span of an R-basis for R™.

o More explicitly, for any integral basis aq, ..., a, of Ok, ©(Ok) is the Z-span of p(ay),...,p(ay).

o A fundamental region for this lattice can be obtained by drawing all of the vectors p(ay),. .., ¢(ay)
outward from the origin, and then filling them in to create a “skew box”. The points in this fundamental
region give unique representatives for the quotient group R™ /A, up to an appropriate choice of represen-
tatives on the boundary of the region. Since the fundamental region is simply a representative of R™ /A,
we call the n-measure® of the fundamental region the covolume of A.

o Exercise: Suppose A is a lattice in R™ with an integral basis vq,...,v,. Show that the covolume of A is
equal to |det(vy,...,v,)]|-

e By writing down a basis we can compute the volume of the fundamental region for ¢(Ok) and then for (1)
for any nonzero ideal I:

e Proposition (Measures of Fundamental Regions): Let K be a number field of signature (r, s) and discriminant
A = disc(K), and let ¢ : K — R™ be the Minkowski map.

1. The covolume of ¢(Of) is equal to 275 /|disc(K)].

o Proof: Let a,...,a, be an integral basis for Ok . By the exercise above, we see that n-measure of
the fundamental region for ¢(Ok) is the (absolute value of the) determinant of the matrix whose
columns are the vectors ¢(a1),. .., o(an).
01(041) O'l(Oén) Ul(al) Ol(an)
UT'(al) e 0-7'(05n) UT(al) UT(an)
. . . | Re[ri(a1)] -+ Re[m(an)] | 1 71 () mi(an) | 1 -
o This determinant is Im[r(a1)] - Imfn(an)] |~ @0 | ml@) - mlam) |- i—(%)s disc(K).
Re[rs(an)] -+ Re[rs(on)] Ts(ln) - Ta(om)
Im[rs(ar)] -~ Im(rs(an)] Ts(ar) - T(an)

6By n-measure we mean the Lebesgue measure on R™, like any sensible person would. (But we say “n-measure” because the only
sets we consider are extremely nice, so we do not need to be concerned with of any of the interesting subtleties of measure theory.)
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o

By taking the absolute value above we see immediately that the covolume of p(Ok) is 27°/|disc(K)|.

2. For any nonzero ideal I of Ok, the covolume of ¢(I) is N(I)-27%/|disc(K)].

o

o

o

Proof: Note that A; = ¢(I) is a sublattice (i.e., an additive subgroup) of A = p(Ok).

Since ¢ is an isomorphism of additive abelian groups that maps Ok to A and I to Aj, we see that
A/Ar = Ok /I. Taking cardinalities then yields #(A/Ar) = #(0 5/1) = N(I).

Geometrically, this means that the fundamental domain for A; consists of N(I) copies of the funda-
mental domain for A, and then the desired result follows immediately from (1).

e Our goal now is to show that if a convex set in R™ is sufficiently nice and has a sufficiently large n-measure,
it must contain a lattice point.

o To obtain our bound, we will then apply these results to the region in R" corresponding to the points
of small norm, where “small” is chosen in such a way that we obtain a nonzero point lying in the lattice

A:

(), which will provide the desired nonzero element a € I of small norm.

e Theorem (Minkowski Lattice Theorems): Let n > 1. Recall that a set B in R™ is convex when for any
x,y € B, all points on the line segment joining x and y are also in B, and a set is centrally symmetric when
x € B implies —x € B.

1. (Blichfeldt’s Principle) If S is a bounded measurable set in R” whose n-measure is greater than 1, then
there exist two points  and y in S such that z — y has integer coordinates.

(e]

(e]

Proof: The idea is essentially to use the pigeonhole principle.

For each lattice point a = (a1,--- ,ay), let B, be the “box” consisting of the points (z1,---,2,)
whose coordinates satisfy a; < x; < a;41, and let S, = S N B, be the intersection of S with B,.
Since each point of S lies in exactly one box B,, we have ) ;. vol(S,) = vol(S).

Now let S be the set S, translated by the vector —a: this translation preserves measure and moves
Ba to Bo.

Then ), ,n vol(Sy) = vol(S) > 1. But since all of the sets S} lie inside By which has volume 1,
there must be some overlap.

If S5 NS;, contains some point P, then P+ a; € S and also P + az € S. Taking z = P + a; and
y = P + as we see that x — y = a; — ao has integer coordinates, as claimed.

Remark: This proof can also be formulated analytically in terms of the characteristic function
1 ifxzeB
0 ifz¢gB’
write ¢(z) = >, czn xB(z + v), then ¢ is bounded because B is bounded so there are only finitely
many nonzero terms for any v € Z". We may then integrate both sides and change the order
of integration and summation (because the sum is a finite sum of nonnegative terms) and use the
translation-invariance of the measure on R" to see that f[O,l]" Y(x)de = f[O,l]” Y wezn XB(T+V) dr =
> vezn f[o,l]n xB(z4v)de =3 7 f[O,l]"+v xB(x)dx = [;, xB(x)dz, and this last integral is simply
the measure of B.

xp(x) = which is integrable by the hypothesis that B is a measurable set. If we

2. Let B be a convex open centrally-symmetric set in R™ whose n-measure is greater than 2”. Then B
contains a nonzero point of Z".

(e]

We note here that the bound 2™ is sharp, since the open box (—1, 1) has measure 2" and is convex,
open, and centrally symmetric, but its only Z"-point is the origin.

Proof: Suppose B is a convex open set symmetric about 0 of measure > 2™ and let %B = {%x tx €
B}.

Notice that since the measure of B is greater than, the measure of %B is greater than 1. Now apply
Blichfeldt’s principle (1) to the set %B: we obtain distinct points x,y € %B such that = — y has
integer coordinates.

Then 2x € B and 2y € B. Furthermore, since B is symmetric about the origin, —2y € B.
Then because B is convex, the midpoint of the line segment joining 2z and —2y lies in B.
This midpoint  — y yields the desired nonzero point in B whose coordinates are integers.
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3.

Let A be a lattice in R™ whose fundamental domain has n-measure V. If B is a convex open centrally-
symmetric set in R™ whose n-measure is greater than 2"V, then B contains a nonzero point of A.

o Proof: Apply the linear transformation 7" sending the basis vectors of A to the standard basis of R™.

o Linear transformations preserve open sets, convex sets, and central symmetry, so the image of B
under this map is still open, convex, and centrally symmetric.

o The volume of T'(B) is equal to 1/V times the volume of B by the geometric properties of determi-
nants, so this new open convex centrally-symmetric set T'(B) has volume > 2.

o Applying (2) to T(B) yields that T(B) contains a nonzero point all of whose coordinates are integers.
This immediately implies that B contains a nonzero point of A, as required.

o Exercigse: Let A be a lattice in R™ whose fundamental domain has n-measure V. Show that if B is a
convex closed centrally-symmetric set in R™ whose n-measure is greater than or equal to 2"V, then
B contains a nonzero point of A.

0.24 (Oct 30) Student Presentations of HW3 Problems

0.25 (Oct 31) The Minkowski Bound

e We would now like to apply Minkowski’s lattice theorem (3) to the lattice A = ¢(I) for a nonzero ideal I and
an appropriate region in R™ consisting of points of small norm.

e}

(¢]

If K has signature (r, s), if we write ¢(a) = (01(@), . .., 0-(a), Re[r1 ()], Im[r ()], . . ., Re[Ts ()], Im[75 (x)])
(1, Tr Y1, 21, -+, Ys, 25), then we can see that N(a) = o1(a) - or(@)m1(a)m (@) - 7s(a) s () =
o1(@) - op(@) (@) - re(@) = 2y -z (yf 4 23) - (2 + 22).

Thus, the region consisting of points of “norm less than X” is the region (z1, ..., %r, Y1, 21, .- -, Ys, 2s) € R™

With |x1 ...xT(y% +Z%)"'(y§+zg)| < X.

This region is obviously centrally symmetric, and in some cases it is centrally symmetric and bounded:
for instance, when (r,s) = (0,1) it is the region |y* + z%| < X which is an open disc.

Unfortunately, this is not always the case: for instance, when (r,s) = (2,0) it is the region |z122] < X
which contains both coordinate axes, so it is neither convex nor bounded (since the convex hull of the
coordinate axes is the entire plane).

One way we can make the region convex is to take the set B defined by the inequalities |z;| < X,
y? + 27 <Y for positive reals X and Y, whose measure is (2X)"(7Y)* and where the norm function is
bounded by X"Y?. This region is obviously convex, open, and centrally symmetric.

Then for any lattice A whose fundamental region has n-measure V, whenever (2X)"(7Y)® > 2"V we
would get a nonzero point of A of norm at most XY,
4 S
So, taking N = X"Y* for any N > 2"V2 "% = <> V' we obtain a nonzero point of A of norm at
™
most V.

But in fact, we can get a better bound than this by intermingling all of the variables, as follows:

e Theorem (Minkowski Bound): Let K be a number field of degree n over Q with signature (r, s).

1.

InR" = (21,...,Zr, Y1, 21, - - -, Ys, Zs), for any ¢ > 0 the region B, defined by |x1|+- - -+|z,|+2(\/y? + 22+
T

2 s
<-4 /Y2 4 22) < t is open, convex, centrally symmetric, and has n-measure equal to — (§> t".
n!

OM: Letf(xlv"‘vysvzs):‘x1|+"'+|x’r‘+2( y%—’_Z%—’——'— y3+22)
o Clearly By is open since it is the inverse image of an open set under the continuous function f, and
equally clearly f is an even function, so By is centrally symmetric.

o To see that By is convex we simply note that each component function of f is convex, so for x,y € B,
and 0 < u <1 we have fux+ (1 —u)y) <uf(x)+ (1 —u)f(y) <t, hence ux+ (1 —u)y € B; also.

o It remains to compute the measure of B;. Since f(Ax) = Af(x) for any positive \, we see B, = tB;
and so it suffices to compute the n-measure of Bj.
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o Now let M, ¢(t) be the n-measure of the set |z1| + -+ + |z, + 2(\/¥5 + 27 + -+ + VY2 + 22) < ¢;
note that M, ¢(t) = t"+25 M, 4(1).

o First, by changing to polar coordinates we can see that My (1) = f\/y§+zf+---+\/y’;‘+z§<1/2 dp
T, T, 1
f’r‘1+---+'r‘3<1/2 Ty Ts d""l T dedol T dab = (5) fwl+"'+ws<1 Wy - Ws dUJ1 co dws = (5) (28)' as
follows by a straightforward induction.
o Then by mtegratmg on the first variable, when r > 0 we have M, (1) = 2 fo r—1,s(1 —x)de =
2M,_1,4( z)(r=+2s gy = M,_q 4(1).
1, fo &£ = "+ 25 1,(( )
2rtr+2$
o By atrivial induction and the above, M, 5(t) = t"725M,. ,(1) = My (1) =

(r+2s)(r+2s—1)---(1+2s)
2 (m/2)5tr 2 2" (7r

(r+2s)(r+2s—1)---(1+2s)-(2s)! -] 5) t", as desired.

2. With the “norm” function N(21,..., T, Y1, 21, ., Ys, 2s) = 1 - Ty +22) - (y2 + 22) on R, for any
(

' S
x) < n (8> V.
n" \mw

o Proof: Consider the region B; from (1) defined by |z1|+- -+ x| +2(\/y? + 22+ +/y2 +22) < t

r

2 s
which by (1) is convex, open, and centrally symmetric with n-measure equal to — (5) tm.
n.

2" s 8\°
o Therefore, by Minkowski’s lattice theorem, if — (E> t" > 2"V, which is to say, t" > n! () V,
n! T

lattice of covolume V', there exists a nonzero point x € A with N

2
then B; will contain a nonzero point x € A.

o Then for this x € By, by the arithmetic-geometric mean inequality applied to the list of n nonnegative
real numbers |71, ..., |z |, VY3 + 23, VYZ + 22, ., VY2 + 22, /Y2 + 22, we have

NEY™ = o[y + B+ Vi 2V A

1
< il 2R VD) <

S tn ! S
o Thus, taking t" — n! (8) V from above, we see N(x) < — = n <8> V', as claimed.
T ™

n* n"
I /4\°
3. For any nonzero ideal I of O, there exists a nonzero o € I such that [Ny o(I)| < N(I)-— v <) /|disc K.
n" \mw

o Proof: Apply (2) to the lattice A = ¢(I) whose covolume equals V = N(I)-27%,/|disc(K)| as
calculated earlier.
n! (8

S ' S
o The estimate we obtain is N(a) = N(¢(a)) = — () N(I)-27%,/|disc(K)| = N(I)-— s <4> +/|disc K|,
™ ™

nn
as claimed.

A
4. (Minkowski Bound) Every ideal class of Ok contains an ideal J such that N(J) < % <) /|disc K.
n® \

o Proof: This follows by the same proof we gave earlier, but with the improved constant cx provided
by (4).

e Exercise: Show that if K is a number field of degree n over Q with signature (r,s), show that |disc K| >

2s n\ 2
(g) (n'> . Show also that if n > 1 then |disc K| > 1, and deduce that Q has no unramified extensions.
n!

e Minkowski’s bound is quite a lot better than the estimate we obtained earlier, since it is asymptotic to
/|disc K| rather than to the discriminant itself, so the size of the computations we need to make to calculate
class groups is much smaller.

o Let us begin by investigating the class groups of quadratic fields.

e Example (again): Show that the class group of K = Q(+/—5) has order 2.
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o

(¢]

Here we have n = 2, s = 1, and disc(K) = —20, so Minkowski’s bound says that every ideal class of R
contains an ideal of norm at most 2\/ﬁ ~ 2.8471 < 3, so the only nontrivial ideals we need to consider
are ideals of norm 2. i

Since (2) splits as (2) = (2,1 + +/—5)?, and we have previously shown that (2,1 + 1/=5) is nonprincipal,

we conclude that the class group is generated by the nonprincipal ideal Iy = (2,1 + +/—5). Since I has
order 2 as I = (2), the class group has order 2 as claimed.

e Example: Show that the ring of integers of K = Q(1/—19) is a principal ideal domain.

(¢]

o

o

(¢]

Here we have n = 2, s = 1, and disc(K) = —19, so Minkowski’s bound says that every ideal class of R

2
contains an ideal of norm at most —+/19 = 2.7750 < 3, so the only nontrivial ideals we need to consider
e

are ideals of norm 2.

2

Since the minimal polynomial of the generator m(z) = z* — 2 + 5 is irreducible modulo 2, we see (2) is

inert so there are no ideals of norm 2 in Og.
Therefore, the only ideal class is the trivial class, so the class group is trivial and O 5 is a PID.

Remark: It can be shown that O g is not Euclidean with respect to any norm, so this ring provides
an example of a principal ideal domain that is not Euclidean.

e Example: Determine the class group of K = Q(+/5).

(¢]

e}

Here we have n = 2, s = 0, and disc(K) = 5, so Minkowski’s bound says that every ideal class of R

1
contains an ideal of norm at most 5\/5 ~ 1.1180 < 2, so there can be no nontrivial ideal classes.

Thus, the class group of Z[/5] is trivial.

e Example: Determine the class group of K = Q(v/10).

(¢]

Here we have n = 2, s = 0, and disc(K) = 40, so Minkowski’s bound says that every ideal class of R

1
contains an ideal of norm at most 5\/ 40 ~ 3.1623 < 4, so the only nontrivial ideals we need to consider
are ideals of norm 2 and norm 3.
Applying Dedekind-Kummer to the minimal polynomial m(z) = 22 — 10, we see that (2) is ramified
and (3) splits: explicitly, (2) = P§ for P, = (2,v/10) and (3) = P3P for P; = (3,1 + v/10) and
Pj=(3,1—-+/10).
Since 22 —10y? = 42, +3 has no solutions modulo 5, there are no elements of norm +2 or +3, so Py, P, P}
are non-principal.
Thus, [I3] is an element of order 2 in the class group since I is not principal but 12 is.

We can then compute 12 = (9,3 + 31/10, 11 + 24/10). To test for principality we can look for elements
of norm 9, and looking at such elements (e.g., 1 + \/ﬁ) will reveal this ideal is in fact principal and
generated by (14 1/10). Explicitly, 1 4+ /10 = 94 (3 4 3v/10) — (11 + 2/10) € I? and each generator is
divisible by 1+ +/10. Then (I3)? = (1 — 1/10), so [I3] and [I4] are both ideal classes of order 2 and they
are equal.

It remains to determine the relationship between I, and I5. Indeed, I 15 = (6,2+2v/10, 3v/10, 10++/10).
To test for principality we can look for elements of norm 6, and looking at such elements (e.g., 4 + /10)
will reveal this ideal is in fact principal and generated by (4 4 +/10), since 4 4 +/10 = (10 +1/10) — 6 and
each generator is divisible by 4 4 1/10. Thus since [I5][I3] = (1) = [I2]?, we see [I3] = [I3].

Thus, we conclude that there is one nonprincipal ideal class of order 2, so the class group is isomorphic
to Z/27.

e Example: Determine the class group of Q(1/—31).

(¢]

Here we have n = 2, s = 1, and disc(K) = —31, Minkowski’s bound says that every ideal class of R

2
contains an ideal of norm at most —+/31 & 3.5445 < 4, so the only nontrivial ideals we need to consider
0

are ideals of norm 2 and 3.
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o Applying Dedekind-Kummer to the minimal polynomial m(x) = 22 — x + 8 yields that 2 splits and 3 is
inert, so we may ignore 3.

o Explicitly we have (2) = PP} for Py = (2, £%=31) and P} = (2, 12421,
o We can check (by solving a? + 31b% = 8, 16) that there are no elements of norm 2 and the only elements
of norm 4 are +2, so since (2) = P, P} and P, # Pj, we see that neither P, nor P# is principal.

o On the other hand, P3 has norm 8, and there are elements of norm 8, namely, o = ¥=31 {31 Indeed, we
can see that P§ = (8,4a,2a?,a3) so this ideal contains 8 + 8a + a® = a. Thus P§ = («) is principal,
and so [P,] is an element of order 3 in the class group with inverse [Pj] = [P2]?.

o Therefore, the class group is generated by [P»] and is isomorphic to Z/3Z.
e Exercise: Show that for D = —2, —3, —7, —11, —19, —43, —67, —163, the class group of Q(v/D) is trivial.

o Heilbronn also showed that there were at most 10 imaginary quadratic fields of class number 1; since
the 9 listed above were well known to have trivial class group, this meant there could exist at most one
more. (Gauss had previously conjectured that there were only finitely many.)

o The nonexistence of this 10th field was essentially proven by Heegner in 1952 using modular forms, but
his proof had some minor gaps and it was not accepted” until Stark gave a full proof of the result in
1967. Baker also gave a proof, using an entirely different method (linear forms in logarithms), in 1966.

e Exercise: Show that for D = 2, 3, 6, 11, 13, 15, 17, 19, the class group of Q(v/D) is trivial.

o Unlike in the situation of imaginary quadratic fields, Gauss conjectured there are infinitely many real
quadratic fields of class number 1. As of 2024, this problem is still open.

o Many small values of D do yield real quadratic fields of class number 1, such as the ones above.

e Exercise: Compute the class groups of Q(v/—6), Q(+/—15), and Q(+/—17).
e Exercise: Show that the fields Q(v/7), Q(v/14), Q(v/23), and Q(+/29) all have class number 2.

e Exercise: Compute the class groups of Q(v/—6), Q(v/—15), and Q(v/—17).

e Exercise: Show that Q(v/79) has class number 4. Which group is its class group isomorphic to?
e Exercise: Show that Q(v/—103) has class number 5.

e Exercise: Show that Q(v/—29) has class number 6.

e Exercise: Show that Q(v/—71) has class number 7.

e We will mention that there are numerous other conjectures about various aspects of the class groups of real
and imaginary quadratic fields.

o One set of predictions are the Cohen-Lenstra heuristics, which posit, for odd primes p, the density with
which any given abelian p-group will appear as the p-power torsion part of a class group (i.e., the Sylow
p-subgroup) of a real or imaginary quadratic field.

o For the prime p = 2, the structures of p-power torsion subgroups of class groups are fully understood,
and are consequences of what is called genus theory, which is a name due to Gauss (as is the term
“equivalence class”, which first appeared in Gauss’s treatment of quadratic forms) that has nothing to do
with other uses of the word “genus”, e.g., in topology.

o Intuitively, the Cohen-Lenstra heuristics say that the probability, in an appropriate sense, that a given
abelian p-group P will occur as the p-part of the class group of an imaginary quadratic field should be
proportional to 1/#Aut(P). This may initially seem to be a rather unnatural weighting, but in fact it is
quite sensible in the appropriate context: given a group acting on a set X, if we wish to select an orbit
of the group uniformly at random, we should weight each of the elements of X by 1 over the size of its
orbit and then pick an element of X at random with that weighting.

"Heegner was not a professional mathematician (he was in fact a radio engineer and high school teacher), which certainly contributed
to the lack of belief in his claim to have settled a 150-year-old conjecture of Gauss by the broader mathematical community. Sadly, he
died in 1965, before his results gained general acceptance.
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0.26

o By summing 1/#Aut(P) over all finite abelian p-groups P, one obtains a constant pp, which can be com-

puted (though not easily). Then the Cohen-Lenstra heuristics predict that the proportion of imaginary
1/#Aut(P
quadratic fields whose p-power torsion subgroup is isomorphic to P is equal to M
HpP

o Some various results for other primes: the probability that the class number is divisible by 3 (i.e., that

the 3-part of the class group is not trivial) is approximately 43.99%, the probability that it is divisible
by 5 is approximately 23.97%, and the probability that it is divisible by 7 is approximately 16.32%.

o A similar heuristic holds for real quadratic fields, although the weighting is slightly different. For real

quadratic fields, the probability that a prime p divides the class number is predicted to be 1 —J],~,(1 —

p~*), which for p = 3 is approximately 15.98%, for p = 5 is approximately 4.96%, and for p = 7 is
approximately 2.37%.

o All of these results agree extremely well with the available numerical data.

(Nov 4) Computing More Class Groups

e Let us now compute some examples of class groups for higher-degree fields.

e Example: Show that the class group of K = Q(+/2) is trivial.

o We have n = 3, s = 1, and we have previously computed disc(K) = —108, so Minkowski’s bound says

that every ideal class contains an ideal of norm at most o —+/108 = 2.9404, so we only need to consider
™
2.

o Since (2) = P for P, = (2, V/2) = (V/2) we see that the unique prime ideal of norm 2 is principal, so the

class group of K is trivial.

e Example: Show that the class group of K = Q(+/10) is trivial.

o We have n = 3, s = 1, and we have previously computed disc(K) = —300, so Minkowski’s bound says
that every ideal class contains an ideal of norm at most o —+/300 ~ 4.9007, so we only need to consider
7r
2 and 3.

o With @ = V10 and 8 = #(1 4+ V10 + v/100), we have previously computed that (2) = P§ for P, =

(2,a) = (2 —a) and (3) = PP for P3 = (3,8) = (8) and P, = (3,-1+3) = (B8 — «).

o So since the prime ideals of norms 2 and 3 are all principal, the class group of K is trivial.

Exercise: Show that the class group of K = Q(+/5) is trivial.

Exercise: Show that the class group of K = Q(+/6) is trivial. (This can be done without computing an integral
basis for the ring of integers, but it ends up being Z[/6].)

Exercise: For K = Q(a) with o® — a + 1 = 0, show that the class group of K is trivial.

Example: Find the class group of K = Q(/7).

o By an argument similar to the one used for the other fields Q({/m), for o = /7 we can show that

{1,@,a?} is an integral basis for Of.

o Then we have n = 3, s = 1, and disc(K) = Nk ,g(30?) = =372, so Minkowski’s bound says that every

ideal class contains an ideal of norm at most o —v/3372 2 10.291, so we need to consider 2, 3, 5, and
™
7.

o Since we will need to compute element norms, we note also that Nk /q(a +ba + ca?) = a® +Tb> +49¢3 —

21abc and in particular observe that the norm of any element is congruent to a® = 0, +1 (mod 7).

o Since 2% —7 = (14+z)(1—z+2?) mod 2, we have (2) = P, P} with P, = (2,1+a) and P} = (2,1—a+a?).

Since there are no elements of norm +2 or +4 as noted above, both of these ideals are non-principal.
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Next, since 2° — 7 = (2 + z)® mod 3 we have (3) = P§ with P; = (3,2 + «). Since there are no elements
of norm 3 as noted above, Ps is non-principal, so since [P3]? is the trivial class, that means [Ps] is an
element of order 3 in the class group.

Further, we have 2° — 7 = (2 4+ z)(—1 — 2z + 2?) (mod 5), so (5) = P5P. with Ps = (5,2 + «) and
Pl = (5,—1 — 2a + a?). Again since there are no elements of norm +5 or £25, both P5 and P} are
nontrivial elements in the class group.

Finally, we obviously have (7) = P32 with P; = (7,a) = («) so this ideal is principal.

It remains to characterize the relationships between P, Ps, Ps, since we obviously have [P)] = [P2]™!
and [P] = [Ps]7L.

To do this we want to construct products among P», P3, Ps that are principal (hence must have norm
congruent to +1 mod 7). The smallest reasonable candidates are 6 and 15.

Searching briefly reveals N, g(—1 + ) = 6, meaning that we must have P,P; = (—1 + «) since these
are the only possible prime ideal factors that can produce a norm of 6. (Indeed we can see that —1 4+ «
lies in both ideals, as it should.)

Similarly, we can see that Ny /g(2 + «) = 15, so we must have P;P5 = (2 + «) since again these are the
only possible prime ideal factors that can produce a norm of 15. (Indeed we can see that 2 + « lies in
both ideals, as it should.)

So we see that [P;] = [P3]~! and [Ps] = [P3]7!, and so the ideal class group is generated by [Ps]. Since
[Ps] has order 3, that means the class group is isomorphic to Z/3Z.

e Example: Show that the class group of Q((y) is trivial for d = 3,4,5,6,7.

(¢]

Since Q(¢3) = Q(¢s) = Q(v/—3) and Q({4) = Q(7) the values d = 3,4, 6 follow from our earlier calcula-
tions. Recall also that we showed previously that disc(Q((,)) = (—1)PP~1/2pp=2,

For d = 5 we have n = ¢(d) = 4, s = 2 and disc(K) = 53, so Minkowski’s bound says that every

4
ideal class contains an ideal of norm at most - (—)?V125 =~ 1.6992, so we need not make any further
T
calculations to conclude the ideal class group is trivial.

For d = 7 we have n = ¢(d) = 6, s = 3 and disc(K) = —75, so Minkowski’s bound says that every ideal

6! 4
class contains an ideal of norm at most 5 (=)3V75 = 4.1295, so we only need to consider 2 and 3.
T

Since 2 has order 3 modulo 7, by our earlier analysis of the factorization of cyclotomic polynomials
modulo p we see that ®(z) factors as a product of two cubics mod 2, and so we have (2) = P, Py with
P,, P; each of norm 8. But these ideals’ norms exceed the Minkowski bound, so we can ignore them.
(Explicitly, P> = (2,1 + ¢7 +¢7) and Py = (2,1 + (7 +¢7).)

Likewise, since 3 has order 6 modulo 7, ®7(x) is irreducible mod 3, so (3) is inert.

It follows that there are no nonprincipal ideals of norm less than the Minkowski bound, and so the class
group of Q({7) is trivial.

e Exercise: Show that the class group of Q((g) is trivial. [Hint: What is N(1 — (g)?]

e Exercise: Show that the class group of Q({y) is trivial.

e Exercise: Show that the class group of Q(¢11) is trivial. [This isn’t as bad as it might look, but there is one
difficult prime.]

[¢]

We will mention here that it was shown independently by Montgomery and Uchida in 1971 that for p
prime, the class number of Q((,) is equal to 1 if and only if p < 19. This was extended by Malsey to
determine fully the fields Q(¢,,) of class number 1 (there turn out to be 30 distinct fields).

e Exercise: Show that the class group of Q((23) is not trivial. [Hint: Let P be a prime lying above 23 in
Q(v—23) and let Q lie above P in Q((23). Show that Ngc,.)/q(,/=23)(Q) = P and that P is nonprincipal;
deduce @ is nonprincipal and in fact that [Q] has order 3.]

e Example: Find the class group of K = Q(+/5,v13).
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We have previously computed that Ox = Z[H'T‘/g, %] and that disc(K) = 52132.

Since obviously all of the embeddings of K are real we have r = 4 and s = 0, so since n = 4, Minkowski’s
4!

bound says that every ideal class contains an ideal of norm at most Tl V52132 = 6.09375, so we must

consider 2, 3, and 5.
_ VB4HVI3 5 145
Let a = +2 , b= +2

14-27\/@’ which are all in Og-.

,and v =
For p = 3, we previously computed (3) = Q3Q% where Q3 = (3, —1+a+a?) and Q5 = (3, -1 — a+a?).
Each of these ideals has norm 9, which exceeds the Minkowski bound, so we may ignore them.

For p = 5 we also computed (5) = Q% where Q5 = (5,3 + «?). This ideal has norm 25, which again
exceeds the Minkowski bound, so we may ignore it.

For p = 2 we exploited the intermediate field Q(v/5) to see that 20k = Q2Q) where Q2 = (2,7 — ) and
Q5= (2,7— B —1). (We can confirm that this form of factorization is correct using Ore’s factorization
theorem to see that (2) factors as the product of two prime powers each of which has ef = 2, but since
2 is unramified, there must be two prime ideals each with f = 2, meaning that they have norm 4.)

But we can also readily check that y— 8 = M has norm 4, so it generates @2, and then 2/(y—f) =

M generates 5. Both ideals are principal, so we conclude there are no nonprincipal ideal classes
and that the class group is trivial.

e Exercise: Show that the class group of K = Q(v/2,/—3) is trivial but that the class group of F' = Q(v/—6)
has order 2. (Thus, class numbers can decrease when taking field extensions.)

0.27 (Nov 6) Dirichlet’s Unit Theorem

e Our goal now is to study the multiplicative group of units in the ring of integers Ok for a number field K.

o

o

[¢]

[¢]

[¢]

As we already showed quite a while ago, an element a € O is a unit if and only if Nk /g(a) = £1.

Any torsion element in the unit group is (by definition) a root of unity. Furthermore, if (; € K, then
the cyclotomic field Q(¢4) would be a subfield of K, and therefore by considering degrees we would
necessarily have ¢(d) < [K : Q.

The roots of unity in K always include +1, and indeed if K has any real embeddings these are the only
possible roots of unity. (Of course, if K is totally complex, then K can have other roots of unity.)

Since there are only finitely many integers d with p(d) less than a fixed positive integer (as follows for
instance from the easy estimate ¢(d) > v/d for d > 2), we see that there are only finitely many roots of
unity in K, and so since the composite of the fields Q(Ca), Q(¢p) is Q(Ciem(a,p)) We see that the torsion
subgroup of the unit group is a finite cyclic group consisting of the roots of unity in K. Alternatively,
we could appeal directly to the fact that a finite multiplicative subgroup of a field is cyclic:

Exercise: Let F' be a field and let G be a finite multiplicative subgroup of the multiplicative group F*.
Show that G is cyclic. [Hint: Consider solving #¢ — 1 =0 in F[z].]

e The remaining (more difficult) task is to understand the torsion-free part of the unit group.

o

Our goal is to use a similar strategy as the one we used to understand the additive structure of Ok
in establishing the Minkowski bound: there, we constructed a group homomorphism ¢ : K — R" and
exploited the fact that the image of Ok was a lattice.

So we would like to try a similar approach here: namely, constructing a group homomorphism ) : K* —
R™ into Euclidean space, and then showing that the image of the unit group is a lattice.

For a real embedding o, restricting to nonzero elements yields a homomorphism ¢ : K* — R* of
multiplicative groups, but to exploit lattice structures we need the image to be an additive group. There
is an obvious way to achieve this: namely, by taking logarithms afterwards.

Since we clearly want to avoid having to deal with the logarithm of —1 we use the map a — log |o(a)].
This also works equally well for a complex embedding, since it allows us to avoid the issues of nonunique-
ness of complex logarithms, but it does make the complex-conjugate embeddings redundant, since they
have the same absolute values.
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o If K has real embeddings o1, ..., 0, and nonreal embeddings 71,71, . .., Ts, 75, we see that we can construct
the desired map 1 as the composition of the Minkowski map ¢ : K* — R™\{0} with the logarithmic map
log : R™\{0} — R"** vialog(z1,...,2r,¥1, 21, - -, ¥s, 2s) = (log |z1], ..., log |x,|,log(y?+23), ..., log(y2+

22))-
e By exploiting the logarithmic map, we can characterize the structure of the unit group:

e Theorem (Dirichlet’s Unit Theorem): Let K be a number field with signature (r,s), with real embed-
dings o1,...,0, and nonreal embeddings 71,77,...,7s,7s. Define the map ¢ : K* — R™* via ¢(a) =
(logloi(a)l,...,log|oy(a)],log |mi(a)?, ... ,log|Ts()|?), let Uk be the unit group of Ok, and let N = Ng/q
denote the norm.

1. The map v is a group homomorphism: ¢ (af) = ¥(a) + (B) for all o, 5 € K*.

o Proof: Clear, since log|o(af)| = log|o(a)a(B)| = log|o(a)| + log|o(B)| for each embedding o, so
the required property holds in each coordinate.

2. The image (U ) is contained in the hyperplane H C R™"* given by y; + 42 + - + y4s = 0, and in
fact Y(Uk) = HNY(Og\{0}).
o Proof: Observe that N(«) = o1(a) - - o ()1 ()1 () - - - Ts () Ts (0) so taking absolute values yields
IN(@)] = [or(@)] -~ -for(@)] - 71 (e )|2 [7s().
o Then for « € Ug we have |[N(a)| = 1 so for ¥(a) = (Y1, ,Yr+s) We see y1 + -+ + Ypps =
log |1 ()| + -+ + log |o,-()| + log |71 ()| + log |7s(a)|? = log 1 = 0 as claimed.
o Conversely, if & € Ox\{0} has (o) = (y1," - ,Yr+s) Where y; + -+ + yr1s = 0 then by the same
calculation we see |N ()| = |o1(a)| -+ |o ()] - |71 (a)]? -+ |7s(a)|?> = 1 and so « is a unit.
3. If B is any bounded subset, of R"**, then 1~!(B) N Of is finite, hence 1 ~1(B) N U is also finite.

o Proof: As noted earlier, ¢ is the composition of the Minkowski map ¢ : K* — R™\{0} with the loga-
rithmic map log : ]R”\{O} — R vialog(@1, ..., T, Y1, 21, - - -, Yss 2s) = (log|z1], . .., log |z, log(y3+
22),... log(y? + 22)).

o If Bis bounded in R"* then the inverse image of B under the logarithmic map is obviously bounded
in R”. Then because p(Ok) is a lattice, we see that p(Ox) Nlog™'(B) is finite, since any lattice
has only finitely many elements in any bounded region.

o Finally, since ¢ is injective, taking the inverse image under ¢ shows that Ox N1 ~1(B) is also finite,
hence so is Ux N1~ (B) since Uk is a subset of Of.

=

The kernel ker(¢)) is finite and consists of the roots of unity in K.
o Proof: The first part is immediate by taking B = {0} in (3). Then because ker(t)) is a finite subgroup
of the unit group, all its elements must be roots of unity.

o On the other hand, since |o(¢)| = 1 for any complex embedding o and any root of unity ¢, so ker(¢))
does contain all roots of unity in K, so ker(t)) is precisely the roots of unity in K.

(@]

. The image ¢ (Uk) is a lattice of rank at most r + s — 1.

o Proof: By (3), ¥(Uk) has the property that its intersection with any bounded subset of R™** is
finite. Since it is an additive subgroup of R"** by (1), it is a lattice, and therefore its rank is at most
r+s.

o But by (2) we see that ¢(Uk) is contained in a hyperplane hence its rank cannot be r + s (since this
is incompatible with being a subset of a codimension-1 subspace of R"™"%), so the rank is at most
r+s—1.

6. The unit group Uk is a finitely generated abelian group of rank at most r + s — 1.
o Proof: This is immediate from applying the first isomorphism theorem to (4) and (5).

7. For any fixed embedding o of K (real or nonreal), there exists a positive constant C' such that for any
nonzero o € O there exists a nonzero 8 € Og with |N(5)| < C and such that log|o;(8)| < log |o; ()|
for all embeddings o; # o.

o Proof: Suppose that ¥ () = (a1,...,Gr, Grg1,- .-, Qrrs)-
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o Let B be the region in R™ defined by |x1] < c1, ... , |2,] < ¢ and Y3 + 23 < cop1y oo, Y2 + 22 < Crgs
where the ¢; are chosen so that 0 < ¢; < e* for each a; except the one corresponding to the special
embedding o, which is chosen (potentially to be very large) so that cicz -+ - crys = (2)%y/[disc K.

o Then B is an open convex centrally-symmetric region with n-measure equal to (2¢1) - - - (2¢.)(merg1) -+ (TCrps) =
2 (2)%y/|disc K| = 27+2¢ /[disc K| = 2"/|disc K|, hence by Minkowski’s lattice theorem it con-
tains a nonzero element ¢(8) of the lattice A = (O ) where ¢ is the Minkowski map. (Recall that
as we have previously shown, the covolume of A is 4/|disc K|.)

o Then 8 has [N(8)| < (2)*+/|disc K| and log |o;(8)| < log¢; = a; = log |o;()| for each o; # o, so we
may take C' = (£)%y/|disc K.

8. For any fixed embedding o of K (real or nonreal), there exists a unit v € Ux such that log |o;(u)| < 0
for all o; # o, and with log|o(u)| > 0.

o Proof: Let ay be an arbitrary element of Ok and apply (7) iteratively to obtain a sequence of nonzero
elements oy, g, ... of elements of Ok such that log|o;(ax+1)| < log|o;(ag)| for each o; # o, where
the norms |N(ay)| are uniformly bounded above by the constant C.

o Then since there are only finitely many ideals with norm bounded by C|, there are only finitely many
possibilities for the principal ideals (ay), and so by the pigeonhole principle, two of them must be
equal.

o If () = (ayp) with a < b then a, and o, are associates: then the unit u = o oy, has log|o;(u)| =
log |o; ()| — log |o;(ap)| < 0 for each o; # o.

o Finally, by (2), since the sum ), log|o;(u)| is zero and all terms with o; # o are negative, the
remaining term log |o(u)| must be positive.

9. The unit group Uk is a finitely generated abelian group of rank equal to r+s—1 whose torsion subgroup
consists of the roots of unity in K.

o Exercise: Suppose that M is an m x m real matrix whose diagonal entries are positive, whose off-
diagonal entries are negative, and whose row sums are all zero. Show that M has rank m — 1 and
that any m — 1 columns are a basis for M. [Hint: Suppose there is a linear dependence involving
m — 1 of the columns. Rescale to assume that the largest coefficient a;, of the dependence is 1 and
the others are at most 1. Look at the kth row to obtain a contradiction.]

o Proof: Using (8), construct units ui, ug, ..., ur+s such that log|o;(u;)| is negative when ¢ # j and
positive when ¢ = j. By the exercise above, the rank of the (r + s) x (r + s) matrix M whose
(i, 7)-entry is log|o;(u;)| is equal to r + s — 1. Thus, the logarithms of (any) of r + s — 1 of these
units are additively independent, hence the units themselves are multiplicatively independent.

o We conclude that the rank of Uk as an abelian group is at least r + s — 1, so together with (6) we
see its rank is exactly r + s — 1. Finally, the statement about torsion was already shown earlier.

e From (9) we see that if we take uq,...,u,1s_1 to be any set of generators for the torsion-free part of Uk, then
the full set of units in K are those elements of the form u = Cuf" - - - u, 37} for some root of unity ( € K and

any integers aj,...,Qp4s—1-

e Definition: For any number field K with signature (r,s), the unit rank of K is » + s — 1. We say that

units uq, ..., u.4s—1 form a fundamental system of units when all units of K can be written in the form
Cuft - u:ff;:f for some root of unity ¢ € K and some integers ay,...,a,1s—1. Equivalently, uy, ..., urps-1

are a fundamental system of units when they generate the torsion-free part of the unit group Uk .

o We can see immediately that Q of signature (1,0) and the imaginary quadratic fields Q(v/D) for D < 0
with signature (0,1) are the only fields with unit rank zero.

o In general it can be quite difficult to construct a fundamental system of units. In principle, however,
the argument used in the proof above (constructing units with most of their complex embeddings small,
with only one that is large) can be converted into a computational algorithm.

e Before moving further, we will mention also that the matrix considered in the proof of (9), whose entries are
the logarithms of the absolute values of the various complex embeddings of a set of generators of the unit
group, turns out to carry important information as well.

64



e Definition: For a number field K and any units wy, ..., w,+s—1 € Ok, we define their regulator R(w1, ..., Wy1s-1)
to be the absolute value of the determinant of the matrix {log|o;(w;)|}1<i j<r4+s—1 whose entries are the loga-
rithms of the absolute values of the real and nonconjugate complex embeddings, with one embedding omitted.
(We take the regulator of the empty set to be 1.)

o Although the definition involves various choices (the ordering of the embeddings, which embedding is
omitted) it is easy to see from the properties of determinants and the fact that ), log |o;(u)| = 0 for any
unit u, that the choices do not affect the value of the regulator.

o Additionally, we see that R(ws, ..., w,4+s—1) is zero if and only if the units wy, ..., w,+s—1 are multiplica-
tively dependent, as follows immediately by writing wy, ..., w,+s—1 in terms of a fundamental system of
units.

o In the same way, by changing basis we see that R(wy, ..., Wrq1s—1) = R(u1, ..., Uprs—1) if g, ..., Upps—1

is another fundamental system of units, so the regulators of any fundamental system of units are the
same: thus, we refer to this quantity as the regulator of K.

0.28 (Nov 7) Examples of Unit Groups

e The real quadratic fields Q(v/D) with D > 0 have signature (2,0) hence have unit rank 1. Thus, their unit
groups are of the form Uy = {4u?: d € Z} for a fundamental unit u.

o For real quadratic fields, we can find the fundamental unit explicitly by finding the minimal solution to
the Pell equation a* — Db? = 44 in integers a, b; then the fundamental unit is u = %(a +bVD). (When

D = 2,3 (mod 4) we can instead just solve a®> — Db? = +1 and use u = a + bv/D.)

o Exercise: Suppose K is a real quadratic field. Show that there are four possible fundamental units, and
if one of them is u then the others are —u, u, and —u. Conclude that there is a unique fundamental unit
of the form a + bv/D where a,b € Q are positive, and indeed that among all units of K with positive
coefficients, the fundamental unit is the one with a and b minimal.

o By the observations above, we can find the fundamental units for real quadratic fields Q(v/D) by finding
the minimal positive solution to the corresponding Pell equation. Here are some examples for small D,
which can be found by inspection or a brief search:

y D | 2 | 3 ] 5 | 6 | 7 ] 10 [ 11 ] 13 \
Fund. Unit | 1++v2 | 2+v3 | (1+5)/2 | 5+2V6 | 8 +3V7 | 3++/10 | 10+ 311 | (34 +13)/2
Norm —1 1 -1 1 1 —1 1 —1

o Exercise: Find the fundamental units for the quadratic fields Q(v/D) for D = 15, 17, 19, 21, 22.

o We mention also that the regulator of a real quadratic field Q(v/D) is the logarithm of its fundamental
unit a 4+ bv/D (where as above we choose the fundamental unit with a, b positive).

e For larger D, we require some deeper results from continued fractions and Pell’s equation to compute the
fundamental unit in an efficient manner.

o Werecall the notation [ag, a1, ..., ax] = agt——7— for a finite continued fraction and [ag, a1, ...] =
a1t 1

e —
ag

limg_o0[ao, a1, - . ., a] for an infinite continued fraction. Any irrational number « has a unique continued
fraction expansion with all a; € Z and a; > 0 for ¢ > 0, which may be computed recursively via ag = |«
1

oa—ag

and [a1,a9,...] =

p

o A basic result in Diophantine approximation states that if « is irrational and P is rational with |a — ‘ <
q q

202 then in fact P is a continued fraction convergent to c.
q

o It is then a straightforward inequality chase to deduce that if r € Z has 7? + |r| < D, then if  and y are

x
positive integers with £2 — Dy? = r then = is a continued fraction convergent to v/D.
Y
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o As noted above, to find the fundamental unit, we must solve the Pell’s equation z?> — Dy? = +1 or
+4 depending on D, so for D > 20, the fundamental unit is always obtained from a continued fraction
convergent to v/D.

o By a somewhat tedious analysis, one may show that the continued fraction expansion of v/ D is periodic
and of the form [ag, a1, as, -+ ,ax—_1, 2a0] with ag = [V D], and this expansion may be tabulated efficiently
using a method sometimes referred to as the “super magic box™:

* The rows in the table are the sequences A, Cy, an, Pn, Gn, and p2 — Dg% = (—=1)"Chy1.

x We compute the sequences a,, A4,, C, via the recurrences A,+1 = a,Cp — An, Cphy1 = (D —
A2.))/Cy, and ans1 = [(Any1+ao)/Chyr ] with initial conditions Ag = 0, Co = 1, and ag = |VD].
Once we reach a term with Cy, = 1 (or when D = 1 mod 4, the value C}, = 4) we stop, since we will
have finished computing the necessary continued fraction expansion in the previous step.

* We can then evaluate the convergents p,, /g, using the recurrence relations p,, = a,pn—1 + pn—2 and
Gn = @nGn—1 + Gn_o with initial conditions p_1 =1, pg = ag, ¢-1 =0, ¢o = 1.

e Example: Find the fundamental unit of Q(v/14).

o Here is the result of doing the super magic box calculation:

n —-1] 0 |1] 2 3 4
An = an,lcn,l — An,1 0 3 2 2 3
Cn=(D—-A2%)/C,_, 1[5 215
an = [(An + a0)/Ch] 3 (12 1] 6
DPn = GnPn—1 + Pn—2 1 3 |4 11|15 101
Qn = OnGn—1 1+ qn—2 0 1 1 3 4 27
p? — l4q> -5 2|5 1] -5
o Since 14 is not 1 mod 4, we continue until obtaining C4 = 1 and then compute the previous convergent
p3/qs = 15/4.

o This tells us that the fundamental unit of Z[v/14] is 15 + 41/14, with norm (—1)*Cy = 1.
e Example: Find the fundamental unit of Q(v/61).

o Here is the result of doing the super magic box calculation:

n 1] 0 1] 27 3
An = anflCnfl - Anfl 0 7 ) 7
Cp=(D—A2%)/Cps 1 |12 3
an = |(An + a0)/Ch] 7 1] 4] 3

Pn = QnDn—1 + Pn—2 1 7 [ 8 139125
Qn = QpQn—1 + Qn—2 1 1 5 16
p2 — 1442 12 3 | 4] 9

o Since 61 =1 (mod 4) we stop once we obtain C3 = 4, and then the previous convergent is ps/qa = 39/5.
o This tells us that the fundamental unit of Z[v/14] is 3(39 + 5v/61), with norm (—1)3C3/4 = —1.

e Unfortunately, we do not have an analogous criterion like the one provided by the basic theory of Pell’s
equation that allows us to construct the fundamental unit for other classes of fields.

o For certain classes of fields, however, we can make some basic estimates that will allow us at least to
identify with certainty the fundamental unit in some examples.

o For instance, the pure cubic fields Q(+/D) also have signature (1,1) so they likewise have unit rank 1,
and their unit groups are also of the form Ux = {#u? : d € Z} for a fundamental unit u. If we can find
a unit u that seems “small”, if we can obtain a lower bound on the size of u, we can attempt to use the
bound to show that u is actually the fundamental unit.

o So suppose K is any cubic field with signature (1,1) and discriminant D, and let u be a fundamental unit.
Implicitly identifying u with its real embedding, then by negating or taking a reciprocal as necessary we
may assume u > 1.
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o Then the three complex embeddings of u are u, re', re~# for some r > 0 and t € (0,27), so N (u) = ur?
hence r = u~'/? since ur? is positive and N (u) = &1. Then
—idisc(u) = —X(u—re")?(u—re ") (re' —re ")* = [u® — 2urcost +r** - (r’sint)
= sin?t- (42 —2cost +u"%/?)?
(W2 +u=3)2 — [(u3? + u=3/?) cost + 2sin? t]? + 4sin? ¢
(u?’/2 +u_3/2)2 +4=u4+u+6

IN

which yields a quadratic inequality in u2 that is easy enough to solve explicitly to get a lower bound on
u in terms of |disc(K)| < |disc(u)].

o A slightly weaker estimate that is often good enough is easily obtained by noting that because u > 1, we
have v > 1|D| -6 —u™® > 1|D| - 7.

e Example: Show that 1+ /2 4 ¥/4 is the fundamental unit of Q(+/2).

o Using the norm formula N(a + b2 + 0\3/11) = a3 + 2b% + 4¢3 — 6abe we see that this element does have
norm —1 hence it is a unit, and it (obviously) is not a root of unity, so since it is greater than 1, it must
be some positive power of the fundamental unit u.

o Since disc(X) = —108, the (real embedding of the) fundamental unit u satisfies u > (3 - 108 — 7)1/ ~
2.7144 by our analysis above. (Alternatively, solving u® 4+ u~3 4+ 6 > 27 directly yields u > 2.7568, so we
see the weaker estimate is fairly close anyway.)

o But now because 1 + /2 + /4 ~ 3.8473, we can see that this element is less than u? (which must be
greater than 7), so it must equal u itself.

e Exercise: For a® — a + 1 = 0, show that « is the fundamental unit of Q(«).
e Exercise: Show that 4 + 2+/7 + v/49 is the fundamental unit of Q(/7).
e Exercise: Show that (23 + 11v/10 + 5+/100) is the fundamental unit of Q(+/10).

e Finding units in other classes of fields is generally even more difficult, but we can still make some remarks
about the cyclotomic fields.

o The cyclotomic fields Q(¢,,) for n > 2 are totally complex hence have signature (0, 2¢(n)), so in general

they have unit rank 2¢(n) — 1.

o Since ¢(n) grows (generally) as n grows, we can only hope to construct systems of fundamental units
explicitly when n is small.

e We can collect some basic results about units in cyclotomic fields. A full characterization of the units in
general cyclotomic fields is quite difficult to come by, but we can at least construct some examples of units.

e Proposition (Some Units in Cyclotomic Fields): Let n > 3. Noting that Q((,) = Q({2,) when n is odd,
assume further that n # 2 (mod 4).

1. The roots of unity in K = Q((,,) are 4=¢¢ for integers d.

o Proof: Clearly all of these elements are roots of unity in K. To show these are all of the roots of unity
in K, suppose n has prime factorization n = 2"* - .- p* and the order of u has prime factorization

ord(u) = 2" - py*: we want to show that ord(u) divides 2n if n is odd, and otherwise divides n.

o We can see that urd®W/P;" is g primitive p;“th root of unity for each i, and conversely u can be
written as a product of p;“th roots of unity by the Chinese Remainder Theorem, so saying v € K is
equivalent to saying that Q((, ) is a subfield of K for each prime power p;".

o But as we have previously noted, Q(¢a) N Q(¢) = Q((ged(ab)), 80 Q(C,ui) N Q(¢,) can only equal
Q(¢,»+) when the field degrees ¢(p;") and ¢(ged(p;”,n)) = cp(p;nin(ui’ni)) are equal. It is easy to see
that this occurs if and only if n; > u;, or when n; =0, u; =1, and p; = 2.

o Equivalently, when ny > 0 (i.e., when n is odd) this means n; > u; for all ¢ whence ord(u) divides

n, and when ny = 0 (i.e., when n is even) we have n; > wu; for all i except ¢ = 2 where potentially
u; =n; + 1: this means instead that ord(u) will divide 2n.
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2. The field K = Q((,) is totally complex, and its maximal real subfield K, = K NR = Q(¢, + ¢ 1) is
totally real, and K/K is an extension of degree 2.

o Proof: All of the complex embeddings (¥ of (,, are nonreal, so K is totally complex, and so in
particular [K : K NR] > 1.

o Additionally, clearly ¢, + ¢, ! = 2cos(27/n) is real, as are all of its Galois conjugates (¥ + (% =
2cos(2rk/n) for k € Z, so the field K is totally real and is contained in K NR.

o On the other hand, since ¢, is a root of the quadratic polynomial m(z) = 2? — (¢, + ¢; )z + 1 in
K, [z], we see that [K : K;] <2. But then 1 < [ : KNR] < [K: K4] <2,s0infact KNR =K,
and [K : K] =2, as claimed.

o Exercise: Show that the unit ranks of K = Q(¢,) and K} = Q((,+¢,; ') are both equal to ¢(n)—1.

o The same phenomenon occurs (rather more trivially) with the imaginary quadratic fields and their
proper subfield Q, and in fact it turns out this is essentially the only situation where a field can have
a proper subfield with the same unit rank:

o Exercise: Suppose that L/K is an extension of number fields. Show that L and K have the same unit
rank if and only if L is totally complex, K is totally real, and [L : K| = 2, in which case K = LNR
is the maximal real subfield of L.

3. Let p be an odd prime and K = Q(¢,) with K = Q({, + {51). Then any unit u in Ok can be written
in the form wa where w is a unit of Ok : in other words, u is a root of unity times a real unit.

o Note that the exercise following (2) explains why this is plausible, because the unit ranks of Ok and
Ok are the same, so the quotient group of the units of Ox modulo the units of O, is finite. (We
note that in general, the quotient need not just consist of the nonreal roots of unity in K, since the
free part of the unit group of O, could be a proper subgroup of the free part of the unit group of
Ok.)

o Proof: Let & = u/u. Then « is an algebraic integer since @ is a unit. Additionally, for any complex
embedding o, we see |o(«a)| = |o(u)/o(@)| = ‘a(u)/a(u)‘ = 1 since complex conjugation commutes
with ¢ and any complex number has the same absolute value as its conjugate.

o Thus we see u/u is an algebraic integer all of whose conjugates have absolute value 1, which (by an
earlier exercise) implies that u/@ is a root of unity in K.

o Since the roots of unity in K are of the form £¢{ that means u/u = £(J.

o If we had u/u = —(I‘f then foru =co+c1(p+---+ cp,gqgj*z we see 4 = cp+ -+ cp_2 (mod 1—(),
and soﬂ:co+cog“p’1+---+cp_2Cp_(p_2) =co+ -+ ep2=u=—(u=—u(mod1—¢,). But
this would imply 2@ = 0 (mod 1 — ;) hence 2 € (1 — () since @ is a unit: but (1 — (,) lies above
the integer prime p # 2, so this is impossible.

o So in fact we have u/u = Cg for some d. Letting d = 2b (mod p) and w = Czjbu, we see that
w = ¢Yu = ¢, ’u = w so w is real and has u = (w, as desired.

4. Let p be an odd prime and K = Q(¢,) with K = Q(¢, + Cp’l). Then the unit group of Ok is the direct
product of the group of pth roots of unity with the units of O .
o Proof: This follows immediately from (1) and (2), after noting that both K and K contain +1.

o Remark: More generally, it can be shown (with much more difficulty) that the product of the roots
of unity in K with the units of Ok for K = Q((,) always generates either the full unit group of Ok,
or an index-2 subgroup.

5. Let p be a prime and K = Q((,«). Then for any integers a, b relatively prime to p, the element ((jgd -
1)/(§£d — 1) is a unit of Ok.
o Proof: Since b is invertible modulo p?, there exists t with a = tb (mod p?). Then (Cpa— 1)/(C£d —1) =
(€% —1)/(Ch —1) =W ¢l + 1€ Ok
o By interchanging a,b we see that (Czl;d —1)/(¢ya — 1) is also in Ok, so both elements are units.
6. Suppose n has at least two distinct prime factors and let K = Q(¢,,). Then 1 — ¢, is a unit of Ok.

o Contrast this result with the case where n = p? is a prime power above: in that case (1 — Cpa) is a
prime ideal lying over p, so 1 — (,a is certainly not a unit!
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7. For any a relatively prime to n, the circular unit w, = (p

o Proof: From the factorization ®,,(z) = Hd‘n(xd — 1)#/4) divide each term on the right by 2 — 1.
This introduces a net factor of (z —1)* where s = 3, pu(n/d), but this sum is easily seen to be
zero whenever n has 2 or more prime factors.

o So ®,(z) = Hdm(xd*l + -+ 1)H/4): now setting x = 1 produces ®,,(1) = L4 d*(/4) =1 as can
be seen directly by decomposing n as a product of primes.

o But then Ng/q(1 = Cn) = [geagrn=1(1 — ¢F)=®,(1) =150 1—(, is a unit, as claimed.

a —a/2 a/2 .
—a ]. - n — (n .
(1-ay2l =G ¢ G~ _ sin(ma/n)

1—Gn - C,;l/2_<71/2 Sin(ﬂ'/’l’},)
unit in Ok for K, = Q(¢, + ¢, ') hence also a unit in Ok for K = Q((,).

o Proof: When n is a prime power, this follows from (5), and when n is not a prime power, this follows
from (6).

o Remark: With some additional work one may show that the circular units of Q((,«) for 1 < a < %pd
and p not dividing a, generate all of the circular units, and that the regulator of this set of circular
units is nonzero: thus, they generate a finite-index subgroup of the full unit group of Q((,a).

e By exploiting the maximal real subfield it is possible in some cases to compute the unit group exactly.

e Example: Show that 1+ (5 is a fundamental unit for Q((5).

0.29

o Since Q((5) has signature (0, 2), its unit rank is 1. By (4) of the proposition above, we only need to find

the fundamental unit of its maximal real subfield Q(¢s + (5 '). This is the quadratic subfield of Q(s),
which since Q((5) has discriminant 5%, must be ramified only at 5, hence can only be Q(v/5).

o Indeed, we can see this more directly by noting that for a = (5 + (& with Galois conjugate 8 = (2 + (3,

we have o + 8 = o = —1 which both follow from using ®4({5) = 0, so «, 8 are roots of the quadratic

224+ —1=0 whence o, 8 = _%‘/5, and indeed by trivially observing that the real part of « is positive

we see f§ = 71+T\/5 is the negative of the fundamental unit of Q(1/5).

o Thus by (4) above, we see that every unit of Q((s) is of the form +¢¢ 3¢ for some d, and since 8 = ¢2(1+(5)

we may substitute to see that the units of Q(C5) are all of the form 4(¢(1 + (5)¢, and so 1 + (5 is a
fundamental unit.

(Nov 13) Galois Actions, Decomposition and Inertia Groups

e Let us now study how Galois groups act on primes and factorizations.

Well, you’re at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2024. You may not reproduce or distribute this material
without my express permission.
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