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0 Algebraic Number Theory

These are lecture notes for the graduate course Math 7315: Algebraic Number Theory, taught at Northeastern in
Fall 2024.

0.1 (Sep 4) Overview, Number Fields and Algebraic Integers

• The goal of this course is to provide an introduction to algebraic number theory, which (broadly speaking)
uses the language and tools of abstract algebra to study number theory.

◦ To illustrate, here are some fundamental things from classical number theory: primes, unique factoriza-
tions, congruences and modular arithmetic, Fermat's and Euler's theorems, the prime number theorem,
quadratic reciprocity (and higher reciprocity), and the prime number theorem.

◦ It was observed in the 1700s and early 1800s that many of these same ideas extend in fundamentally
similar ways to other kinds of numbers beyond the integers � various natural examples being the Gaussian
integers, other kinds of algebraic numbers such as the nth roots of unity, and polynomials with coe�cients
in the �eld Fp.
◦ However, it was not until some of the fundamental constructions from abstract algebra were better
understood that these ideas coalesced into an understandable form � precisely, the central ideas are
the closely-related notions of a ring, a module, and of an integral extension � which arose between the
1860s and 1880s in the work of Dedekind and Kronecker, and were extended greatly over the subsequent
decades by Noether, Hilbert, Krull, and others.

◦ As a matter of history, the questions we will study about unique factorization and algebraic number
�elds motivated the development of a great deal of abstract algebra, but we will reverse the historical
trend and start by developing the needed algebraic facts before applying them to study number theory.

• Our general goal is to study the problem of unique factorization (and quite often its failure!) in the ring of
integers of a number �eld.

◦ Now, one may certainly adopt the position that the existence or nonexistence of unique factorization in
an integral domain is already an intrinsically interesting question by itself, but the question is rather
trivialized simply by noting that such rings are, by de�nition, unique factorization domains.
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◦ The more speci�c question of whether we can tell if a particular ring has unique factorization is more
interesting, but still, we are really interested only in rings of interest for their utility in answering questions
about number theory.

◦ So let us �rst formulate the proper class of rings that we will study.

• De�nition: A number �eld is a �eld extension K/Q whose vector space dimension over Q is �nite.

◦ Equivalently, a number �eld is a �nite-degree extension of Q.
◦ Since the complex �eld C is algebraically closed and contains Q, by standard facts about algebraic �eld
extensions, K can be embedded into C.
◦ As such, we may equivalently think of a number �eld as a sub�eld of C that has �nite degree over Q.

• Example: The quadratic �eld Q(
√
D) = {a + b

√
D : a, b ∈ Q} for any squarefree integer D 6= 1 is a number

�eld of degree 2 over Q.

◦ For positive D the �eld Q(
√
D) is a real quadratic �eld, while for negative D the �eld Q(

√
D) is an

imaginary quadratic �eld.

◦ We could spend a tremendous amount of time just studying properties of factorization in quadratic
�elds, since even by themselves they already provide interesting examples of unique and non-unique
factorization.

◦ As is well known (and which we will prove properly later), the ring Z[i] of Gaussian integers, which is a
subring of the quadratic �eld Q(i), has unique factorization.

◦ On the other hand, in Z[
√
−3], a subring of Q(

√
−3), we have 4 = 2 · 2 = (1 +

√
−3) · (1 −

√
−3), and

these two factorizations are inequivalent because the terms are all irreducible but are not associates of
one another.

◦ However, this �example� is not really so interesting, because inside the corresponding �eld Q(
√
−3) there

does exist a subring where these two factorizations are equivalent up to unit factors: namely, the subring

Z[ω] = Z[
−1 +

√
−3

2
].

◦ More interestingly, in the ring Z[
√
−5], a subring of Q(

√
−5), we have a similar lack of unique factor-

ization: 6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5). Yet as we will see, there is no similar way to �enlarge� this

subring (while still maintaining the desired kind of integrality of the elements) in order to salvage unique
factorization of elements.

• Example: For a primitive nth root of unity ζn such as ζn = e2πi/n, the cyclotomic �eld Q(ζn) is a number
�eld of degree ϕ(n) over Q, since the minimal polynomial of ζn over Q is the nth cyclotomic polynomial which
has degree ϕ(n).

◦ There are many properties of the roots of unity, and some simple ones lead to relations among the
cyclotomic �elds.

◦ Exercise: If a and b are relatively prime, show that Q(ζab) = Q(ζa, ζb). Deduce that Q(ζ2n) = Q(ζn) for
odd integers n. Do there exist distinct even integers 2m and 2n such that Q(ζ2m) = Q(ζ2n)?

• We can generalize the two examples above rather substantially:

• Example: For any irreducible polynomial p(x) ∈ Q[x] of degree n with a complex root α, the �eld Q(α) =
{c0α+ · · ·+ cn−1α

n−1 : ci ∈ Q} generated by α over Q is a number �eld of degree n.

◦ In fact, every number �eld is really of this form:

◦ Exercise: Suppose K/Q is a number �eld. Show that K = Q(α) for some complex number α. [Hint:
Apply the primitive element theorem.]

• Now, in order to discuss unique factorization fruitfully, we need to identify the analogue of the integers Z
inside our number �eld K, which will give us (in a very strong sense) the �proper� subring of K in which to
consider factorizations:
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• De�nition: For a number �eld K, an algebraic number α ∈ K is an algebraic integer if there exists a monic
polynomial p(x) with integer coe�cients such that p(α) = 0.

◦ Examples: Integers are algebraic integers, as are
√

2 and i, and more generally a1/n for any integer a
and positive integer n. The roots of x3 − x− 1 = 0 are algebraic integers.

◦ Indeed, it is not so trivial to show that a given complex number is not an algebraic integer using this
de�nition, since it would require showing that there is no monic polynomial with integer coe�cients of
which it is a root.

◦ Let us give a better way to determine whether an algebraic number is an algebraic integer, while also
reviewing some properties of algebraic numbers in general:

• Proposition (Algebraic Integers I): Suppose α is an algebraic number, so that α is the root of some nonzero
polynomial q(x) ∈ Q[x].

1. The set of all polynomials p(x) ∈ Q[x] for which p(α) = 0 is an ideal of Q[x]. The unique monic generator
m(x) of this ideal is the minimal polynomial of α, and is the unique monic polynomial in Q[x] of smallest
degree having α as a root.

◦ Proof: It is easy to see that the set of p(x) with p(α) = 0 is an ideal. Since Q[x] is a principal ideal
domain, this ideal is principal, and therefore has a unique monic generator.

◦ Since m(x) divides all elements of this ideal, its degree is smallest among all nonzero elements of the
ideal.

◦ Exercise: Show that the minimal polynomial m(x) is irreducible in Q[x].

2. The algebraic number α is an algebraic integer if and only if its minimal polynomial (over Q) has integer
coe�cients.

◦ Proof: If the minimal polynomialm(x) has integer coe�cients, thenm(x) itself is a monic polynomial
with integer coe�cients of which α is a root, so obviously α is an algebraic integer.

◦ Conversely, suppose α is an algebraic integer. Let p(x) be the monic polynomial of minimal degree
such that p(α) = 0 and p(x) has integer coe�cients. If p(x) were reducible in Q[x], then by Gauss's
lemma1 p(x) would have a factorization in Z[x]: say p(x) = f(x)g(x). But then at least one of f
and g would have α as a root, contradicting the minimality of p.

◦ Thus p is irreducible. Now, since p(α) = 0, we see that m(x) divides p(x), so since p is irreducible
we must have p(x) = c ·m(x) for some c ∈ Q, but as both p and m are monic, we have c = 1. Thus,
m(x) ∈ Z[x] as claimed.

0.2 (Sep 5) Rings of Integers, Trace and Norm 1

• Using the criterion in (2) above allows us to compute the algebraic integers in a number �eld K by �nding
the elements of K whose minimal polynomials have integer coe�cients.

◦ Exercise: Show that the set of algebraic integers of Q is Z.
◦ Exercise: Suppose D is squarefree. Show that the set of algebraic integers of Q(

√
D) is Z[

√
D] when

D ≡ 2, 3 (mod 4) and that it is Z[
1 +
√
D

2
] when D ≡ 1 (mod 4). [Hint: First verify that for b 6= 0 the

minimal polynomial of a+ b
√
D is m(x) = x2 − 2a+ (a2 −Db2), and then classify when the coe�cients

are integers.]

• In the examples above note that the algebraic integers in these number �elds both form rings. In fact, the
algebraic numbers in any number �eld always form a ring, as we will now show.

◦ After noting rather obviously that 0 is an algebraic integer and the negative of an algebraic integer is
an algebraic integer, the claimed fact is equivalent to proving that the set of algebraic integers is closed
under addition and multiplication.

1The formulation of Gauss's lemma we use here is that if a polynomial with integer coe�cients factors in Q[x], then in fact it factors
in Z[x].
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◦ This fact can be proven directly from the de�nition using rather tedious polynomial elimination: the
idea is that if α and β are algebraic integers with integer polynomials p, q with p(α) = q(β) = 0, then
one may do polynomial elimination on the sets {p(x), q(y), z − x− y} and {p(x), q(y), z − xy} to obtain
a single monic polynomial in z with integer coe�cients in each case, which then establishes that α + β
and αβ are algebraic integers.

◦ But this approach is very tedious to implement in practice, and is not particularly enlightening. Let us
give a much more natural approach using modules.

• Proposition (Rings of Integers): Suppose K is a number �eld.

1. For α ∈ K, the following are equivalent:

(a) α is an algebraic integer.

(b) The ring Z[α] is �nitely generated as an additive group (i.e., as a Z-module).

(c) α is an element of some subring of C that is �nitely generated as an additive group.

(d) There exists some �nitely generated additive subgroup G of C with αG ⊆ G.
◦ Proof: (a) ⇒ (b): If the minimal polynomial of α is m(x) = xn + cnx

n−1 + · · · + c1x + c0 then we
claim {1, α, . . . , αn−1} generates Z[α] as an additive group. To see this it su�ces to observe that each
power of α is an integral linear combination of {1, α, . . . , αn−1}, which follows by an easy induction
relying on the fact that αn = −c0 − c1α− · · · − cnαn−1.
◦ (b)⇒ (c): Obvious, since α ∈ Z[α].

◦ (c)⇒ (d): Obvious by taking L to be the given subring.

◦ (d) ⇒ (a): Suppose G is generated by β1, . . . , βn. Then αβ1, . . . , αβn are all elements of G hence

can be expressed as integral linear combinations of β1, . . . , βn: thus, α

 β1
...
βn

 = M

 β1
...
βn

 for an

appropriateM ∈Mn×n(Z). This means α is an eigenvalue of the matrixM , and so the characteristic
polynomial p(x) = det(xI −M) has α as a root; as M has integer entries, p(x) is then a monic
polynomial with integer coe�cients having α as a root.

2. The set of all algebraic integers forms a ring. The set of algebraic integers in K also forms a ring, which
is called the ring of integers of K and is denoted OK .
◦ Proof: Suppose α and β are algebraic integers. Then Z[α] and Z[β] are �nitely-generated Z-modules,
hence so is Z[α, β] since it is generated by the pairwise products of the generating sets. Hence so are
the submodules Z[α− β] and Z[αβ].

◦ We deduce that the set of all algebraic integers is closed under subtraction and multiplication, so it
is ring. The intersection of it with K is therefore also a ring.

◦ Remark: All of the argument above can be made completely explicit: if Z[α] has basis {1, α, . . . , αn−1}
and Z[β] has basis {1, β, . . . , βm−1} then Z[α, β] is spanned by {αiβj}1≤i≤n,1≤j≤mn. Then to com-
pute a polynomial with, say, α + β as a root, simply compute the coe�cients of multiplication by
α+ β on this spanning set, and evaluate the appropriate determinant.

◦ Exercise: Use the procedure described above to �nd a monic integer polynomial satis�ed by
√

2+ 3
√

3
and by

√
2 · ( 3
√

3− 1).

3. For every element α ∈ K there is some nonzero d ∈ Z such that dα is an algebraic integer.

◦ Proof: Suppose that the minimal polynomial of α is m(x) = xn + cnx
n−1 + · · · + c1x + c0 ∈ Q[x]

and let d be the lcm of the denominators appearing in m.

◦ Then 0 = dnm(α) = (dα)n + cnd(dα)n−1 + · · ·+ c1d
n−1(dα) + c0d

n, so for m̃(x) = xn + cndx
n−1 +

· · · + c1d
n−1x + c0d

n we see m̃(dα) = 0. Since m̃ has integer coe�cients, we see dα is an algebraic
integer, as claimed.

◦ Exercise: Show that K is the fraction �eld of its ring of integers OK .

• We would like now to study further the structure of the ring of integers OK , both additively and multiplica-
tively. In order to do this e�ciently, we require a few additional tools from the basic theory of algebraic �eld
extensions, the �rst two of which are the trace and norm maps. We will give a few di�erent approaches for
these constructions.
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◦ The most natural is for Galois extensions, so suppose K/F is a Galois extension with Galois group G.
For an element α ∈ K, we de�ne the trace of α to be trK/F (α) =

∑
g∈G g(α) and the norm to be

NK/F (α) =
∏
g∈G g(α). In other words, the trace is the sum of all the Galois conjugates of α, while the

norm is the product of all the Galois conjugates of α.

◦ It is easy to see that both the trace and norm are Galois-invariant (simply reindex the sum), so the trace
and norm are in fact both elements of the base �eld F .

◦ The main reason we are interested in these maps is that the trace is additive and F -linear, while
the norm is multiplicative: trK/F (α + cβ) = trK/F (α) + ctrK/F (β) for any c ∈ F , and NK/F (αβ) =
NK/F (α)NK/F (β), as is easily seen by the de�nitions (note g(c) = c since c ∈ F ).
◦ Thus, the trace and norm give us convenient ways to relate the respective multiplicative and additive
structures of the larger �eld K to the smaller �eld F .

◦ Example: For K = Q(
√
D) and L = Q, which is Galois with Galois group G ∼= Z/2Z generated by the

conjugation map σ(a+ b
√
D) = a− b

√
D, we have tr(a+ b

√
D) = 2a and N(a+ b

√
D) = a2 −Db2.

• However, not all extensions are Galois (including many number �eld extensions we will be interested in, such
as Q( 3

√
2)/Q). To extend our de�nitions to this more general situation, suppose now we only have a separable

�nite-degree extension K/F and suppose K̂/F is its Galois closure (i.e., the smallest Galois extension of F
containing K) now with Galois group G.

◦ By the Galois correspondence, the intermediate �eld K of K̂/F corresponds to a subgroup H of G
(namely, the subgroup of G that �xes K). Letting S be a set of coset representatives for H in G,
for an element α ∈ K, we de�ne the trace of α to be trK/F (α) =

∑
g∈S g(α) and the norm to be

NK/F (α) =
∏
g∈S g(α).

◦ The trace and norm are well de�ned because the value g(α) is independent of which coset representative
is used: if g1 and g2 represent the same coset, then g−11 g2 ∈ H hence g−11 g2 �xes all elements of K; then
g−11 g2(α) = α so g1(α) = g2(α).

◦ Exercise: For a separable extension K/F , show that the trace and norm as de�ned above are still
Galois-invariant, that the trace is additive and F -linear, and that the norm is multiplicative.

◦ Example: Consider K = Q( 3
√

2) and L = Q, whose Galois closure is K̂ = Q( 3
√

2, ζ3) with Galois group
isomorphic to S3 with generators σ, τ with σ( 3

√
2, ζ3) = (ζ3

3
√

2, ζ3) and τ( 3
√

2, ζ3) = ( 3
√

2, ζ23 ). Then K
is the �xed �eld of the subgroup H = 〈τ〉 so we can take coset representatives {1, σ, σ2} for H in K.
Then for any α ∈ K we have tr(α) = α + σ(α) + σ2(α) and N(α) = α · σ(α) · σ2(α). Explicitly, for
α = a + b 3

√
2 + c 3

√
4 we see σ(α) = a + bζ3

3
√

2 + cζ23
3
√

4 and σ2(α) = a + bζ23
3
√

2 + cζ3
3
√

4, so tr(α) = 3a
and N(α) = a3 + 2b3 + 4c3 − 6abc after some simpli�cation.

◦ In the example above, notice that the three Galois conjugates α, σ(α), σ2(α) correspond to the three
di�erent complex embeddings of α (this is more obvious with the speci�c choice α = 3

√
2, where σ(α) =

ζ3
3
√

2 and σ2(α) = ζ23
3
√

2 are the other two complex cube roots of 2).

0.3 (Sep 9) Complex Embeddings, Trace and Norm 2

• We will now give another approach to the trace and norm that is more amenable to explicit calculations, in
terms of the complex embeddings of the number �eld K.

◦ Let us review some of the basic properties of complex embeddings, which are the nonzero ring homo-
morphisms from a �eld to C.
◦ The connection to our previous discussion is that the various complex embeddings of K are simply the
images of K under the Galois group of the Galois closure of K.

• Proposition (Complex Embeddings): Suppose K/F is an extension of number �elds of degree n, with K and
F explicitly considered as sub�elds of C.

1. For a �xed embedding σ : F → C, there exist exactly n embeddings τ : K → C extending σ (i.e., with
τ |K = σ).

◦ Proof: For n = 1 the result is trivial so now assume n > 1.
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◦ For an embedding τ : K → C, since we know the value of τ on F and since K = F (α), the choice of
τ(α) determines τ uniquely, so we just have to determine the possible values of τ(α).

◦ Let K = F (α), let m(x) be the minimal polynomial of α over F (which necessarily has degree
n), and let m̃(x) be the polynomial obtained by applying σ to all the coe�cients of m(x). Then
m̃(x) ∈ σK[x] is the minimal polynomial of σ(α), as it is clearly irreducible and has σ(α) as a root.

◦ Any embedding τ : K → C restricting to σ on F must map m(x) to m̃(x), and so τ must map the
root α of m(x) to some root β of m̃(x).

◦ On the other hand, for any root β of m̃(x), there is a unique isomorphism from F (α) to σF (β)
that restricts to σ on F and that sends α to β; such a map must take c0α + · · · + cn−1α

n−1 to
σ(c0)β + · · · + σ(cn−1)βn−1), but this determines it uniquely, and we can see it is well de�ned

by noting that it is obtained as the composition of the isomorphisms F (α)
α7→x→ F [x]/(m(x))

σ→
σF [x]/(m̃(x))

x 7→β→ σF (β).

◦ Since the degree of m̃(x) is the same as the degree of m(x), namely n, the degree of the extension
L/K, we conclude that there are exactly n embeddings τ : K → C extending σ.

2. For any number �eld K/Q of degree n, there are exactly n complex embeddings τ : K → C.

◦ Proof: Apply (1) with F = Q, noting that there is only one embedding of Q into C (as 0 must map
to 0 and 1 must map to 1).

3. If σ1, . . . σn denote the n complex embeddings of K �xing F , then for α ∈ K we have trK/F (α) =∑n
i=1 σi(α) and NK/F (α) =

∏n
i=1 σi(α).

◦ Proof: Consider the Galois closure K̂/F as a sub�eld of C, and consider the action of the Galois
group G = Gal(K̂/F ) on K.

◦ For any σ ∈ G we see that σ(K) is a sub�eld of C isomorphic to K (as the inverse isomorphism is
simply σ−1), and so σ : K → C yields a complex embedding of K.

◦ Conversely, by (1), any complex embedding of K extends to one of K̂ but since K̂ is Galois, any
complex embedding is an automorphism of K̂: thus, all of the complex embeddings ofK are obtained
as σ(K) for some σ ∈ G.

◦ Two complex embeddings σ1 and σ2 of K are equal when σ1(α) = σ2(α) for α ∈ K ⇐⇒ σ−11 σ2(α) =
α for all α ∈ K ⇐⇒ σ−11 σ2 �xes K ⇐⇒ σ−11 σ2 lies in the subgroup H of G �xing K ⇐⇒ σ1
and σ2 represent the same coset of H in G.

◦ Thus, the n possible complex embeddings σi ofK are given precisely by a set of a coset representatives
for H in G. The claimed formulas for the trace and norm then reduce immediately to our earlier
de�nition.

• Example: The quadratic �eld K = Q(
√
D) has two complex embeddings: the identity embedding σ1(a +

b
√
D) = a+ b

√
D, and the conjugate embedding with σ2(a+ b

√
D) = a− b

√
D.

◦ Here, we can see that both embeddings represent �eld automorphisms of Q(
√
D); that is because Q(

√
D)

is Galois over Q.
◦ We then have trK/Q(a+b

√
D) = 2a and NK/Q(a+b

√
D) = a2−Db2, just as we computed in our example

earlier.

• Example: The cubic �eld K = Q( 3
√

2) has three complex embeddings: the identity embedding and the two
embeddings obtained by mapping 3

√
2 to the other roots of its minimal polynomial p(x) = x3 − 2: namely,

ζ3
3
√

2 and ζ23
3
√

2, the other two complex cube roots of 2.

◦ Explicitly, these maps σ1, σ2, σ3 send a+b 3
√

2+c 3
√

4 respectively to a+b 3
√

2+c 3
√

4, to a+bζ3
3
√

2+cζ23
3
√

4,
and to a+ bζ23

3
√

2 + cζ3
3
√

4.

◦ Here, we can see that only the identity embedding maps K back to itself, illustrating that K is not
Galois over Q. The other two embeddings map K to its Galois conjugates σ2(K) = Q(ζ3

3
√

2) and
σ3(K) = Q(ζ23

3
√

2), the �elds generated by the other two roots of the minimal polynomial.

◦ We can as before compute the trace and norm trK/Q(a+ b 3
√

2 + c 3
√

4) = 3a and NK/Q(a+ b 3
√

2 + c 3
√

4) =

(a+ b 3
√

2 + c 3
√

4)(a+ bζ3
3
√

2 + cζ23
3
√

4)(a+ bζ23
3
√

2 + cζ3
3
√

4) = a3 + 2b3 + 4c3 − 6abc.
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• Example: The cyclotomic �eld Q(ζn) has ϕ(n) complex embeddings, obtained by mapping ζn to the ϕ(n)
roots of its minimal polynomial2, which are ζan for a ∈ (Z/nZ)× (i.e., relatively prime to n).

◦ Writing these maps in general is rather cumbersome, so we will just give a few examples for speci�c n.

◦ For n = 8, we see that Q(ζ8) = Q(i,
√

2) has ϕ(8) = 4 complex embeddings obtained by mapping
ζ8 = (

√
2+i
√

2)/2 to the roots ζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 = (±

√
2±i
√

2)/2 of the cyclotomic polynomial Φ8(x) = x4+1
over Q.
◦ Noting that Q(ζ8) has a basis {1, ζ8, ζ28 , ζ38} over Q, we may compute the embeddings σ1, σ2, σ3, σ4
explicitly as the maps sending a+bζ8 +cζ28 +dζ38 respectively to a+bζ8 +cζ28 +dζ38 , to a+bζ38 +cζ68 +dζ8,
to a+ bζ58 + cζ28 + dζ78 , and to a+ bζ78 + cζ68 + dζ58 .

◦ Then we have trK/Q(a+ bζ8 + cζ28 + dζ38 ) = 4a and NK/Q(a+ bζ8 + cζ28 + dζ38 ) = (a2 + c2)2 + (b2 + d2)2−
4(ab+ cd)(ad− bc) after some simpli�cation.

◦ Exercise: Compute the four complex embeddings ofQ(ζ8) = Q(i,
√

2) instead using theQ-basis {1,
√

2, i, i
√

2},
and �nd the trace and norm of p+ q

√
2 + ri+ si

√
2.

• These de�nitions of trace and norm also have a convenient, and in some sense even more natural, interpretation
in terms of the linear transformation given by multiplication by α, which also explains the linearity of the
trace (and its name) and the multiplicativity of the norm:

• Exercise: Let K/F be an extension of number �elds with α ∈ K and de�ne Tα : K → K to be the F -linear
transformation of multiplication by α, namely with Tα(x) = αx for all x ∈ K.

1. Show that the minimal polynomial of the linear transformation Tα is the minimal polynomial of the
algebraic number α. [Hint: Show that F [Tα] is ring-isomorphic to F [α].]

2. Show that the eigenvalues of Tα in C are the elements σi(α), where σ1, . . . , σn are the complex embeddings
of K �xing F .

3. Show that the characteristic polynomial p(x) = det(xI − Tα) of Tα is m(x)[K:F (α)] where m(x) is the
minimal polynomial of α over F .

4. Show that tr(Tα) = trK/F (α) and that det(Tα) = NK/F (α).

5. Use (a) and (d) to compute the trace, norm, and minimal polynomial of α = 3
√

2 +
√

7 from K =
Q( 3
√

2,
√

7) toQ. [Suggestion: Compute the matrix Tα with respect to the basis {1, 3
√

2, 3
√

4,
√

7, 3
√

2
√

7, 3
√

4
√

7}.]

• Let us now prove a few other basic properties of the trace and norm:

• Proposition (Trace and Norm): Let K/F be an extension of number �elds of degree n. Then the following
hold:

1. For any r ∈ Q and α ∈ K we have trK/F (r) = nr, trK/F (rα) = rtrK/F (α), NK/F (r) = rn, and
NK/F (rα) = rnNK/F (α).

◦ Proof: The complex embeddings of K all �x Q, so σi(r) = r for each 1 ≤ i ≤ n. The claimed
formulas then follow immediately from the linearity of the trace and multiplicativity of the norm.

2. (Transitivity) If L/K is another extension of number �elds and α ∈ L, we have trL/F (α) = trK/F (trL/K(α))
and NL/F (α) = NK/F (NL/K(α)).

◦ Proof: Consider the Galois closure L̂ of L/F with Galois group G. Let HK be the subgroup of G
�xing K and HL be the subgroup of G �xing L.

◦ Let σ1, . . . , σn be a set of coset representatives for HK in G (these represent the complex embeddings
of K �xing F ) and τ1, . . . τm be a set of coset representatives for HL in HK (these represent the
complex embeddings of L �xing K). Then the set of pairwise products {σiτj}1≤i≤n,1≤j≤m is a set
of coset representatives for HL in G.

◦ Thus trL/F (α) =
∑
i,j σiτj(α) =

∑n
i=1

∑m
j=1 σi(τj(α)) =

∑n
i=1 σi[

∑m
j=1 τj(α)] =

∑n
i=1 σi(trL/K(α)) =

trK/F (trL/K(α)), and �nally the norm formula is the same with sums replaced by products.

2As we will prove along the way later, the nth cyclotomic polynomial Φn(x), which is the minimal polynomial of ζn, factors in C as
Φn(x) =

∏
z∈(Z/nZ)× (x− ζan). In particular, its degree is ϕ(n).
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3. If α has minimal polynomial m(x) = xd + cn−1x
n−1 + · · · + c0 over F , then trK/F (α) = −n

d
cn−1 and

NK/F (α) = (−1)nc
n/d
0 .

◦ Proof: The possible Galois conjugates of α are the d di�erent roots of its minimal polynomial over
F .

◦ By our earlier result on extensions of embeddings, for any other root β of m(x), there is a unique
embedding of F (α) �xing F that maps α to β. Then applying the result again, there are exactly
[K : F (α)] = n/d embeddings of K �xing F that map α to β.

◦ We conclude that in the list of values σi(α) for 1 ≤ i ≤ n, the value β occurs exactly n/d times, and
this holds for all d possible roots β.

◦ Then trK/F (α) =
∑n
i=1 σi(α) is n/d times the sum of the roots ofm(x) while NK/F (α) =

∏n
i=1 σi(α)

is the product of the roots of m(x) to the n/dth power. The formulas follow immediately.

4. If α is an algebraic integer, then trK/F (α) and NK/F (α) are both algebraic integers in F . In particular,
trK/Q(α) and NK/Q(α) are both integers.

◦ Proof: If α is an algebraic integer, its Galois conjugates are also algebraic integers, hence so too are
the sum and product of all these conjugates.

◦ By the argument in (3) above, trK/F (α) is an integer times the sum of the Galois conjugates of α
while NK/F (α) is an integer power of the product of the Galois conjugates of α. The result follows
immediately.

5. The units in the ring of integers OK are precisely the elements of norm ±1 (i.e., the α ∈ OK with
NK/Q(α) = ±1).

◦ Proof: If α ∈ OK is a unit with multiplicative inverse β ∈ OK , then αβ = 1 so taking norms yields
NK/Q(α)NK/Q(β) = NK/Q(αβ) = NK/Q(1) = 1 by multiplicativity and (1).

◦ But now by (4), both NK/Q(α) and NK/Q(β) are integers, so we must have NK/Q(α) = ±1.

◦ Conversely, if NK/Q(α) = ±1, then this says α times a product of its Galois conjugates β1 · · ·βn
equals ±1. But then ±β1 · · ·βn is an algebraic integer that is a multiplicative inverse of α, so it lies
in OK and thus α is a unit in OK .

0.4 (Sep 11) The Group Structure of OK, Discriminants 1

• Using this convenient characterization of units in OK we can easily test whether speci�c elements of OK are
in fact units, and in some simple cases we can characterize all of the units.

◦ Example: In the quadratic �eld K = Q(
√
D) with D ≡ 2, 3 (mod 4) so that OK = Z[

√
D], we see that

N(a+ b
√
D) = a2 −Db2, so the element a+ b

√
D is a unit if and only if a2 −Db2 = ±1. When D ≡ 1

(mod 4) so that OK = Z[ 1+
√
D

2 ], we see that N(a+ b 1+
√
D

2 ) = a2 + ab+ 1−D
4 b2, so the element a+ b

√
D

is a unit if and only if a2 + ab+ 1−D
4 b2 = ±1.

◦ The unit behavior actually is quite di�erent for real and imaginary quadratic �elds. Imaginary quadratic
�elds have only �nitely many units:

◦ Exercise: Show that when D < 0, the only units of OQ(
√
D) are ±1, except in the case D = −1 with

units ±1,±i and in the case D = −3 with units ±1,±ζ3,±ζ23 .
◦ However, real quadratic �elds always have in�nitely many units: we will show more general results later,
but this claim follows from the fact that Pell's equation3 a2 −Db2 = 1 always has a nontrivial solution
(i.e., one with b > 0) for any squarefree positive integer D. If u = a + b

√
D represents such a solution,

then since u > 1 we see easily that the powers un yield in�nitely many distinct units in OQ(
√
D).

• We now exploit the trace and norm maps to establish some other basic information about the structure of
OK as an additive abeliam group and as a module.

3To summarize this argument: �rst one shows (via the pigeonhole principle or via continued fractions) that for any real number x

there are in�nitely many p/q ∈ Q with |x− p/q| < 1/q2. Taking x =
√
D yields in�nitely many positive (p, q) with

∣∣∣√D − p/q∣∣∣ < 1/q2

whence
∣∣p2 −Dq2∣∣ < 2

√
D + 1. Picking some r for which p2 −Dq2 = r has in�nitely many solutions, if (p, q) and (p′, q′) are solutions

congruent mod r then (a, b) = (pp′ −Dqq′, |pq′ − p′q|)/r has a2 −Db2 = 1 and b > 0.
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◦ Recall in particular that we showed earlier that for every element α ∈ K there is some nonzero d ∈ Z
such that dα is an algebraic integer.

• Proposition (Additive Structure of OK): Suppose K is a number �eld.

1. The ring of integers OK is a torsion-free, �nitely generated abelian group.

◦ Proof: Clearly OK is torsion-free since it is a subset of C; it remains to show �nite generation.

◦ Suppose K/Q has degree n and let α1, . . . , αn be a Q-basis for K; by scaling these basis elements
by integers as needed, we may assume the αi are elements of OK .
◦ For each nonzero β ∈ K, consider the map ϕβ : K → Q given by ϕβ(α) = TrK/Q(βα). This map is
Q-linear and nonzero since ϕβ(β−1) = TrK/Q(1) = n, and so the map from the vector space K to its

dual space K̂ = HomQ(K,Q) sending β to ϕβ is injective. However, because both vector spaces are
n-dimensional, it is in fact an isomorphism.

◦ Therefore, we see that every linear functional on K is of the form ϕβ for some β ∈ K.

◦ Consider the elements α′1, . . . , α
′
n ∈ K giving the dual basis to α1, . . . , αn: in other words, with

TrK/Q(α′iαj) = 1 for i = j and 0 otherwise. (Such elements exist because any linear functional, such
as the one mapping all of the basis elements α1, . . . , αn to zero except for αi which is mapped to 1,
is of the form ϕα′i for some α′i.)

◦ Since α′1, . . . α
′
n are then clearly linearly independent, they are a Q-basis for K.

◦ Now suppose β is some element of OK : since {α′1, . . . α′n} is a basis for K, there exist some ci ∈ Q
with β = c1α

′
1 + · · ·+ cnα

′
n.

◦ Multiplying by αi and taking the trace then yields TrK/Q(βαi) = c1TrK/Q(αiα
′
1)+· · ·+cnTrK/Q(αiα

′
n).

But all of the traces are 0 except for the trace of αiα
′
i which equals 1, so the trace is simply ci. But

because βαi is an algebraic integer, its trace is an integer, so we see each ci ∈ Z.
◦ We conclude that β ∈ Zα′1 +Zα′2 + · · ·+Zα′n, so OK ⊆ Zα′1 +Zα′2 + · · ·+Zα′n. Thus OK is contained
in a �nitely generated abelian group, hence is itself a �nitely generated abelian group.

2. If K/F is an extension of number �elds of degree n, then OK is a torsion-free OF -module of rank n.

◦ Note here that the OF -module structure of OK is inherited from the ring structure of OK .
◦ Proof: To show that it has rank n, suppose that K = F (α), where (by rescaling) we may assume α
is an algebraic integer.

◦ Then the set {1, α, . . . , αn−1} is F -linearly independent and consists of elements of OK , so it yields
an OF -linearly independent set in OK . Thus OK has rank at least n.

◦ On the other hand, if β1, . . . , βn+1 are any elements of OK , then there exists some F -linear depen-
dence c1β1 + · · ·+ cn+1βn+1 = 0 for ci ∈ F .
◦ Scaling by an appropriate integer d such that dci ∈ OF for all i yields an OF -linear dependence of
these βi. Thus the maximal size of an OF -linearly independent set in OK is n, so since by (1) OK
is �nitely generated, we see that OK has rank n.

3. If K is a number �eld of degree n over Q, then OK is a free abelian group of rank n: in other words,
there exist β1, β2, . . . , βn ∈ OK such that OK = Zβ1 ⊕ Zβ2 ⊕ · · · ⊕ Zβn.

◦ Proof: By (1) we know that OK is a torsion-free �nitely generated abelian group, and by (2) we
know it has rank n. by the structure theorem for �nitely generated abelian groups, such an abelian
group is free of rank n.

◦ The second statement is then simply the de�nition of a free rank-n abelian group.

◦ Exercise: Show more generally that if OF is a PID, and K/F has degree n, then OK is a free
OF -module of rank n.

◦ Remark: In general, OK need not be a free OF -module. (In other words, although there exist
OF -linearly independent sets of size n, none of them span OK , but rather, will give some proper
submodule.) Later, once we study the multiplicative structure of rings of integers further, we will
be able to give explicit examples, which (per the exercise above) can only happen when OF is not a
PID.

4. The ring OK is Noetherian (i.e., every ideal is �nitely generated).
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◦ Proof: Any ideal I of OK is (a fortiori) an additive subgroup of OK , which per (3) is a free abelian
group of rank n. Then I is also a free abelian group of rank at most n, and a set of additive-group
generators for I certainly also generates I as an ideal.

◦ Hence every ideal I is generated by at most n elements, so OK is Noetherian.

◦ Remark: This bound of n generators is not sharp: in fact, as we will show later, every ideal of OK is
generated by at most two elements. (And of course, saying that OK is a PID is the same as saying
every ideal is generated by just one element.)

• While the general results we have just shown are useful in understanding the abstract structure of OK as
an abelian group (and to some extent as a ring), they are not su�ciently explicit to allow us to compute an
actual integral basis for OK . In order to make calculations, we require one more tool: the discriminant.

• De�nition: Let K/F be an extension of number �elds of degree n, and let σ1, . . . , σn : K → C be the
complex embeddings of K �xing F . For an ordered n-tuple (α1, . . . , αn) ∈ K, we de�ne the discriminant

discK/F (α1, . . . , αn) of the tuple (α1, . . . , αn) to be discK/F (α1, . . . , αn) =

∣∣∣∣∣∣∣∣∣
σ1(αi) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) · · · σn(αn)

∣∣∣∣∣∣∣∣∣
2

,

the square of the determinant of the n× n matrix whose (i, j)-entry is σi(αj).

◦ We note immediately that taking the square of the determinant means that the ordering of the em-
beddings σi and of the elements αj is irrelevant, since swapping rows or columns will not a�ect the
value.

◦ Example: For K = Q(
√

2) we have discK/Q(1,
√

2) =

∣∣∣∣ 1
√

2

1 −
√

2

∣∣∣∣2 = 8 and discK/Q(1 + 2
√

2, 3) =∣∣∣∣ 1 + 2
√

2 3

1− 2
√

2 3

∣∣∣∣2 = 288.

◦ Example: For K = Q( 3
√

2) we have discK/Q(1, 3
√

2, 3
√

4) =

∣∣∣∣∣∣
1 3

√
2 3

√
4

1 ζ3
3
√

2 ζ23
3
√

4

1 ζ23
3
√

2 ζ3
3
√

4

∣∣∣∣∣∣
2

= −108.

• Here are some basic properties of the discriminant:

• Proposition (Properties of Discriminants): Let K/F be a degree-n extension of number �elds.

1. discK/F (α1, . . . , αn) is equal to the determinant of the n × n matrix whose (i, j)-entry is trK/F (αiαj).
In particular, discK/F (α1, . . . , αn) ∈ F .
◦ Proof: Let M be the matrix whose (i, j)-entry is σi(αj), so that discK/F (α1, . . . , αn) = det(M)2.

◦ Then the (i, j)-entry of the product MTM is
∑n
k=1 σk(αi)σk(αj) =

∑n
k=1 σk(αiαj) = trK/F (αiαj).

The result follows immediately by taking determinants.

◦ The second statement follows immediately from the fact that the discriminant is the determinant of
a matrix with entries in F (since the traces are all in F ).

2. If α1, . . . , αn ∈ OK , then discK/F (α1, . . . , αn) ∈ OF . In particular, discK/Q(α1, . . . , αn) is always an
integer.

◦ Proof: From (1) we see that discK/F (α1, . . . , αn) ∈ F . Furthermore, if all of the αi are algebraic
integers, then so are all of the entries in the determinant expression (either the one from the de�nition
or the one in (1)), so the discriminant is also an algebraic integer.

3. The discriminant discK/F (α1, . . . , αn) = 0 if and only if the αi are F -linearly dependent.

◦ Proof: Clearly if the αj are F -linearly dependent, then so are the columns of the matrix with
entries σi(αj), since the embeddings σi preserve F -linear dependence, and so the determinant (hence
discriminant) will be zero.

◦ Conversely, suppose discK/F (α1, . . . , αn) = 0: then the rows of the matrix {trK/F (αiαj)}1≤i,j≤n
are F -linearly dependent, so there exist some ci ∈ F , not all zero, with c1trK/F (α1αj) + · · · +
cntrK/F (αnαj) = 0 for each 1 ≤ j ≤ n.
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◦ But by linearity of the trace, for β = c1α1 + · · · + cnαn this means trK/F (βαj) = 0 for each
1 ≤ j ≤ n. However, this implies β = 0, since as we noted earlier, the linear map ϕβ : K → F given
by ϕβ(α) = TrK/F (βα) is nonzero for β 6= 0.

◦ This means there exists some ci ∈ F , not all zero, with c1α1+· · ·+cnαn = 0 , so the αi are F -linearly
dependent.

4. If α1, . . . , αn ∈ OK and discK/F (α1, . . . , αn) 6= 0, then OFα1⊕OFα2⊕ · · · ⊕OFαn is an OF -submodule
of OK of �nite index (as an additive group).

◦ Proof: By (3), if discK/F (α1, . . . , αn) 6= 0 then α1, . . . , αn are F -linearly independent (hence OF -
linearly independent, so they generate a free submodule M = OFα1⊕OFα2⊕ · · · ⊕OFαn of OK of
rank n.

◦ But as we proved earlier OK is �nitely generated and has rank n, so the quotient OK/M is �nitely
generated and has rank 0: in other words, it is �nite.

5. Suppose that α1, . . . , αn ∈ OK and β1, . . . , βn ∈ OK span the same additive subgroup of OK : Zα1 ⊕
· · · ⊕ Zαn = Zβ1 ⊕ · · · ⊕ Zβn. Then discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

◦ Proof: If the subgroup has rank less than n, both discriminants are zero by (3). So now assume
both subgroups have rank n. By hypothesis, there exist n × n integer matrices A and B with β1

...
βn

 = A

 α1

...
αn

,
 α1

...
αn

 = B

 β1
...
βn

.
◦ Then since each set is an F -basis of K (since the rank is n) we see AB = In and so det(A) =

det(B) = ±1 since both matrices have integer determinant.

◦ Applying σi to each side of the �rst matrix equation yields

 σi(β1)
...

σi(βn)

 = A

 σi(α1)
...

σi(αn)

.
◦ Thus, discK/Q(β1, . . . , βn) = det[{σi(βj)}1≤i,j≤n]2 = det[A{σi(αj)}1≤i,j≤n]2 = det(A)2discK/Q(α1, . . . , αn),
and since det(A) = ±1 the result follows.

6. Suppose α1, . . . , αn and β1, . . . , βn are two integral bases forOK . Then discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

◦ Proof: Immediate from (5).

0.5 (Sep 12) Discriminants 2

• From (6) above we see that the discriminants for any two integral bases of the ring of integers OK are the
same, and more generally (5) says that the same is true for any rank-n subgroup of OK . We may therefore
view the discriminant as an invariant of the ring of integers (or, as is exceedingly common) the number �eld
K itself:

• De�nition: For a number �eld K, the discriminant of K (or of its ring of integers OK) is de�ned to be the
discriminant of any integral basis of OK . The discriminant is variously denoted disc(K), disc(OK), or DK ,
or ∆K . When S is a subgroup of �nite index in OK , we likewise de�ne disc(S) to be the discriminant of any
integral basis of S.

◦ We will mention here that we can also de�ne the discriminant for a relative extension K/F , but it is
more complicated because OK need not possess an OF -basis. Instead, the approach is to consider the
discriminant ideal DK/F , an ideal of OF , generated by the discriminants of all n-tuples of elements of
OK .

• Example: For K = Q(
√
D), we have an integral basis for OK given by {1,

√
D} when D ≡ 2, 3 (mod 4) and

by {1, 1 +
√
D

2
} when D ≡ 1 (mod 4).

◦ For D ≡ 2, 3 (mod 4) we have disc(K) = disc(1,
√
D) =

∣∣∣∣ 1
√
D

1 −
√
D

∣∣∣∣2 = 4D.
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◦ For D ≡ 1 (mod 4) we have disc(K) = disc(1,
1 +
√
D

2
) =

∣∣∣∣ 1 (1 +
√
D)/2

1 (1−
√
D)/2

∣∣∣∣2 = D.

• We would now like to use discriminants to construct integral bases for additional rings of integers OK . To do
this, it is useful to broaden our focus to the wider array of rank-n subgroups of OK .

• De�nition: Suppose K is a number �eld of degree n over Q with ring of integers OK . An order of OK is a
rank-n subgroup S of OK .

◦ Since OK is also free abelian of rank n, orders in OK are necessarily free abelian groups of rank n, hence
are of the form Zα1⊕· · ·⊕Zαn for some (necessarily linearly-independent) α1, . . . , αn ∈ OK ; conversely,
any such subgroup is an order of OK .
◦ We can also see easily that for any order S, the quotient group OK/S is �nite, since it is a quotient of
two �nitely-generated abelian groups of the same rank, and as we will see, the index [OK : S] is closely
related to the discriminant.

• Let us now illustrate further how discriminants arise in the context of an integral basis for OK :

• Proposition (Discriminants and Bases): Let K be a number �eld of degree n over Q.

1. Suppose that α1, . . . , αn ∈ OK are Q-linearly independent. Then any β ∈ OK can be written in the form

β =
1

d
(c1α1 + · · · + cnαn) where d = discK/Q(α1, . . . , αn) and each ci ∈ Z, where furthermore d|c2i for

each i.

◦ Proof: Since α1, . . . , αn are a Q-basis for K, we may write β = e1α1 + · · ·+ enαn for unique ei ∈ Q.
◦ Now let σ1, . . . , σn be the complex embeddings of K, and observe that applying each σi to the
equation above yields a system of n linear equations of the form σi(β) = e1σ1(α1) + · · · + enσi(αi)
for 1 ≤ i ≤ n.

◦ Solving this system using Cramer's rule yields ei =
det(Mi)

det(M)
whereM =


σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) · · · σn(αn)


and Mi is the matrix obtained by replacing the ith column of M by the vector [σ1(β), . . . , σn(β)]T .

◦ Multiplying numerator and denominator by det(M) yields ei =
det(M) det(Mi)

d
where d = discK/Q(α1, . . . , αn).

◦ Observe now that since the entries inM andMi are algebraic integers, det(M) det(Mi) is an algebraic
integer, and since ei and d are both rational, det(M) det(Mi) must also be rational, hence it is some
integer ci.

◦ Finally, for the last statement, observe that c2i /d = det(Mi)
2 is both rational and an algebraic

integer, hence is also an integer.

◦ Remark: We can see in this argument that the discriminant naturally arises in this context of trying
to express β ∈ OK as a Q-linear combination of the αi, and speci�cally in attempting to compute
the denominators of these expressions. The point is that the initial denominator det(M) is not
necessarily rational, but (as we showed) its square is, and this gives a convenient uniform choice for
all of the denominators we need to use.

◦ Exercise: Use the result above to prove directly that OK is a free Z-module of rank n.

2. If S is any order of OK , then discK/Q(S) = [OK : S]2discK/Q(OK).

◦ Exercise: Suppose G is isomorphic to Zn and H is a subgroup of rank n. Show that G/H is
isomorphic to a direct sum of n �nite cyclic groups. [Hint: How many generators does it have?]

◦ Proof 1: By the exercise, we see that OK/S is isomorphic to a group of the form (Z/d1Z) ⊕ · · · ⊕
(Z/dnZ).

◦ Letting β1, . . . , βn ∈ OK be preimages of the generators of each component, we see that β1, . . . , βn
is an integral basis for OK while d1β1, . . . , dnβn is an integral basis for S.
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◦ Then discK/Q(S) =

∣∣∣∣∣∣∣
σ1(d1β1) · · · σ1(dnβn)

...
. . .

...
σn(d1β1) · · · σn(dnβn)

∣∣∣∣∣∣∣
2

= (d1d2 · · · dn)2

∣∣∣∣∣∣∣
σ1(β1) · · · σ1(βn)

...
. . .

...
σn(β1) · · · σn(βn)

∣∣∣∣∣∣∣
2

=

[OK : S]2discK/Q(OK), as desired.

◦ Proof 2: Let α1, . . . , αn be an integral basis for S and β1, . . . , βn be an integral basis for OK . Since

β1, . . . , βn is an integral basis forOK , there exists an integer matrix T such that

 α1

...
αn

 = T

 β1
...
βn

.
By the volume-transforming property of the determinant, we then see that [OK : S] = |detT |.
◦ Applying each of the complex embeddings σ1, . . . σn to each side and combining into a matrix then

yields

 σ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)

 = T

 σ1(β1) · · · σ1(βn)
...

. . .
...

σn(β1) · · · σn(βn)

.
◦ Taking determinants and squaring then yields discK/Q(S) = (detT )2discK/Q(OK) = [OK : S]2discK/Q(OK),
as claimed.

3. If S is any order of OK , we have S = OK if and only if discK/Q(S) = discK/Q(OK). Equivalently, a set
α1, . . . , αn ∈ OK is an integral basis for OK if and only if discK/Q(α1, . . . , αn) = discK/Q(OK).

◦ Proof: Immediate from (2), since S = OK if and only if [OK : S] = 1.

◦ Exercise: Show that for α1, . . . , αn ∈ OK , if discK/Q(α1, . . . , αn) is squarefree, then OK = Zα1 ⊕
· · · ⊕ Zαn.

• Let us now try to construct a convenient integral basis for OK . If K = F (α) where by rescaling we can take
α ∈ OK , then certainly the �power basis� 1, α, α2, . . . , αn−1 is a (�eld) basis for K/Q and generates an order
S = Z⊕ Zα⊕ · · · ⊕ Zαn−1.

◦ We might hope that we can always �nd a basis for OK of this form, but (unfortunately) that is not
always the case.

◦ Nonetheless, we can use this order as a starting point to try to �nd an integral basis. Obviously, we can
certainly �nd one where each element is a rational polynomial in α, for entirely silly reasons: namely,
because every element of K is a polynomial in α because K = Q(α).

◦ What we would like is to have more control on what these polynomials look like.

◦ It seems plausible that we should be able to do some sort of �replacement argument� (similar to Gram-
Schmidt), starting with the set of powers 1, α, . . . , αn−1 that constructs an integral basis one polynomial
at a time by dividing αk by some integer di (necessarily dividing disc(OK), since these are the worst
denominators needed per (1) above), and then taking a linear combination of the previous basis elements
to obtain another algebraic integer.

0.6 (Sep 16) Constructing Integral Bases for OK

• Our �rst order of business is to compute the discriminant for the order obtained from a power basis, and then
to modify it by introducing appropriate denominators to obtain an integral basis for OK :

• Proposition (Discriminants and Bases): Suppose K = Q(α) for an algebraic integer α and let S be the order
of OK generated by α, so that S = Z⊕ Zα⊕ · · · ⊕ Zαn−1.

1. Suppose α has minimal polynomial m(x) ∈ Z[x] with roots α1, . . . , αn ∈ C. Then discK/Q(S) =∏
1≤i<j≤n(αi − αj)2 = (−1)n(n−1)/2NK/Q[m′(α)].

◦ Note that
∏

1≤i<j≤n(αi−αj)2 is the polynomial discriminant of m(x), so we see that our use of the
same word for both quantities is consistent.
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◦ Proof: Label the roots αi so that αi = σi(α). Then discK/Q(S) = discK/Q(1, α, . . . , αn−1) is the

square of the Vandermonde determinant

∣∣∣∣∣∣∣∣∣
1 α1 · · · αn−11

1 α2 · · · αn−12
...

...
. . .

...
1 αn · · · αn−1n

∣∣∣∣∣∣∣∣∣, whose value is
∏

1≤i<j≤n(αi−αj),

yielding the �rst part of the formula.

◦ For the second part, switch the order on half of the terms (a total of n(n−1)/2) to see discK/Q(S) =

(−1)n(n−1)/2
∏n
i=1

∏
j 6=i(αi − αj).

◦ Factoring m(x) = (x − αi)qi(x) where qi(x) =
∏
j 6=i(x − αj), now di�erentiate to see m′(x) =

qi(x) + (x− αi)q′i(x): thus setting x = αi yields m
′(αi) = qi(αi) =

∏
j 6=i(αi − αj).

◦ Therefore we see
∏n
i=1

∏
j 6=i(αi−αj) =

∏n
i=1m

′(αi) = NK/Q[m′(α)], whence the second part of the
formula.

◦ Exercise: If α3 + α + 1 = 0, show that the ring of integers of Q(α) is Z[α]. [Hint: Compute the
discriminant of {1, α, α2}.]

2. There exists an integral basis for OK of the form
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fn−1(α)

dn−1
where each fi(x) ∈

Z[x] is monic of degree i and where the di are positive integers with 1 = d0|d1|d2| · · · |dn−1|d.

◦ Proof: Let d = discK/Q(1, α, . . . , αn−1). For each 0 ≤ k ≤ n− 1, let Fk =
1

d
[Z⊕Zα⊕ · · ·⊕Zαk] and

observe that Fk is a free abelian group of rank k + 1. Also let Rk = OK ∩ Fk be the additive group
of algebraic integers in Fk.

◦ We now show by induction that we can select di and fi so that
f0(α)

d0
,
f1(α)

d1
, . . . ,

fk(α)

dk
is an integral

basis for Rk.

◦ For the base case n = 0, start with β0 = 1.

◦ Now suppose we have selected β0, . . . , βk−1 that is an integral basis for Rk−1, where βi =
fi(α)

di
for

integers 1 = d0|d1| · · · |dk−1 and monic polynomials fi(x) ∈ Z[x] of degree i.

◦ Consider the linear functional Tk : K → Q mapping an element β = c0 + · · ·+ cn−1α
n−1 ∈ K (with

the ci ∈ Q) to its basis coe�cient ck of αk. The image Tk(Rk) lies inside Tk(Fk) =
1

d
Z, which is an

in�nite cyclic group. Furthermore, since αk−1 ∈ Rk, the image contains 1, so the image is itself an

in�nite cyclic group of the form
1

dk
Z for some dk|d.

◦ We claim that we can choose any βk ∈ Rk such that Tk(βk) =
1

dk
, and it will have the desired

properties.

◦ We can see that for any x ∈ Rk, if Tk(x) =
ck
dk

then Tk(x − ckβk) = 0 whence the αk-coe�cient of

x is zero. But then x − ckβk ∈ Rk−1 so by the induction hypothesis we see x − ckβk is an integer
linear combination of β0, . . . , βk−1, whence x is an integer linear combination of β0, . . . , βk−1, βk.

◦ Thus β0, . . . , βk−1, βk is an integral basis for Rk. Now we just have to show β =
fk(α)

dk
for some

monic fk ∈ Z[x] of degree k, and that dk−1|dk.

◦ For the second statement, observe that α
fk−1(α)

dk−1
is an algebraic integer and in Fk, hence in Rk. Then

since fk−1 is monic of degree k−1 we see Tk(
αfk−1(α)

dk−1
) =

1

dk−1
: this means

1

dk−1
∈ Tk(Rk) =

1

dk
Z

and thus dk−1|dk.

◦ Now, observe that β
dk
dk−1

is an algebraic integer and is in Fk hence is in Rk, as is α
fk−1(α)

dk−1
as noted

above, hence so is their di�erence γ =
dkβ − αfk−1(α)

dk−1
.

◦ But since Tk [γ] =
dk
dk−1

Tk[β] − 1

dk−1
Tk[αfk−1(α)] =

1

dk−1
− 1

dk−1
= 0, the αk-coe�cient of γ is

zero, so in fact γ ∈ Rk−1.
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◦ Thus, by hypothesis γ is a Z−linear combination of
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk−1(α)

dk−1
, which since

d0|d1| · · · |dk−1, is of the form
g(α)

dk−1
for some g(x) ∈ Z[x] of degree at most k − 1.

◦ This (�nally) means we may take fk(x) = xfk−1(x) + g(x) ∈ Z[x]; since β =
1

dk
[αfk−1(α) + g(α)]

and fk(x) is monic of degree k, we have shown all of the required properties.

◦ Remark: The integers di are uniquely determined, but in fact there is a great deal of latitude to
choose the polynomials fi: in fact since the choice of β ∈ Rk was arbitrary aside from requiring its
αk-coe�cient to be 1/dk, we may take fi to be any monic polynomial in Z[x] of degree i such that
fi(α)/di is an algebraic integer.

• In principle, the construction given in (2) above can be made mostly e�ective.

◦ To convert (2) to an algorithm clearly requires a way of computing coe�cients with respect to an integral
basis: that is simply a special case of computing coe�cients with respect to a Q-basis, which we can do
with linear algebra.

◦ We also require a way of computing what the terms dk are: in principle this could be done by searching
for algebraic integers with the desired properties and computing the denominators obtained, since we
know the worst possible denominators are the discriminant d. However, it would be more convenient if
we could calculate the terms dk directly, or at least describe them more explicitly.

• Proposition (Polynomial Bases): Suppose K is a degree-n number �eld, let α ∈ OK , and suppose OK
has an integral basis of the form

f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fn−1(α)

dn−1
where each fi(x) ∈ Z[x] is monic of

degree i and where the di are positive integers with 1 = d0|d1|d2| · · · |dn−1|d = disc(K). Also let Rk =

OK ∩
1

d
[Z⊕ Zα⊕ · · · ⊕ Zαk].

1. The set
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk(α)

dk
is an integral basis of Rk for each 0 ≤ k ≤ n− 1.

◦ Proof: Since
f0(α)

d0
,
f1(α)

d1
,
f2(α)

d2
, . . . ,

fk(α)

dk
is clearly linearly independent, it su�ces to show that

it spans Rk. So let β ∈ Rk: then because β ∈ OK we may write β = c0
f0(α)

d0
+ c1

f1(α)

d1
+

· · · + cn−1
fn−1(α)

dn−1
for unique ci ∈ Z, and because β ∈ spanQ(1, α, . . . , αk) we may also write

β = e0
f0(α)

d0
+ e1

f1(α)

d1
+ · · ·+ ek

fk(α)

dk
for unique ei ∈ Q.

◦ Comparing the two expressions shows immediately that ci = ei for each i ≤ k (and ci = 0 for i > k)
hence all of the ei are integers. The conclusion follows.

2. For each k, dk is the smallest positive integer such that dkRk ⊆ Z[α]. In particular, for �xed α, all of
the dk are uniquely determined.

◦ Exercise: Suppose α is algebraic of degree n over Q. If f(x), g(x) ∈ Q[x] are such that f(α) = g(α)
and both f, g have degree less than n, show that f(x) = g(x).

◦ Proof: Multiplying any element of Rk by dk clears all of the denominators di from the integral basis
expression (thus yielding an integer polynomial in α), so certainly dkRk ⊆ Z[α].

◦ On the other hand, since fk(α)/dk ∈ Rk by (1) and because fk is monic, no smaller multiple of
fk(α) can yield a polynomial with integer coe�cients in α (which by reducing modulo its minimal
polynomial we can assume is of degree less than n) by the exercise above.

◦ Thus, dk is the smallest positive integer such that dkRk ⊆ Z[α].

3. For S = Z⊕ Zα⊕ · · · ⊕ Zαk−1, we have d1 · · · dn−1 = [OK : S].

◦ Proof: Since fi is monic of degree i, it is easy to see that f0(α), f1(α), . . . , fn(α) is an integral
basis for S (the change-of-basis matrix is triangular with 1s on its diagonal). We can then see that
OK/S ∼= (Z/d1Z)× · · · × (Z/dnZ); taking cardinalities yields the result immediately.
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◦ Remark: Note in fact that the divisibility condition d1| · · · |dn implies that this product of cyclic
groups is the elementary divisor form of the �nite abelian group OK/S, which gives another proof
that the dk are unique.

4. We have didj |di+j .

◦ Proof: Note that γ =
fi(α)

di
· fj(α)

dj
is an algebraic integer and (when multiplied out) it is a polynomial

in α of degree i+ j, so it is an element of Ri+j .

◦ By (1), γ is then an integer linear combination of
f0(α)

d0
, . . . ,

fi+j(α)

di+j
; comparing coe�cients of αi+j

then shows that
1

didj
must be an integer multiple of

1

di+j
, which is to say, didj divides di+j .

5. The discriminant disc(S) is divisible by d
n(n−1)
1 .

◦ Proof: By a trivial induction using (4) we see that dk1 |dk for each k. Multiplying these and then

squaring, we see that d
n(n−1)
1 divides the product (d1d2 · · · dn−1)2, which by (3) equals [OK : S]2.

◦ But by our earlier results we know that disc(S) = [OK : S]2disc(OK), so the result follows.

◦ Remark: The point here is that we can actually compute disc(S) = ±NK/Q[m′(α)] where m(x) is
the minimal polynomial of α, and so we obtain a (typically short) list of possible values for d1. We
can use (4) to establish similar divisibility properties for the other di which likewise help narrow
down their possible values.

0.7 (Sep 18) Some Examples of Integral Bases for OK

• After all of that e�ort, we can now actually compute some integral bases for some other OK .

◦ Even in the relatively straightforward situation of cubic extensions, we generally still need to do some
nontrivial calculations in order to �nd the values of d1 and d2 to ensure we have the full ring of integers.

◦ A centrally useful tool here is the trace map, since it allows us to extract information about individual
coe�cients. (In cases of extensions having nontrivial proper sub�elds, the relative trace maps to the
sub�elds are also quite useful, of course.)

• Exercise: Show that the discriminant of the cubic polynomial p(x) = x3 + ax+ b is −4a3 − 27b2.

• Example: Show that the ring of integers of Q(α) for α3 − α+ 1 = 0 is Z[α], with integral basis {1, α, α2}.

◦ The generator α has minimal polynomial m(x) = x3 − 2 over Q as this polynomial is clearly irreducible.

◦ By the exercise above, we have disc(α) = 31.

◦ From our results we know that OK has an integral basis of the form 1,
f1(α)

d1
,
f2(α)

d2
with d1|d2 and where

(d1d2)2 divides disc(α). So we must have d1 = d2 = 1 hence we may take f1(α) = α and f2(α) = α2.

◦ We conclude that {1, α, α2} is an integral basis for the ring of integers, meaning it is simply Z[α].

• Exercise: More generally, suppose m(x) ∈ Z[x] is monic, irreducible, and has squarefree discriminant. If α is
any root of m(x), prove that the ring of integers of K = Q(α) is Z[α].

• Example: Show that the ring of integers of K = Q( 3
√

2) is Z[ 3
√

2], with integral basis {1, 3
√

2, 3
√

4}.

◦ The element α = 3
√

2 has minimal polynomial m(x) = x3 − 2 over Q as this polynomial is clearly
irreducible.

◦ Since m′(x) = 3x2 we see disc(α) = (−1)3NK/Q(3 · 22/3) = −22 · 33.

◦ From our results we know that OK has an integral basis of the form 1,
f1(α)

d1
,
f2(α)

d2
where d1|d2|d and

where d61 divides disc(α). So we must have d = 1 and may then clearly take f1(α) = α.
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◦ We also know that (d1d2)2 = d22 divides disc(α), so d2 divides 6: thus the other basis element is of

the form β =
c0 + c1α+ c2α

2

6
for some integers c0, c1, c2. Then tr(β) = c0/2 so c0 is even. Then

γ = 3β−c0/2 =
c1α+ c2α

2

2
is also an algebraic integer, but now γ3 =

(c1 + c2α)3

4
has trace

3

4
(c31 +2c32),

which can only be an integer when both c1 and c2 are also even.

◦ We conclude that in fact β =
d0 + d1α+ d2α

2

3
for some integers d0, d1, d2 which, by subtracting an

appropriate polynomial in α, we may assume are each 0, 1, or 2.

◦ Squaring yields β2 =
(d20 + 2d1d2) + (2d0d1 + 2d22)α+ (d21 + 2d0d2)α2

9
. In order for this quantity to

be an algebraic integer, each of d20 + 2d1d2, d0d1 + d22, and d21 + 2d0d2 must be divisible by 3 (this
follows because d2|3, so we cannot have denominators of 9). If any of d0, d1, d2 is zero, all of them must
be zero mod 3; otherwise, in the event all are nonzero, we see d20 ≡ d21 ≡ d22 ≡ 1 (mod 3), whence
d1d2 ≡ d0d2 ≡ −d0d1 ≡ 1 (mod 3). But this is a contradiction since the �rst two equalities require
d0 ≡ d1 ≡ d2 mod 3, which contradicts the third condition.

◦ Therefore, all of d0, d1, d2 are zero mod 3, and (thus, �nally) we see that β ∈ Z[α]. We conclude that we
may take β = α2 and so we obtain our integral basis {1, 3

√
2, 3
√

4}.

• We remark that one may compute the ring of integers of Q( 3
√
m) for general (cubefree) m using a similar

approach. Here are two examples:

• Exercise: Show that the ring of integers of Q( 3
√

5) is Z[ 3
√

5]. [Hint: First note d1 = 1, then show d2|10.
Eliminate the possibility that d2 is even, then show that d2 = 5 leads to an eventual contradiction modulo 5.]

• Exercise: Show that the ring of integers of Q( 3
√

10) has integral basis {1, 3
√

10,
1 + 3
√

10 + 3
√

100

3
}. [Hint: First

note d1 = 1, then show d2|30. Use traces to eliminate the possibility that d2 is even or divisible by 5, and
then conclude d2 = 3.]

• Example: Show that the ring of integers ofK = Q(
√

2,
√

5) is Z[
√

2,
1 +
√

5

2
], with integral basis {1,

√
2,

1 +
√

5

2
,

√
2 +
√

10

2
}.

◦ Note that K has the three quadratic sub�elds Q(
√

2), Q(
√

5), Q(
√

10) with respective rings of integers

Z[
√

2], Z[
1 +
√

5

2
], Z[
√

10].

◦ The Galois group of K/Q is isomorphic to the Klein 4-group, with generators σ, τ obtained by lifting
the conjugation automorphisms in the two sub�elds Q(

√
2) and Q(

√
5): thus σ(

√
2,
√

5) = (−
√

2,
√

5)
and τ(

√
2,
√

5) = (
√

2,−
√

5), so στ(
√

2,
√

5) = (−
√

2,−
√

5). (Note that στ �xes the other quadratic
sub�eld Q(

√
10).)

◦ Then the algebraic integer α =
√

2 +
√

5 is a generator for this extension, since its Galois conjugates
±
√

2±
√

5 are all distinct. One option would then be to attempt to construct an integral basis using the
powers of α.

◦ However, in this situation, since we already know that the ring of integers of Q(
√

2) is Z[
√

2], that the

ring of integers of Q(
√

5) is Z[
1 +
√

5

2
], and that the ring of integers of Q(

√
10) is Z[

√
10], a more natural

choice would be to use the elements from these integral bases as a starting point.

◦ So let us instead suppose that α = a+ b
√

2 + c
√

5 + d
√

10 is an algebraic integer, for a, b, c, d ∈ Q.
◦ Then in particular, the relative traces (and norms) of α from K to each of the quadratic sub�elds must
be algebraic integers.

◦ So, trK/Q(
√
2)(α) = α+ τ(α) = 2a+ 2b

√
2 must be in Z[

√
2], so 2a and 2b are integers.

◦ Next, trK/Q(
√
10)(α) = α + σ(α) = 2a + 2c

√
5 must be in Z[

1 +
√

5

2
], so since 2a is an integer, 2c must

also be an integer.

◦ Finally, trK/Q(
√
10)(α) = α+ στ(α) = 2a+ 2d

√
10 must be in Z[

√
10], so 2a and 2d must be integers.
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◦ Hence we must have α =
p+ q

√
2 + r

√
5 + s

√
10

2
for integers p, q, r, s. Then α−r1 +

√
5

2
−s
√

2 +
√

10

2
=

(p− r) + (q − s)
√

2

2
is also an algebraic integer, but this is an element of Q(

√
2) hence must be of the

form u+ v
√

2 for integers u, v.

◦ We conclude that α = u+v
√

2+r
1 +
√

5

2
+s

√
2 +
√

10

2
for integers u, v, r, s, and so 1,

√
2,

1 +
√

5

2
,

√
2 +
√

10

2
is an integral basis for the ring of integers, as claimed.

• Example: Show that the ring of integers of K = Q(
√

5,
√

13) is Z[
1 +
√

5

2
,

1 +
√

13

2
], with integral basis

{1, 1 +
√

5

2
,

1 +
√

13

2
,

(1 +
√

5)(1 +
√

13)

4
}.

◦ Note that K has the three quadratic sub�elds Q(
√

5), Q(
√

13), Q(
√

65) with respective rings of integers

Z[
1 +
√

5

2
], Z[

1 +
√

13

2
], Z[

1 +
√

65

2
].

◦ The Galois group of K/Q is isomorphic to the Klein 4-group, now with generators σ, τ such that
σ(
√

5,
√

13) = (−
√

5,
√

13) and τ(
√

5,
√

13) = (
√

5,−
√

13) and στ(
√

5,
√

13) = (−
√

5,−
√

13).

◦ Now suppose that α = a+ b
√

5 + c
√

13 + d
√

65 is an algebraic integer, for a, b, c, d ∈ Q.

◦ Then trK/Q(
√
2)(α) = α+ τ(α) = 2a+ 2b

√
5 must be in Z[

1 +
√

5

2
], so 4a and 4b are integers of the same

parity.

◦ Also, trK/Q(
√
13)(α) = α+ σ(α) = 2a+ 2c

√
13 must be in Z[

1 +
√

13

2
], so 4a and 4c must be integers of

the same parity.

◦ Also, trK/Q(
√
65)(α) = α+ στ(α) = 2a+ 2c

√
65 must be in Z[

1 +
√

65

2
], so 4a and 4d must be integers of

the same parity.

◦ Hence we must have α =
p+ q

√
5 + r

√
13 + s

√
65

4
for integers p, q, r, s all of the same parity. By

subtracting
(1 +

√
5)(1 +

√
65)

4
=

1 +
√

5 + 5
√

13 +
√

65

4
if all of p, q, r, s are odd, we can make all of

p, q, r, s even, in which case α =
p′ + q′

√
5 + r′

√
13 + s′

√
65

2
+ x

(1 +
√

5)(1 +
√

65)

4
for x = 0 or 1.

◦ Then α− q′ 1 +
√

5

2
− r′ 1 +

√
13

2
− s′ 1 +

√
65

2
=
p′ − q′ − r′ − s′

2
must be an (actual) integer u, meaning

that α = u+ q′
1 +
√

5

2
+ r′

1 +
√

13

2
+ s′

1 +
√

65

2
+ x

(1 +
√

5)(1 +
√

13)

4
for integers u, q′, r′, s′, x.

◦ Finally we note that
1 +
√

65

2
= 3 + 2

(1 +
√

5)(1 +
√

65)

4
− 1 +

√
5

2
− 5

1 +
√

13

2
, so the extra element

1 +
√

65

2
can be written in terms of the other four.

◦ We conclude that {1, 1 +
√

5

2
,

1 +
√

13

2
,

(1 +
√

5)(1 +
√

13)

4
} is an integral basis for the ring of integers,

as claimed.

• Exercise: Show that the ring of integers of Q(
√

3,
√

7) has integral basis {1,
√

3,

√
3 +
√

7

2
,

1 +
√

21

2
}.

• Exercise: Compute an integral basis for the ring of integers of Q(
√

2,
√

3). [Hint: It's bigger than Z[
√

2,
√

3].]

0.8 (Sep 19) The Ring of Integers in Q(ζn)

• Our other major source of examples where we can make explicit calculations is the cyclotomic �elds Q(ζn).
We will now build up to our main result in this case, which is that the ring of integers of Q(ζn) is in fact just
Z[ζn].
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◦ For completeness, we may as well build up our stockpile of information about Q(ζn) from the beginning.

◦ We recall that an nth root of unity is a complex number z with zn = 1. For d|n, any dth root of unity is
also an nth root of unity, and the primitive nth roots of unity are those nth roots of unity that are not
dth roots of unity for any proper divisor d of n.

• Proposition (Cyclotomic Fields): Let n ≥ 2 and let ζn = e2πi/n be a primitive nth root of unity. The following
hold:

1. There are n distinct nth roots of unity, forming a cyclic group of order n under multiplication denoted µn.
The primitive nth roots of unity are the generators of this cyclic group, of the form ζan for gcd(a, n) = 1.

◦ Proof: Suppose z ∈ C has zn = 1. Then |z| = 1 and so z = eiθ for some θ; then zn = 1 is equivalent
to einθ = 1 whence θ = 2kπ/n for some integer k, which is to say, z = ζkn.

◦ So these ζkn are the nth roots of unity, and since the group homomorphism ϕ : Z→ µn with ϕ(k) = ζkn
is clearly onto and has kernel nZ, the group µn is isomorphic to Z/nZ.
◦ Then the primitive nth roots of unity are the ones which have order exactly n (rather than some
proper divisor), so they correspond to the ϕ(n) elements of (Z/nZ)× under the isomorphism: in
other words, they are the powers ζan for a relatively prime to n.

2. Let Φn(x) =
∏
a∈(Z/nZ)×(x − ζan) be the nth cyclotomic polynomial, whose roots are the primitive nth

roots of unity. Then Φn(x) has integer coe�cients.

◦ Exercise: Show that xn − 1 =
∏
d|n Φd(x). [Hint: Group together the roots of unity of each order

d|n.]
◦ Exercise: Show that Φn(x) =

∏
d|n(xd − 1)µ(n/d) where µ(n) denotes the Möbius µ-function µ(n) ={

0 if n is not squarefree

(−1)k if n = p1 · · · pk for distinct primes pi
. Use this recurrence relation to calculate Φ6(x) and

Φ20(x).

◦ Proof: Using the recursion provided by the exercises above, we can see by induction on n that Φn(x)
will always have integer coe�cients. The base case n = 1 is trivial.

◦ For the inductive step, observe that
∏
d|n,d<n Φd(x) is monic, has integer coe�cients, and divides

xn − 1 in Q(ζn)[x]: hence it divides xn − 1 in Q[x] since both polynomials have coe�cients in Q.
Then by Gauss's lemma,

∏
d|n,d<n Φd(x) divides xn − 1 in Z[x], so the quotient Φn(x) has integer

coe�cients.

3. The polynomial Φn(x) is irreducible and is therefore the minimal polynomial of ζn over Q.
◦ Exercise: For a prime p, show directly that Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible. [Hint:

Use Eisenstein's criterion on Φp(x+ 1) =
(x+ 1)p − 1

x
.]

◦ Proof: Suppose that we have an irreducible monic factor of Φn(x) in Q[x]. By Gauss's lemma, this
yields a factorization Φn(x) = f(x)g(x) where f(x), g(x) ∈ Z[x] are monic and f(x) is irreducible.

◦ Let ω be a primitive nth root of unity that is a root of f , and let p be any prime not dividing n.
Since f is irreducible, this means f is the minimal polynomial of ω.

◦ By properties of order, we see that ωp is also a primitive nth root of unity, hence is a root of either
f or of g.

◦ Suppose ωp is a root of g, so that g(ωp) = 0. This means ω is a root of g(xp), and so since f is the
minimal polynomial of ω, it must divide g(xp): say f(x)h(x) = g(xp) for some h(x) ∈ Z[x].

◦ Reducing modulo p, we see f(x)h(x) = g(xp) = g(x)p in Fp[x], so by unique factorization we see
f(x) and g(x) have a nontrivial common factor in Fp[x].

◦ Then since Φn(x) = f(x)g(x), reducing modulo p yields Φn(x) = f(x)g(x) and so Φn(x) would have
a repeated factor, hence so would xn−1. But this is a contradiction because since xn−1 is separable
in Fp[x] (its derivative is nxn−1, which is relatively prime to xn − 1 because p does not divide n).

◦ Hence we conclude that ωp is not a root of g, so it must be a root of f . Since this holds for every
root ω of f , we see that for any a = p1p2 · · · pk that is relatively prime to n, then ωa = ((ωp1)p2)···pn

is a root of f .

◦ But this means every primitive nth root of unity is a root of f , and so Φn = f is irreducible as
claimed.
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4. Both Φn(x) and Q(ζn)/Q have degree ϕ(n), and Φn(x) is the minimal polynomial of ζn over Q.

◦ Proof: By de�nition Φn(x) has degree ϕ(n). Since Φn is irreducible by (3), Φn(x) is then the minimal
polynomial of ζn hence [Q(ζn) : Q] = deg(Φn) = ϕ(n).

5. The extension Q(ζn)/Q is Galois with Galois group isomorphic to (Z/nZ)×. Explicitly, the elements of
the Galois group are the automorphisms σa for a ∈ (Z/nZ)× acting via σa(ζn) = ζan.

◦ Proof: Since K = Q(ζn) is the splitting �eld of xn − 1 (or Φn(x)) over Q it is Galois, and
#Gal(K/Q) = [K : Q] = ϕ(n).

◦ Furthermore, any automorphism σ must map ζn to one of its Galois conjugates over Q, which are
the roots of Φn(x) by (4): explicitly, these are the ϕ(n) values ζan for a relatively prime to n.

◦ Since there are in fact ϕ(n) possible automorphisms, each of these choices must extend to an auto-
morphism of K/Q. Hence the elements of the Galois group are the maps σa as claimed.

◦ Since σa(σb(ζn)) = σa(ζbn) = ζabn , the composition of automorphisms is the same as multiplication of
the indices in (Z/nZ)×, and since this association is a bijection, the Galois group is isomorphic to
(Z/nZ)×.

• Let us now prove our main result about the ring of integers in Q(ζn):

• Theorem (Cyclotomic Ring of Integers): Let n ≥ 2, let ζn = e2πi/n be a primitive nth root of unity (so ζn is
a root of xn − 1). The following hold:

1. For any prime power pd > 2 we have NQ(ζ
pd

)/Q(ζpd) = 1 and NQ(ζ
pd

)/Q(1− ζpd) = p.

◦ Exercise: For any prime power pd, show that Φpd(x) = Φp(x
pd−1

). [Hint: Show both sides equal∏p−1
i=1 (xp

d−1 − ζip).]
◦ Proof: By the exercise above, we know that the minimal polynomial of ζpd is Φpd(x) = Φp(x

pd−1

) =

x(p−1)p
d−1

+x(p−2)p
d−1

+ · · ·+xpd−1

+1, and we also have the factorization Φpd(x) =
∏
a∈(Z/pdZ)×(x−

ζapd).

◦ Thus, x(p−1)p
d−1

+ x(p−2)p
d−1

+ · · ·+ xp
d−1

+ 1 =
∏
a∈(Z/pdZ)×(x− ζapd).

◦ Now, setting x = 0 yields 1 =
∏
a∈(Z/pdZ)×(−ζapd) = (−1)ϕ(p

d)N(ζpd) = N(ζpd) since ϕ(pd) is even.

◦ Also, setting x = 1 yields p =
∏
a∈(Z/pdZ)×(1− ζapd) = N(1− ζpd).

2. For any odd prime p with K = Q(ζp) and S = Z[ζp], we have discK/Q(S) = (−1)p(p−1)/2pp−2.

◦ Proof: For brevity, all norms and discriminants are from Q(ζp) to Q.
◦ By our results on discriminants we know that disc(S) = (−1)p(p−1)/2N [m′(ζp)] where m(x) =

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 is the minimal polynomial of ζp.

◦ A direct evaluation of m′(ζp) using the expansion above is rather unpleasant. Instead, note that
(x−1)m(x) = xp−1: then di�erentiating and setting x = ζp yields m(ζp)+(ζp−1)m′(ζp) = pζp−1p =

p/ζp, whence m
′(ζp) =

−p
ζp(1− ζp)

since of course m(ζp) = 0.

◦ Then using (1) yields disc(S) = (−1)p(p−1)/2N [m′(ζp)] = (−1)p(p−1)/2
N(−p)

N(ζp)N(1− ζp)
= (−1)p(p−1)/2pp−2.

◦ Exercise: Let p be an odd prime. Show that Q(ζp) contains a unique quadratic sub�eld and that

it is Q(
√

(−1)(p−1)/2p). [Hint: Use Galois theory for uniqueness, and discriminants to get the �eld
itself.]

◦ Exercise: Show that every quadratic �eld is a sub�eld of some cyclotomic �eld Q(ζn). [Hint: Take
a composite of Q(ζ8) and the Q(ζp) for various p.] This is a special case of the Kronecker-Weber
theorem: every number �eld K with abelian Galois group over Q is a sub�eld of some cyclotomic
�eld.

3. For any n ≥ 2 and S = Z[ζn], the discriminant discQ(ζn)/Q(S) divides nϕ(n).

◦ Proof: For g(x) =
∏
d|n,d<n(x− ζdn), we have xn − 1 = Φn(x)g(x). Di�erentiating and then setting

x = ζn yields nζ−1n = Φ′n(ζn)g(ζn) + Φn(ζn)g′(ζn) = Φ′n(ζn)g(ζn).
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◦ Taking norms from Q(ζn) to Q (noting that N(ζ−1n ) = ±1 since it is a unit) then yields ±nϕ(n) =
NQ(ζn)/Q[Φ′n(ζn)] ·NQ(ζn)/Q[g(ζn)], and so NQ(ζn)/Q[Φ′n(ζn)] divides nϕ(n).

◦ The desired result then follows immediately from disc(S) = (−1)n(n−1)/2N [Φ′n(ζn)] .

4. For any prime power pd, the ring of integers of K = Q(ζpd) is Z[ζpd ].

◦ Proof: For brevity write ζ = ζpd . First, since Z[ζ] = Z[1 − ζ] = Z ⊕ Z(1 − ζ) ⊕ · · · ⊕ Z(1 − ζ)ϕ(p
d)

since the minimal polynomial for ζ (hence 1− ζ) has degree ϕ(pd), by (3) we know that disc(1− ζ)

divides pdϕ(p
d), which is a power of p.

◦ Then from our earlier results on discriminants, we know that any element of OK can be written in

the form
c0 + c1(1− ζ) + · · ·+ cϕ(pd)(1− ζ)ϕ(p

d)

pk
for some integer k.

◦ If OK 6= Z[ζpd ], then by scaling the expression above by an appropriate power of p, we may suppose

there is an element in OK of the form α =
c0 + c1(1− ζ) + · · ·+ cϕ(pd)(1− ζ)ϕ(p

d)

p
where not all of

the ci are divisible by p.

◦ As calculated in (1) we have N(1− ζpd) = p, which explicitly says (1− ζ) · · · (1− ζpd−1) = p. Since

each of the ϕ(pd) terms on the left-hand side is divisible by 1 − ζ in Z[ζ], we see that (1 − ζ)ϕ(p
d)

divides p in Z[ζ].

◦ Thus, we see p/(1 − ζ)ϕ(p
d) is an algebraic integer, hence for each 1 ≤ i ≤ ϕ(pd) so is

pβ

(1− ζ)i
=

c0(1−ζ)−i+c1(1−ζ)1−i+· · ·+ci+ci+1(1−ζ)+· · ·+cϕ(pd)(1−ζ)ϕ(p
d)−i. Since the terms from ci onward

are clearly algebraic integers, subtracting them yields that c0(1−ζ)−i+c1(1−ζ)1−i+· · ·+ci−1(1−ζ)−1

is an algebraic integer for each i, and then by an easy induction, this implies ci−1/(1 − ζ) is an
algebraic integer for each 1 ≤ i ≤ ϕ(pd).

◦ But now taking norms yields that N(1− ζ) = p divides N(ci−1) = c
ϕ(pd)
i−1 , hence each ci−1 is divisible

by p. This is a contradiction, and so we must in fact have OK 6= Z[ζpd ].

◦ Exercise: For a prime p, show that p = u(1− ζpd)ϕ(p
d) where u is a unit in Z[ζpd ].

5. Suppose K and L are number �elds such that disc(K) and disc(L) are relatively prime and such that
[KL : Q] = [K : Q][L : Q]. Then OKL = OK · OL.
◦ Proof: Suppose OK has an integral basis α1, . . . , αn and OL has an integral basis β1, . . . , βm, where
we note [K : Q] = n and [L : Q] = m.

◦ Then since [KL : K] = [L : Q] the set α1, . . . , αn is a basis for the �eld extension KL/K, and so the
set of mn pairwise products α1β1, . . . , αnβm is a basis for the extension KL/Q, so in particular, it
is linearly independent.

◦ Since each product αiβj is an algebraic integer and there are mn = [KL : Q] of them in total, we see
that these products generate an order in the ring of integers OKL: we now show this order equals
the full ring of integers OKL.
◦ So let γ ∈ OKL: since the αiβj are a Q-basis for KL, taking out common denominators allows

us to write γ =
∑n
i=1

∑n
j=1

ci,j
d
αiβj for some integers ci,j and some positive integer d, where

gcd(d, c1,1, . . . , cn,m) = 1.

◦ It su�ces to show that d divides disc(K), since then by symmetry it also divides disc(L) hence must
be 1 since disc(K) and disc(L) are relatively prime.

◦ Let σ be any complex embedding of K. Since [KL : K] = [L : Q] there are exactly [L : Q] complex
embeddings of KL that extend σ: say they are τ1, . . . , τm. If τi|L = τj |L then τ−1i τj would �x both
K and L hence all of KL, hence must be the identity. Thus, the restrictions of the τi to L are all
distinct, but since there are only [L : Q] = m possible embeddings, all m complex embeddings of L
must occur exactly once.

◦ So now consider the complex embedding of KL that restricts to σ on K and to the identity on L,
which (by mild abuse of terminology) we also call σ.

◦ Then σ(α) =
∑n
i=1

∑n
j=1

ci,j
d
σ(αi)βj =

∑n
i=1 σ(αi)xi where xi =

∑m
j=1

ci,j
d
βj . Running over all of

the complex embeddings of K yields n linear equations in the n variables x1, . . . , xn.
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◦ Solving the system using Cramer's rule yields xi =
det(Mi)

det(M)
=

det(Mi) det(M)

disc(K)
whereM is the n×n

matrix with (i, k)-entry equal to σk(αi) and Mi is the matrix obtained by replacing the ith column
of M with [σ1(α), . . . , σn(α)]T .

◦ Then disc(K)xi =
∑m
j=1

ci,jdisc(K)

d
βj is an algebraic integer for each i, but since the βj are an

integeral basis for OL, each of the coe�cients
ci,jdisc(K)

d
must be an integer. But now since

gcd(d, c1,1, . . . , cn,m) = 1, this implies d divides disc(K), as desired.

6. For any positive integer n, the ring of integers of Q(ζn) is Z[ζn].

◦ Proof: By (4) we already know this result holds when n is a prime power.

◦ Now suppose n = pa11 · · · p
ad
d for distinct primes pi; we wish to apply (5) recursively.

◦ Observe that Q(ζn) is the compositum of the �elds Q(ζpai
i

) for 1 ≤ i ≤ d, and since ϕ(n) =

ϕ(pa11 ) · · ·ϕ(padd ) the degree requirement from (5) is satis�ed.

◦ Additionally, from (3) we know that the discriminant of Q(ζpai
i

) is a power of pi, so the discriminants

of the �elds are all pairwise relatively prime. Thus the discriminant requirement from (5) is also
satis�ed for each composition of �elds.

◦ We conclude that the ring of integers of Q(ζn) is the product Z[ζpa1
1

] · · ·Z[ζpad
d

] = Z[ζn], as desired.

◦ Exercise: If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that

the ring of integers of Q(
√
D,
√
E) is Z[

1 +
√
D

2
,

1 +
√
E

2
], and compute an integral basis for it.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2024. You may not reproduce or distribute this material
without my express permission.
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