E. Dummit’s Math 7315 ~ Algebraic Number Theory, Fall 2024 ~ Homework 5, due Thu Dec 5th.

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 20 and 40 points’
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1

0.1.1

1.
2.

In-Lecture Exercises

Exercises from (Nov 13)

[2pts*] Find the decomposition and inertia groups for the primes (v/—2), (1 + v/—2), and (5) of Q(v/—2).

[2pts] Suppose L/K is a Galois extension with Galois group G and @ is a prime of Oy, lying over P. Show
that D(Q|P) = G if and only if @ is the unique prime of Oy, lying over P.

3. [3pts] Show that if D is a normal subgroup of G, then P is totally split from K to Lp, and if E is also normal,

then each of the primes Q%) of Lp above P are totally inert from Lp to L and then are totally ramified
from Lg to L. (Thus, we obtain all of the splitting of P in the decomposition field, and then all of the inertia

of P in the inertia field, whence the names for these fields.)

0.1.2 Exercises from (Nov 14)

1.

[3pts*] Let L = Q(i,+/3). Analyze the factorization type of the primes 2, 3, and 5 in Oy, and find the
decomposition and inertia groups and fields for each associated prime.

. [3pts] Suppose L/ K is Galois and @ is a prime of Oy, lying over the prime P of Ok. Show that if o € Gal(L/K),

then D(0Q|P) = oD(Q|P)o~! and E(cQ|P) = 0 E(Q|P)o~!. Deduce that when G is abelian, all primes of
Oy, lying over P have the decomposition and the same inertia subgroups and subfields.

[3pts] Let L = Q(10'/3,¢3). Analyze the factorization types of the primes 2, 3, and 5 in O, and find the
decomposition and inertia groups and fields for each associated prime.

. [2pts] Let p be a prime and H be a subgroup of Gal(Q((,)/Q). Show that o = > __, 0((,) is a generator for

the fixed field of H.

. [2pts] Let L = Q({31). Analyze the factorization types of the primes 2, 5, and 7 in Of, and find the

decomposition and inertia groups and fields for each associated prime.

0.1.3 Exercises from (Nov 20)

1.

2.

[2pts] Suppose L/K is a number field extension and P is a prime of Og. Suppose that P is totally split /
inert / ramified in L. Show that P is totally split / inert / ramified (respectively) in every subfield of L.

[3pts*| Let K = Q(v/D) have discriminant A and let p be an odd prime. Show the following equivalences:
(a) p is ramified in Q(v'D) <= A is zero mod p <= the Legendre symbol (%) = 0.

(b) pis split in Q(v/D) <= A is a nonzero square mod p <= the Legendre symbol (%) = +1.

(¢) pisinert in Q(v/D) <= A is a nonsquare mod p <= the Legendre symbol (%) =—1.

d ,2d

3. [1pt] If u is a primitive root modulo p and d divides p — 1, show that the dth powers modulo p are u®, u**, ...

, uP~1. Deduce again that a is a dth power mod p if and only if the order of a divides (p —1)/d.

2
4. [3pts] By comparing the splitting of p in Q((s) to that of 2 in Q(y/p*), show that (p) = +1 when p=1,3

(mod 8) and (;) = —1 when p = 5,7 (mod 8).



0.1.4 Exercises from (Nov 21)

1. [2pts] Suppose L/K is Galois with Q of Op, lying over P of Ok. Show that if Q' = o(Q) is another prime

lying above P for some o € Gal(L/K), then the corresponding Frobenius element for o@Q|P is given by the
conjugate @ q|p = oo po .
. [3pts*] Suppose n = p¥k where p is prime and does not divide k, and let K = Q({,) and P be a prime of Ok
lying above p.

(a) Show that the inertia field of P|p is Q(¢x). [Hint: Consider ramification.]

(b) Suppose that K’ is a subfield of K in which p is unramified. Show that K C Q((x).

(c) Show that the decomposition field of P|p is the subfield of Q({y) fixed by the automorphism ¢ — (}.
[Hint: This is the Frobenius element.]

. |3pts| Suppose n is not a prime power. For K = Q((,) and K, = Q(¢, + ¢, '), show that the extension
K/K, is unramified at finite primes, so that the different dx/x, = 1. [Hint: Write n = p”k where k > 1. If
P is a prime of K lying over P} in K lying over p in Q, observe that E(P|Py) = E(P|p) N{1,0} where o
is complex conjugation. Use the exercise above and k > 1 to see that o & E(P|p).]

. [2pts] Suppose L is the Galois closure of L/K and @ is an unramified prime of L lying over Q of Oy, lying

F(QIP)

over P of Og. Show that YolQ = Pop - [Hint: Both Frobenius elements act as power maps. How are the

powers related?]

. [2pts] Let L/K be a Galois extension with Galois closure L. Show that the prime P of Ok splits completely
in L if and only if the Frobenius conjugacy class for P is trivial. [Hint: Consider the sizes of the orbits.]

. [3pts*] Let m > 3 and let a be relatively prime to m. Apply the Chebotarev density theorem to the element
a € (Z/mZ)* = Gal(Q((n)/Q) to conclude that the natural and analytic density of primes p with p = a
(mod m) is 1/¢(m).

. [2pts] Let g(x) be a polynomial irreducible over Q. Prove that the discriminant of ¢ is a square if and only if
the Galois group of g(z) is a subgroup of A,.

. [5pts] Find the probable Galois group for each polynomial below, given its factorization modulo the 100
smallest primes not dividing its discriminant A:

(a) g(z) = 2% — 2? — 20 — 3, with A =172 .29%
| Factorization Type [ 1 [22] 3 [ 5 |
’ # Appearances \ 1 \ 20 \ 30 \ 49 ‘
(b) g(z) = 2° — 523 + 5z — 20, with A =2%.3%.55. 112
’ Factorization Type \ 1 \ 2,2 \ 4 \ ) ‘
| # Appearances [ 3] 26 [ 52 ] 19 |
(c) g(x) = 25 + 2% + 23, with A = —26.233.
| Factorization Type | 1 [ 22222 ]33] 4 |
’ # Appearances \3\ 9 \ 27 \ 36 \ 24‘
(d) g(z) =25 — 623 — 62% — 62 — 2, with A =26.36.132,
| Factorization Type [ 22 [ 24| 3 [33] 5 |
| # Appearances | 8 | 24 [ 13 [ 14 [ 41 |
(e) g(x) = 27 — 1425 + 5623 — 562 — 22, with A = 26 . 710,
’ Factorization Type \ 1 \ 3,3 \ 7 ‘
| # Appearances [ 2] 68 | 30 |

9. [5pts] Suppose that ¢(x) € Z[z] is an irreducible monic polynomial of degree n.

(a) Suppose that the Galois group over Q, considered as a subgroup of S,,, contains no n-cycles. Prove that
q(x) is reducible modulo p for every prime p. Show that z* + 1 is an example of such a polynomial.

(b) Suppose that n is even and the discriminant of ¢(z) is a perfect square. Prove that ¢ is reducible modulo
p for every prime p.



0.1.5 Exercises from (Nov 25)

1.

[2pts] Suppose L/K is a number field extension and @ is a prime of O, that is wildly ramified over the prime
P of Ok. If Q (and P) lie over the integer prime p, show that p < [L : K.

. [2pts*] Show that the only prime that can be wildly ramified in a quadratic extension Q(v/D)/Q is 2, and

that this occurs if and only if D =3 (mod 4).

. [1pt] Suppose that ¢ : G — R is a function from a group G to a ring R with 1 such that ¢(g192) = ¥(g1)%(g2)

for all g1,¢92 € G and ¢¥(1¢) = 1g. Show that 1 is a group homomorphism of G into the unit group of R.

. |2pts] Let L/K be a Galois extension of number fields with @ a prime of Oy, lying above the prime P of Ok.

Show that the decomposition and inertia groups D(Q|P) and E(Q|P) are solvable groups.

. [2pts] Let L/K be a Galois extension whose Galois group is not solvable (e.g., Ss5) and let P be a prime of

Ok . Show that P cannot be totally inert or totally ramified in L.

[1pt] Let L/K be a Galois extension with Q a prime of Or. Let 7 € Q\Q? and define S_; = G\V; and
Sm = Vin\Vin41 for each m > 0. For any o € S,,, show that the exact power of @ dividing 7 — o(7) is Q™.
[Hint: Apply higher ramification group property (4).]

[4pts] Let L/K be a Galois extension with ) a totally ramified prime of Or,. Suppose 7 € Q\Q? has L = K ()
and 7 has minimal polynomial m(z) € Ok|[z] over K. Show that the exact power of @ dividing the different
Dy, /K is the same as that dividing m/(7). [Hint: Let A = Z & Zn @ --- & Zz"~' where n = [L : K] and let
I ={re Ok :r0y C A}. Show that O C A* C (I0p)* and deduce that Dy, divides (4*)~! = (m/(m))
divides Dy, /i I. Finish by using total ramification to see that @ does not divide I.|

[2pts| Verify Hilbert’s formula for the ramified primes (1+44) in Q(i), (v/5) in Q(v/5), and (1 —¢o) in Q({9)/Q.
[4pts] Let p? > 2 be a prime power and let K = Q(Cpa) and Q = (1 —(,a) be the totally ramified prime above
p, which is the only ramified prime of K.

(a) Find the ramification groups Vp and V4. [Hint: Sylow p-subgroup.]

(b) Show that disc(K) = £p%®")=r"""_ [Hint: Adapt the calculation of disc(Q((,)).]

(c) Show that each of the quotients V,,,/V,,41 is either trivial or cyclic of order p.

(d) For fixed p and with d = 2, find the order of each group V, for m > 0.

0.1.6 Exercises from (Dec 2)

1.

[8pts*] Let K be a field. A valuation on K is a function v : K — R>¢ such that v(0) = 0 and 0 is the only
element with valuation 0, and such that v(zy) = v(z)v(y) and v(z + y) < v(z) + v(y) for all z,y € K.

(a) If v is a valuation on K, show that v(1) = v(—1) = 1. Deduce that the function d(x,y) = v(z — y) makes
K into a metric space.
Now suppose K is a number field.

(b) If o : K — C is a real or complex embedding, show that v(z) = |o(x)]| is a valuation on K. (Note that
complex-conjugate embeddings yield the same valuation.)

(¢) Suppose P is a prime ideal of O. Letting © € K be nonzero, if the prime ideal factorization of the
fractional ideal 2Ok has exact power of P given by P, for d € Z, show that v(z) = N(P)~% (for all such
x) yields a valuation on K that in fact satisfies the ultrametric inequality v(z + y) < max(v(z),v(y)).
This is the P-adic valuation on K.

(d) A valuation v is Archimedean when for any nonzero z,y € K there exists a positive integer n such
that v(nz) > v(y). Show that the embeddings of (b) are Archimedean while the embeddings of (c) are
non-Archimedean.

(e) We view two valuations as equivalent when they yield the same metric space topology on K, using the
metric from (a); it can be shown that v and w are equivalent if and only if there exists some a > 0 such
that w(xz) = v(x)® for all z € K. From (b) and (c) we see that each prime of K yields a valuation of K:
show that valuations associated to different primes are inequivalent.



. [1pt] Determine the primes of Q at which the extensions Q(v/—15), Q(¢7), and Q({7 + ¢ 1) are ramified.

[2pts] Show that Q(+/5,v/13)/Q(v/65) is totally unramified, but that Q(v/3,/5)/Q(+/15) is not.

[1pt] Let L/K be a Galois extension and Ps be an infinite prime of K. Show that all of the infinite primes
of L lying above P, are of the same type (i.e., all real or all complex).

. |1pt] Let L/K be a Galois extension of odd degree. Show that the infinite primes of K are unramified in L.

[2pts*| Show that the Hilbert class field of K = Q(v/=5) is L = Q(i,V/5).

0.1.7 Exercises from (Dec 4)

1.

0.2

[2pts] Show that the ray class group for any modulus is finite. [Hint: Start with finiteness of the ideal class
group and then show that adding each of the valuation conditions only changes the index by a finite amount.]

. [2pts] Show that the sequence 0 — Uy — K5 “7%°% JS — cl(K) — 1 is exact, where Uk is the unit group

of K and K consists of the elements of K* relatively prime to the finite primes in S. [Hint: For surjectivity
at the end, use the Chinese remainder theorem.]

[2pts] Let G be a group with commutator subgroup [G,G]. Show that G* = G/[G, G| is the maximal abelian
quotient of G, in the sense that if ¢ : G — H is a group homomorphism where H is abelian, then there exists
a homomorphism 1 : G — H such that ¢ = g o where ¢ : G — G is the quotient map (i.e., ¢ factors
through G).

[1pt] Let p be a prime and let a < b. Show that the class number of Q((p«) divides the class number of Q((pe).

. |1pt] Suppose that Q(v/a, vb)/Q(V/b) is unramified, where a,b are squarefree. Show that a divides the dis-

criminant of Q(\/I;)

[2pts] Let D < 0 be squarefree. Show that the class number of Q(v/D) is odd if and only if D = —p where p
is a prime congruent to 3 modulo 4.

Additional Exercises

[7pts] The goal of this problem is to prove that there are only finitely many number fields with a given
discriminant X, a result originally due to Hermite. Suppose that K is a number field of signature (r, s) and
discriminant A with real embeddings o1, ..., 0, and nonreal embeddings 7,77, ..., Ts, 75

(a) Suppose r > 0. Show that there exists an element o € Ok such that |0 ()| < 2(2)7*VA, |o(a)| < 3
for2 <i<r, and|rj(e)| < 1foralll<j<s, and that K = Q(c). [Hint: Note that all other conjugates
of « other than o1 («) have absolute value less than 1, so they cannot equal «.]

(b) Suppose r = 0. Show that there exists an element o € Ok such that [Re(ri ()| < 1, |Im(7i())| <
1(2)72V/A, and |7j(@)| < & for all 2 < j < s, and that K = Q(a).

(c) Suppose that « € Ok has all of its absolute values bounded by a constant M. Show that there are only
finitely many possible a.

(d) Show that there are finitely many number fields of signature (r, s) with discriminant X. Deduce that
there are finitely many number fields with discriminant X.

Remark: Let N, (X) denote the number of degree-n number fields with absolute discriminant at most X,
up to isomorphism. Results establishing N, (X) ~ X for n = 2 are classical, for n = 3 are due to
Davenport and Heilbronn, for n = 4 are due to Cohen and Diaz y Diaz, and for n = 5 are due to
Bhargava and Shankar. For arbitrary n the estimate N, (X) < X(*+2)/4 is due to Schmidt, and has
subsequently been improved for by Ellenberg and Venkatesh, Couveignes, and Thorne and Lemke Oliver.
More precise heuristics for the number of extensions N, (X;G) whose Galois group is isomorphic to G
are due to Kluners and Malle, subsequently generalized by Bhargava and others, and improvements in
these bounds over those for general degree-n extensions for general G and specific classes of G have
been made by Ellenberg, Venkatesh, Bhargava, Shankar, X. Wang, Matchett Wood, Dummit, Alberts,
J. Wang, Mehta, Lemke Oliver, and numerous others.



2. [12pts*] The goal of this problem is to study the possible splitting behaviors of a prime in a biquadratic
extension Q(v/a, vb). So let a and b be distinct squarefree integers and set L = Q(v/a, v/b).

(a) Show that L/Q is a Galois extension of degree 4 with Galois group isomorphic to the Klein 4-group and

with generators o, 7 with o(y/a, vb) = (—+v/a, vb) and 7(v/a, Vb)) = (v/a, —V/b).
(b) Deduce that L has three quadratic subfields given by Q(y/a),Q(v/b), and Q(v/ab) = Q(\/ab/ gcd(a, b)2).

Now let p be an integer prime and @ be a prime of Oy, lying over p. We would like to identify all of the
possible factorization behaviors for p in the three quadratic subfields, and in L.

(c) Show that p cannot ramify in only one of the quadratic subfields. [Hint: Consider discriminants. The
argument involves some casework for p = 2.]

(d) Show that if p is ramified in all three quadratic subfields, then p = 2 and (p) = Q* in Or. Give an
example where this occurs.

(e) Show that if p is ramified in two quadratic subfields and inert in the other then (p) = Q% in Or, and give
an example. [Hint: For inertness, make (%) = —1 where D is the discriminant of the unramified field.]

(f) Show that if p is ramified in two quadratic subfields and split in the other then (p) = Q2Q3 in Of, and
give an example.

(g) Show that if p is unramified in L, then it must be inert in either 0 or 2 of the quadratic subfields. [Hint:
Use multiplicativity of the Legendre symbol for odd p, and the fact that the discriminants must be 1
mod 4 for p = 2.]

(h) If p splits in all three quadratic subfields, show that (p) = Q1Q2Q3Q4 in Of, and give an example.

) If p is inert in two quadratic subfields and splits in one, show (p) = Q1Q2 in Oy, and give an example.

(i
(j) Show that the cases listed above exhaust all of the possibilities.

3. [5pts] The gosl of this problem is to demonstrate a connection between totally ramified primes and Eisenstein-
irreducible polynomials. So suppose L/K is an extension of number fields and let P be a prime of Ok lying
under @ in O,. We say a monic polynomial p(z) = 2" +a,_12" 1 +---+ag in Ok|[z] is Eisenstein at P when
each a; € P and ag ¢ P?; the theorem of Eisenstein-Schonemann shows that such polynomials are irreducible.

(a) Suppose that « € Of, has L = K(«) and that the minimal polynomial m(x) for o over K is Eisenstein at
the prime ideal P. Show that P is totally ramified in L. [Hint: Use m to see o™ € P hence o € P hence
Q° divides all a;. If [L : K] > e(Q|P) + 1 show ag = —(a" + - - + a1) € Q°T!, contradicting ag ¢ P?.]
(b) Conversely, suppose that P is totally ramified in L and suppose o € Q\Q? has L = K(«). Show that
the minimal polynomial m(z) = 2" + a,_12" ' + --- + ag of « is Eisenstein at P. [Hint: Note that
m(z) = [[,(z — o(a)) and all o(a) € Q; deduce each a; € P and that since o € Q? that [[, o(«) € P2

4. [8pts] The goal of this problem is to prove the following result: If a and b are integers such that m(z) =
23 + ax + b is irreducible and A = —4a® — 27b% is squarefree, then the class number of the field Q(v/A) is
divisible by 3. So let « be a root of m(z) with K = Q(«) and let L be the Galois closure of Q(«)/Q.

(a) Show that L has degree 6 over Q, the Galois group of L/Q is S3, the extension L/Q(v/A) is abelian, and
that O = Z|a].

(b) Show that the infinite primes are unramified in L/Q(v/A). [Hint: Use 0.1.6.5.]

(c) Show that the finite primes are unramified in L/Q(v/A). [Hint: If P is a finite prime lying above p € Z
that ramifies, show it is totally ramified and deduce 3|e(P|p). Conclude pO; = Q3 for some ideal Q and
then that p? divides A

(d) Conclude that the Hilbert class field of Q(v/A) contains L, and deduce that the class number of Q(v/A)
is divisible by 3.

(e) Find five examples of discriminants A meeting the criteria of this problem.



