E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 5, due Thu Dec 5th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points' worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Nov 13)

- 1. [2pts^{*}] Find the decomposition and inertia groups for the primes ($\sqrt{-2}$), (1 + $\sqrt{-2}$), and (5) of Q($\sqrt{-2}$).
- 2. [2pts] Suppose L/K is a Galois extension with Galois group G and Q is a prime of \mathcal{O}_L lying over P. Show that $D(Q|P) = G$ if and only if Q is the unique prime of \mathcal{O}_L lying over P.
- 3. [3pts] Show that if D is a normal subgroup of G, then P is totally split from K to L_D , and if E is also normal, then each of the primes $Q_D^{(i)}$ of L_D above P are totally inert from L_D to L_E and then are totally ramified from L_E to L . (Thus, we obtain all of the splitting of P in the decomposition field, and then all of the inertia of P in the inertia field, whence the names for these fields.)

0.1.2 Exercises from (Nov 14)

- 1. [3pts*] Let $L = \mathbb{Q}(i, \sqrt{3})$. Analyze the factorization type of the primes 2, 3, and 5 in \mathcal{O}_L , and find the decomposition and inertia groups and fields for each associated prime.
- 2. [3pts] Suppose L/K is Galois and Q is a prime of \mathcal{O}_L lying over the prime P of \mathcal{O}_K . Show that if $\sigma \in \text{Gal}(L/K)$, then $D(\sigma Q|P) = \sigma D(Q|P)\sigma^{-1}$ and $E(\sigma Q|P) = \sigma E(Q|P)\sigma^{-1}$. Deduce that when G is abelian, all primes of \mathcal{O}_L lying over P have the decomposition and the same inertia subgroups and subfields.
- 3. [3pts] Let $L = \mathbb{Q}(10^{1/3}, \zeta_3)$. Analyze the factorization types of the primes 2, 3, and 5 in \mathcal{O}_L , and find the decomposition and inertia groups and fields for each associated prime.
- 4. [2pts] Let p be a prime and H be a subgroup of Gal($\mathbb{Q}(\zeta_p)/\mathbb{Q}$). Show that $\alpha = \sum_{\sigma \in H} \sigma(\zeta_p)$ is a generator for the fixed field of H .
- 5. [2pts] Let $L = \mathbb{Q}(\zeta_{31})$. Analyze the factorization types of the primes 2, 5, and 7 in \mathcal{O}_L , and find the decomposition and inertia groups and fields for each associated prime.

0.1.3 Exercises from (Nov 20)

- 1. [2pts] Suppose L/K is a number field extension and P is a prime of \mathcal{O}_K . Suppose that P is totally split / inert / ramified in L. Show that P is totally split / inert / ramified (respectively) in every subfield of L.
- 2. [3pts*] Let $K = \mathbb{Q}(\sqrt{2})$ D) have discriminant Δ and let p be an odd prime. Show the following equivalences:

(a) p is ramified in $\mathbb{Q}(\sqrt{D}) \iff \Delta$ is zero mod $p \iff$ the Legendre symbol $\left(\frac{\Delta}{p}\right) = 0$.

- (b) p is split in $\mathbb{Q}(\sqrt{D}) \iff \Delta$ is a nonzero square mod $p \iff$ the Legendre symbol $\left(\frac{\Delta}{p}\right) = +1$.
- (c) p is inert in $\mathbb{Q}(\sqrt{D}) \iff \Delta$ is a nonsquare mod $p \iff$ the Legendre symbol $\left(\frac{\Delta}{p}\right) = -1$.
- 3. [1pt] If u is a primitive root modulo p and d divides $p-1$, show that the dth powers modulo p are u^d , u^{2d} , ... , u^{p-1} . Deduce again that a is a dth power mod p if and only if the order of a divides $(p-1)/d$.
- 4. [3pts] By comparing the splitting of p in $\mathbb{Q}(\zeta_8)$ to that of 2 in $\mathbb{Q}(\sqrt{p^*})$, show that $\left(\frac{2}{p^*}\right)^{2\over 2}$ p $= +1$ when $p \equiv 1, 3$ (mod 8) and $\begin{pmatrix} 2 \end{pmatrix}$ p $= -1$ when $p \equiv 5, 7 \pmod{8}$.

0.1.4 Exercises from (Nov 21)

- 1. [2pts] Suppose L/K is Galois with Q of \mathcal{O}_L lying over P of \mathcal{O}_K . Show that if $Q' = \sigma(Q)$ is another prime lying above P for some $\sigma \in \text{Gal}(L/K)$, then the corresponding Frobenius element for $\sigma Q|P$ is given by the conjugate $\varphi_{\sigma Q|P} = \sigma \varphi_{Q|P} \sigma^{-1}$.
- 2. [3pts^{*}] Suppose $n = p^v k$ where p is prime and does not divide k, and let $K = \mathbb{Q}(\zeta_n)$ and P be a prime of \mathcal{O}_K lying above p.
	- (a) Show that the inertia field of $P|p$ is $\mathbb{Q}(\zeta_k)$. [Hint: Consider ramification.]
	- (b) Suppose that K' is a subfield of K in which p is unramified. Show that $K \subseteq \mathbb{Q}(\zeta_k)$.
	- (c) Show that the decomposition field of $P|p$ is the subfield of $\mathbb{Q}(\zeta_k)$ fixed by the automorphism $\zeta_k \mapsto \zeta_k^p$. [Hint: This is the Frobenius element.]
- 3. [3pts] Suppose *n* is not a prime power. For $K = \mathbb{Q}(\zeta_n)$ and $K_+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$, show that the extension K/K_+ is unramified at finite primes, so that the different $d_{K/K_+} = 1$. [Hint: Write $n = p^v k$ where $k > 1$. If P is a prime of K lying over P_+ in K_+ lying over p in Q, observe that $E(P|P_+) = E(P|p) \cap \{1, \sigma\}$ where σ is complex conjugation. Use the exercise above and $k > 1$ to see that $\sigma \notin E(P|p)$.
- 4. [2pts] Suppose \hat{L} is the Galois closure of L/K and \hat{Q} is an unramified prime of \hat{L} lying over Q of \mathcal{O}_L lying over P of \mathcal{O}_K . Show that $\varphi_{\hat{Q}|Q} = \varphi_{\hat{O}|P}^{f(Q|P)}$ $Q(P)$. [Hint: Both Frobenius elements act as power maps. How are the powers related?]
- 5. [2pts] Let L/K be a Galois extension with Galois closure \hat{L} . Show that the prime P of \mathcal{O}_K splits completely in L if and only if the Frobenius conjugacy class for P is trivial. [Hint: Consider the sizes of the orbits.]
- 6. [3pts*] Let $m \geq 3$ and let a be relatively prime to m. Apply the Chebotarev density theorem to the element $a \in (\mathbb{Z}/m\mathbb{Z})^{\times} \cong \text{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ to conclude that the natural and analytic density of primes p with $p \equiv a$ (mod *m*) is $1/\varphi(m)$.
- 7. [2pts] Let $g(x)$ be a polynomial irreducible over Q. Prove that the discriminant of g is a square if and only if the Galois group of $g(x)$ is a subgroup of A_n .
- 8. [5pts] Find the probable Galois group for each polynomial below, given its factorization modulo the 100 smallest primes not dividing its discriminant Δ :

- 9. [5pts] Suppose that $q(x) \in \mathbb{Z}[x]$ is an irreducible monic polynomial of degree n.
	- (a) Suppose that the Galois group over \mathbb{Q} , considered as a subgroup of S_n , contains no n-cycles. Prove that $q(x)$ is reducible modulo p for every prime p. Show that $x^4 + 1$ is an example of such a polynomial.
	- (b) Suppose that n is even and the discriminant of $q(x)$ is a perfect square. Prove that q is reducible modulo p for every prime p.

0.1.5 Exercises from (Nov 25)

- 1. [2pts] Suppose L/K is a number field extension and Q is a prime of \mathcal{O}_L that is wildly ramified over the prime P of \mathcal{O}_K . If Q (and P) lie over the integer prime p, show that $p \leq [L:K]$.
- 2. [2pts*] Show that the only prime that can be wildly ramified in a quadratic extension $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ is 2, and that this occurs if and only if $D \equiv 3 \pmod{4}$.
- 3. [1pt] Suppose that $\psi: G \to R$ is a function from a group G to a ring R with 1 such that $\psi(g_1g_2) = \psi(g_1)\psi(g_2)$ for all $g_1, g_2 \in G$ and $\psi(1_G) = 1_R$. Show that ψ is a group homomorphism of G into the unit group of R.
- 4. [2pts] Let L/K be a Galois extension of number fields with Q a prime of \mathcal{O}_L lying above the prime P of \mathcal{O}_K . Show that the decomposition and inertia groups $D(Q|P)$ and $E(Q|P)$ are solvable groups.
- 5. [2pts] Let L/K be a Galois extension whose Galois group is not solvable (e.g., S_5) and let P be a prime of \mathcal{O}_K . Show that P cannot be totally inert or totally ramified in L.
- 6. [1pt] Let L/K be a Galois extension with Q a prime of \mathcal{O}_L . Let $\pi \in Q\backslash Q^2$ and define $S_{-1} = G\backslash V_0$ and $S_m = V_m \backslash V_{m+1}$ for each $m \geq 0$. For any $\sigma \in S_m$, show that the exact power of Q dividing $\pi - \sigma(\pi)$ is Q^m . [Hint: Apply higher ramification group property (4).]
- 7. [4pts] Let L/K be a Galois extension with Q a totally ramified prime of \mathcal{O}_L . Suppose $\pi \in Q \backslash Q^2$ has $L = K(\pi)$ and π has minimal polynomial $m(x) \in \mathcal{O}_K[x]$ over K. Show that the exact power of Q dividing the different $D_{L/K}$ is the same as that dividing $m'(\pi)$. Hint: Let $A = \mathbb{Z} \oplus \mathbb{Z} \pi \oplus \cdots \oplus \mathbb{Z} \pi^{n-1}$ where $n = [L:K]$ and let $I = \{r \in \mathcal{O}_K : r\mathcal{O}_L \subseteq A\}$. Show that $\mathcal{O}_L^* \subseteq A^* \subseteq (I\mathcal{O}_L)^*$ and deduce that $D_{L/K}$ divides $(A^*)^{-1} = (m'(\pi))$ divides $D_{L/K}I$. Finish by using total ramification to see that Q does not divide I.
- 8. [2pts] Verify Hilbert's formula for the ramified primes $(1+i)$ in $\mathbb{Q}(i)$, $(\sqrt{5})$ in $\mathbb{Q}(\sqrt{5})$, and $(1-\zeta_9)$ in $\mathbb{Q}(\zeta_9)/\mathbb{Q}$.
- 9. [4pts] Let $p^d > 2$ be a prime power and let $K = \mathbb{Q}(\zeta_{p^d})$ and $Q = (1 \zeta_{p^d})$ be the totally ramified prime above p , which is the only ramified prime of K .
	- (a) Find the ramification groups V_0 and V_1 . [Hint: Sylow p-subgroup.]
	- (b) Show that $\text{disc}(K) = \pm p^{d\varphi(p^d) p^{d-1}}$. [Hint: Adapt the calculation of $\text{disc}(\mathbb{Q}(\zeta_p)).$]
	- (c) Show that each of the quotients V_m/V_{m+1} is either trivial or cyclic of order p.
	- (d) For fixed p and with $d = 2$, find the order of each group V_m for $m \geq 0$.

0.1.6 Exercises from (Dec 2)

- 1. [8pts*] Let K be a field. A <u>valuation</u> on K is a function $v: K \to \mathbb{R}_{\geq 0}$ such that $v(0) = 0$ and 0 is the only element with valuation 0, and such that $v(xy) = v(x)v(y)$ and $v(x + y) \le v(x) + v(y)$ for all $x, y \in K$.
	- (a) If v is a valuation on K, show that $v(1) = v(-1) = 1$. Deduce that the function $d(x, y) = v(x y)$ makes K into a metric space.

Now suppose K is a number field.

- (b) If $\sigma: K \to \mathbb{C}$ is a real or complex embedding, show that $v(x) = |\sigma(x)|$ is a valuation on K. (Note that complex-conjugate embeddings yield the same valuation.)
- (c) Suppose P is a prime ideal of \mathcal{O}_K . Letting $x \in K$ be nonzero, if the prime ideal factorization of the fractional ideal $x\mathcal{O}_K$ has exact power of P given by P^d , for $d\in\mathbb{Z}$, show that $v(x)=N(P)^{-d}$ (for all such x) yields a valuation on K that in fact satisfies the ultrametric inequality $v(x + y) \leq \max(v(x), v(y))$. This is the P-adic valuation on K.
- (d) A valuation v is Archimedean when for any nonzero $x, y \in K$ there exists a positive integer n such that $v(nx) > v(y)$. Show that the embeddings of (b) are Archimedean while the embeddings of (c) are non-Archimedean.
- (e) We view two valuations as equivalent when they yield the same metric space topology on K , using the metric from (a); it can be shown that v and w are equivalent if and only if there exists some $a > 0$ such that $w(x) = v(x)^a$ for all $x \in K$. From (b) and (c) we see that each prime of K yields a valuation of K: show that valuations associated to different primes are inequivalent.
- 2. [1pt] Determine the primes of $\mathbb Q$ at which the extensions $\mathbb Q(\sqrt{-15})$, $\mathbb Q(\zeta_7)$, and $\mathbb Q(\zeta_7 + \zeta_7^{-1})$ are ramified.
- 3. [2pts] Show that $\mathbb{Q}(\sqrt{2})$ 5, $\sqrt{13}$ / $\mathbb{Q}(\sqrt{65})$ is totally unramified, but that $\mathbb{Q}(\sqrt{65})$ 3, $\sqrt{5})/\mathbb{Q}(\sqrt{3})$ 15) is not.
- 4. [1pt] Let L/K be a Galois extension and P_{∞} be an infinite prime of K. Show that all of the infinite primes of L lying above P_{∞} are of the same type (i.e., all real or all complex).
- 5. [1pt] Let L/K be a Galois extension of odd degree. Show that the infinite primes of K are unramified in L.
- 6. [2pts*] Show that the Hilbert class field of $K = \mathbb{Q}(\sqrt{-5})$ is $L = \mathbb{Q}(i, \sqrt{5})$.

0.1.7 Exercises from (Dec 4)

- 1. [2pts] Show that the ray class group for any modulus is nite. [Hint: Start with niteness of the ideal class group and then show that adding each of the valuation conditions only changes the index by a finite amount.
- 2. [2pts] Show that the sequence $0 \to U_K \to K^S \stackrel{a \mapsto a\mathcal{O}_K}{\to} J^S \to \text{cl}(K) \to 1$ is exact, where U_K is the unit group of K and K^S consists of the elements of K^\times relatively prime to the finite primes in S. [Hint: For surjectivity at the end, use the Chinese remainder theorem.]
- 3. [2pts] Let G be a group with commutator subgroup $[G, G]$. Show that $G^{ab} = G/[G, G]$ is the maximal abelian quotient of G, in the sense that if $\varphi: G \to H$ is a group homomorphism where H is abelian, then there exists a homomorphism $\psi: G^{ab} \to H$ such that $\varphi = q \circ \psi$ where $q: G \to G^{ab}$ is the quotient map (i.e., φ factors through G^{ab}).
- 4. [1pt] Let p be a prime and let $a \leq b$. Show that the class number of $\mathbb{Q}(\zeta_{p^a})$ divides the class number of $\mathbb{Q}(\zeta_{p^b})$.
- 5. [1pt] Suppose that $\mathbb{Q}(\sqrt{a}, \sqrt{b})/\mathbb{Q}(\sqrt{b})$ hat $\mathbb{Q}(\sqrt{a},\sqrt{b})/\mathbb{Q}(\sqrt{b})$ is unramified, where a,b are squarefree. Show that a divides the discriminant of $\mathbb{Q}(\sqrt{b})$.
- 6. [2pts] Let $D < 0$ be squarefree. Show that the class number of $\mathbb{Q}(\sqrt{2})$ D) is odd if and only if $D = -p$ where p is a prime congruent to 3 modulo 4.

0.2 Additional Exercises

- 1. [7pts] The goal of this problem is to prove that there are only finitely many number fields with a given discriminant X, a result originally due to Hermite. Suppose that K is a number field of signature (r, s) and discriminant Δ with real embeddings $\sigma_1, \ldots, \sigma_r$ and nonreal embeddings $\tau_1, \overline{\tau_1}, \ldots, \tau_s, \overline{\tau_s}$.
	- (a) Suppose $r > 0$. Show that there exists an element $\alpha \in \mathcal{O}_K$ such that $|\sigma_1(\alpha)| \leq \frac{1}{2}(\frac{\pi}{2})^{-s}\sqrt{\Delta}, |\sigma_i(\alpha)| \leq \frac{1}{2}$ $\text{for } 2 \leq i \leq r \text{, and } |\tau_j(\alpha)| \leq \frac{1}{2} \text{ for all } 1 \leq j \leq s \text{, and that } K = \mathbb{Q}(\alpha). \text{ [Hint: Note that all other conjugates]}$ of α other than $\sigma_1(\alpha)$ have absolute value less than 1, so they cannot equal α .]
	- (b) Suppose $r = 0$. Show that there exists an element $\alpha \in \mathcal{O}_K$ such that $|\text{Re}(\tau_1(\alpha))| \leq \frac{1}{2}$, $|\text{Im}(\tau_1(\alpha))| \leq \frac{1}{2}$ $\frac{1}{2}(\frac{\pi}{2})^{-2}\sqrt{\Delta}$, and $|\tau_j(\alpha)| \leq \frac{1}{2}$ for all $2 \leq j \leq s$, and that $K = \mathbb{Q}(\alpha)$.
	- (c) Suppose that $\alpha \in \mathcal{O}_K$ has all of its absolute values bounded by a constant M. Show that there are only finitely many possible α .
	- (d) Show that there are finitely many number fields of signature (r, s) with discriminant X. Deduce that there are finitely many number fields with discriminant X .
	- **Remark:** Let $N_n(X)$ denote the number of degree-n number fields with absolute discriminant at most X, up to isomorphism. Results establishing $N_n(X) \sim X$ for $n = 2$ are classical, for $n = 3$ are due to Davenport and Heilbronn, for $n = 4$ are due to Cohen and Diaz y Diaz, and for $n = 5$ are due to Bhargava and Shankar. For arbitrary n the estimate $N_n(X) \ll X^{(n+2)/4}$ is due to Schmidt, and has subsequently been improved for by Ellenberg and Venkatesh, Couveignes, and Thorne and Lemke Oliver. More precise heuristics for the number of extensions $N_n(X; G)$ whose Galois group is isomorphic to G are due to Kluners and Malle, subsequently generalized by Bhargava and others, and improvements in these bounds over those for general degree-n extensions for general G and specific classes of G have been made by Ellenberg, Venkatesh, Bhargava, Shankar, X. Wang, Matchett Wood, Dummit, Alberts, J. Wang, Mehta, Lemke Oliver, and numerous others.
- 2. [12pts*] The goal of this problem is to study the possible splitting behaviors of a prime in a biquadratic [12pts^{*}] The goal of this problem is to study the possible splitting behaviors of a prime extension $\mathbb{Q}(\sqrt{a}, \sqrt{b})$. So let a and b be distinct squarefree integers and set $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$.
	- (a) Show that L/\mathbb{Q} is a Galois extension of degree 4 with Galois group isomorphic to the Klein 4-group and Show that L/ψ is a Galois extension of degree 4 with Galois group isomorphic with generators σ, τ with $\sigma(\sqrt{a}, \sqrt{b}) = (-\sqrt{a}, \sqrt{b})$ and $\tau(\sqrt{a}, \sqrt{b}) = (\sqrt{a}, -\sqrt{b})$.
	- (b) Deduce that L has three quadratic subfields given by $\mathbb{Q}(\sqrt{a}), \mathbb{Q}(\sqrt{b})$, and $\mathbb{Q}(\sqrt{ab}) = \mathbb{Q}(\sqrt{ab}/\text{gcd}(a, b)^2)$.

Now let p be an integer prime and Q be a prime of \mathcal{O}_L lying over p. We would like to identify all of the possible factorization behaviors for p in the three quadratic subfields, and in L .

- (c) Show that p cannot ramify in only one of the quadratic subfields. [Hint: Consider discriminants. The argument involves some casework for $p = 2$.
- (d) Show that if p is ramified in all three quadratic subfields, then $p = 2$ and $(p) = Q^4$ in \mathcal{O}_L . Give an example where this occurs.
- (e) Show that if p is ramified in two quadratic subfields and inert in the other then $(p) = Q^2$ in \mathcal{O}_L , and give an example. [Hint: For inertness, make $(\frac{D}{p}) = -1$ where D is the discriminant of the unramified field.]
- (f) Show that if p is ramified in two quadratic subfields and split in the other then $(p) = Q_1^2 Q_2^2$ in \mathcal{O}_L , and give an example.
- (g) Show that if p is unramified in L, then it must be inert in either 0 or 2 of the quadratic subfields. [Hint: Use multiplicativity of the Legendre symbol for odd p , and the fact that the discriminants must be 1 mod 4 for $p = 2$.
- (h) If p splits in all three quadratic subfields, show that $(p) = Q_1 Q_2 Q_3 Q_4$ in \mathcal{O}_L , and give an example.
- (i) If p is inert in two quadratic subfields and splits in one, show $(p) = Q_1 Q_2$ in \mathcal{O}_L , and give an example.
- (j) Show that the cases listed above exhaust all of the possibilities.
- 3. [5pts] The gosl of this problem is to demonstrate a connection between totally ramified primes and Eisensteinirreducible polynomials. So suppose L/K is an extension of number fields and let P be a prime of \mathcal{O}_K lying under Q in \mathcal{O}_L . We say a monic polynomial $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ in $\mathcal{O}_K[x]$ is <u>Eisenstein at P</u> when each $a_i \in P$ and $a_0 \notin P^2$; the theorem of Eisenstein-Schonemann shows that such polynomials are irreducible.
	- (a) Suppose that $\alpha \in \mathcal{O}_L$ has $L = K(\alpha)$ and that the minimal polynomial $m(x)$ for α over K is Eisenstein at the prime ideal P. Show that P is totally ramified in L. [Hint: Use m to see $\alpha^n \in P$ hence $\alpha \in P$ hence Q^e divides all a_i . If $[L:K] \ge e(Q|P) + 1$ show $a_0 = -(\alpha^n + \cdots + a_1 \alpha) \in Q^{e+1}$, contradicting $a_0 \notin P^2$.
	- (b) Conversely, suppose that P is totally ramified in L and suppose $\alpha \in Q \backslash Q^2$ has $L = K(\alpha)$. Show that the minimal polynomial $m(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ of α is Eisenstein at P. [Hint: Note that $m(x) = \prod_{\sigma} (x - \sigma(\alpha))$ and all $\sigma(\alpha) \in Q$; deduce each $a_i \in P$ and that since $\alpha \notin Q^2$ that $\prod_{\sigma} \sigma(\alpha) \notin P^2$.
- 4. [8pts] The goal of this problem is to prove the following result: If a and b are integers such that $m(x)$ $x^3 + ax + b$ is irreducible and $\Delta = -4a^3 - 27b^2$ is squarefree, then the class number of the field $\mathbb{Q}(\sqrt{\Delta})$ is divisible by 3. So let α be a root of $m(x)$ with $K = \mathbb{Q}(\alpha)$ and let L be the Galois closure of $\mathbb{Q}(\alpha)/\mathbb{Q}$.
	- (a) Show that L has degree 6 over Q, the Galois group of L/\mathbb{Q} is S_3 , the extension $L/\mathbb{Q}(\sqrt{\mathbb{Q}})$ ∆) is abelian, and that $\mathcal{O}_K = \mathbb{Z}[\alpha].$
	- (b) Show that the infinite primes are unramified in $L/\mathbb{Q}(\sqrt{\frac{m}{\epsilon}})$ Δ). [Hint: Use 0.1.6.5.]
	- (c) Show that the finite primes are unramified in $L/\mathbb{Q}(\sqrt{\Delta})$. [Hint: If P is a finite prime lying above $p \in \mathbb{Z}$ that ramifies, show it is totally ramified and deduce $3|e(P|p)$. Conclude $p\mathcal{O}_k=Q^3$ for some ideal Q and then that p^2 divides Δ .] √ √
	- (d) Conclude that the Hilbert class field of $Q($ Δ) contains L, and deduce that the class number of Q(∆) is divisible by 3.
	- (e) Find five examples of discriminants Δ meeting the criteria of this problem.