
E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 5, due Thu Dec 5th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points'
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Nov 13)

1. [2pts*] Find the decomposition and inertia groups for the primes (
√
−2), (1 +

√
−2), and (5) of Q(

√
−2).

2. [2pts] Suppose L/K is a Galois extension with Galois group G and Q is a prime of OL lying over P . Show
that D(Q|P ) = G if and only if Q is the unique prime of OL lying over P .

3. [3pts] Show that if D is a normal subgroup of G, then P is totally split from K to LD, and if E is also normal,

then each of the primes Q
(i)
D of LD above P are totally inert from LD to LE and then are totally rami�ed

from LE to L. (Thus, we obtain all of the splitting of P in the decomposition �eld, and then all of the inertia
of P in the inertia �eld, whence the names for these �elds.)

0.1.2 Exercises from (Nov 14)

1. [3pts*] Let L = Q(i,
√

3). Analyze the factorization type of the primes 2, 3, and 5 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

2. [3pts] Suppose L/K is Galois andQ is a prime ofOL lying over the prime P ofOK . Show that if σ ∈ Gal(L/K),
then D(σQ|P ) = σD(Q|P )σ−1 and E(σQ|P ) = σE(Q|P )σ−1. Deduce that when G is abelian, all primes of
OL lying over P have the decomposition and the same inertia subgroups and sub�elds.

3. [3pts] Let L = Q(101/3, ζ3). Analyze the factorization types of the primes 2, 3, and 5 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

4. [2pts] Let p be a prime and H be a subgroup of Gal(Q(ζp)/Q). Show that α =
∑
σ∈H σ(ζp) is a generator for

the �xed �eld of H.

5. [2pts] Let L = Q(ζ31). Analyze the factorization types of the primes 2, 5, and 7 in OL, and �nd the
decomposition and inertia groups and �elds for each associated prime.

0.1.3 Exercises from (Nov 20)

1. [2pts] Suppose L/K is a number �eld extension and P is a prime of OK . Suppose that P is totally split /
inert / rami�ed in L. Show that P is totally split / inert / rami�ed (respectively) in every sub�eld of L.

2. [3pts*] Let K = Q(
√
D) have discriminant ∆ and let p be an odd prime. Show the following equivalences:

(a) p is rami�ed in Q(
√
D) ⇐⇒ ∆ is zero mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= 0.

(b) p is split in Q(
√
D) ⇐⇒ ∆ is a nonzero square mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= +1.

(c) p is inert in Q(
√
D) ⇐⇒ ∆ is a nonsquare mod p ⇐⇒ the Legendre symbol

(
∆
p

)
= −1.

3. [1pt] If u is a primitive root modulo p and d divides p− 1, show that the dth powers modulo p are ud, u2d, ...
, up−1. Deduce again that a is a dth power mod p if and only if the order of a divides (p− 1)/d.

4. [3pts] By comparing the splitting of p in Q(ζ8) to that of 2 in Q(
√
p∗), show that

(
2

p

)
= +1 when p ≡ 1, 3

(mod 8) and

(
2

p

)
= −1 when p ≡ 5, 7 (mod 8).
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0.1.4 Exercises from (Nov 21)

1. [2pts] Suppose L/K is Galois with Q of OL lying over P of OK . Show that if Q′ = σ(Q) is another prime
lying above P for some σ ∈ Gal(L/K), then the corresponding Frobenius element for σQ|P is given by the
conjugate ϕσQ|P = σϕQ|Pσ

−1.

2. [3pts*] Suppose n = pvk where p is prime and does not divide k, and let K = Q(ζn) and P be a prime of OK
lying above p.

(a) Show that the inertia �eld of P |p is Q(ζk). [Hint: Consider rami�cation.]

(b) Suppose that K ′ is a sub�eld of K in which p is unrami�ed. Show that K ⊆ Q(ζk).

(c) Show that the decomposition �eld of P |p is the sub�eld of Q(ζk) �xed by the automorphism ζk 7→ ζpk .
[Hint: This is the Frobenius element.]

3. [3pts] Suppose n is not a prime power. For K = Q(ζn) and K+ = Q(ζn + ζ−1
n ), show that the extension

K/K+ is unrami�ed at �nite primes, so that the di�erent dK/K+
= 1. [Hint: Write n = pvk where k > 1. If

P is a prime of K lying over P+ in K+ lying over p in Q, observe that E(P |P+) = E(P |p) ∩ {1, σ} where σ
is complex conjugation. Use the exercise above and k > 1 to see that σ 6∈ E(P |p).]

4. [2pts] Suppose L̂ is the Galois closure of L/K and Q̂ is an unrami�ed prime of L̂ lying over Q of OL lying

over P of OK . Show that ϕQ̂|Q = ϕ
f(Q|P )

Q̂|P
. [Hint: Both Frobenius elements act as power maps. How are the

powers related?]

5. [2pts] Let L/K be a Galois extension with Galois closure L̂. Show that the prime P of OK splits completely
in L if and only if the Frobenius conjugacy class for P is trivial. [Hint: Consider the sizes of the orbits.]

6. [3pts*] Let m ≥ 3 and let a be relatively prime to m. Apply the Chebotarev density theorem to the element
a ∈ (Z/mZ)× ∼= Gal(Q(ζm)/Q) to conclude that the natural and analytic density of primes p with p ≡ a
(mod m) is 1/ϕ(m).

7. [2pts] Let g(x) be a polynomial irreducible over Q. Prove that the discriminant of g is a square if and only if
the Galois group of g(x) is a subgroup of An.

8. [5pts] Find the probable Galois group for each polynomial below, given its factorization modulo the 100
smallest primes not dividing its discriminant ∆:

(a) g(x) = x5 − x2 − 2x− 3, with ∆ = 172 · 292.

Factorization Type 1 2,2 3 5

# Appearances 1 20 30 49

(b) g(x) = x5 − 5x3 + 5x− 20, with ∆ = 24 · 34 · 55 · 112.

Factorization Type 1 2,2 4 5

# Appearances 3 26 52 19

(c) g(x) = x6 + x4 + 23, with ∆ = −26 · 233.

Factorization Type 1 2,2 2,2,2 3,3 4

# Appearances 3 9 27 36 24

(d) g(x) = x6 − 6x3 − 6x2 − 6x− 2, with ∆ = 26 · 36 · 132.

Factorization Type 2,2 2,4 3 3,3 5

# Appearances 8 24 13 14 41

(e) g(x) = x7 − 14x5 + 56x3 − 56x− 22, with ∆ = 26 · 710.

Factorization Type 1 3,3 7

# Appearances 2 68 30

9. [5pts] Suppose that q(x) ∈ Z[x] is an irreducible monic polynomial of degree n.

(a) Suppose that the Galois group over Q, considered as a subgroup of Sn, contains no n-cycles. Prove that
q(x) is reducible modulo p for every prime p. Show that x4 + 1 is an example of such a polynomial.

(b) Suppose that n is even and the discriminant of q(x) is a perfect square. Prove that q is reducible modulo
p for every prime p.
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0.1.5 Exercises from (Nov 25)

1. [2pts] Suppose L/K is a number �eld extension and Q is a prime of OL that is wildly rami�ed over the prime
P of OK . If Q (and P ) lie over the integer prime p, show that p ≤ [L : K].

2. [2pts*] Show that the only prime that can be wildly rami�ed in a quadratic extension Q(
√
D)/Q is 2, and

that this occurs if and only if D ≡ 3 (mod 4).

3. [1pt] Suppose that ψ : G→ R is a function from a group G to a ring R with 1 such that ψ(g1g2) = ψ(g1)ψ(g2)
for all g1, g2 ∈ G and ψ(1G) = 1R. Show that ψ is a group homomorphism of G into the unit group of R.

4. [2pts] Let L/K be a Galois extension of number �elds with Q a prime of OL lying above the prime P of OK .
Show that the decomposition and inertia groups D(Q|P ) and E(Q|P ) are solvable groups.

5. [2pts] Let L/K be a Galois extension whose Galois group is not solvable (e.g., S5) and let P be a prime of
OK . Show that P cannot be totally inert or totally rami�ed in L.

6. [1pt] Let L/K be a Galois extension with Q a prime of OL. Let π ∈ Q\Q2 and de�ne S−1 = G\V0 and
Sm = Vm\Vm+1 for each m ≥ 0. For any σ ∈ Sm, show that the exact power of Q dividing π − σ(π) is Qm.
[Hint: Apply higher rami�cation group property (4).]

7. [4pts] Let L/K be a Galois extension with Q a totally rami�ed prime of OL. Suppose π ∈ Q\Q2 has L = K(π)
and π has minimal polynomial m(x) ∈ OK [x] over K. Show that the exact power of Q dividing the di�erent
DL/K is the same as that dividing m′(π). [Hint: Let A = Z ⊕ Zπ ⊕ · · · ⊕ Zπn−1 where n = [L : K] and let
I = {r ∈ OK : rOL ⊆ A}. Show that O∗L ⊆ A∗ ⊆ (IOL)∗ and deduce that DL/K divides (A∗)−1 = (m′(π))
divides DL/KI. Finish by using total rami�cation to see that Q does not divide I.]

8. [2pts] Verify Hilbert's formula for the rami�ed primes (1+ i) in Q(i), (
√

5) in Q(
√

5), and (1− ζ9) in Q(ζ9)/Q.

9. [4pts] Let pd > 2 be a prime power and let K = Q(ζpd) and Q = (1− ζpd) be the totally rami�ed prime above
p, which is the only rami�ed prime of K.

(a) Find the rami�cation groups V0 and V1. [Hint: Sylow p-subgroup.]

(b) Show that disc(K) = ±pdϕ(pd)−pd−1

. [Hint: Adapt the calculation of disc(Q(ζp)).]

(c) Show that each of the quotients Vm/Vm+1 is either trivial or cyclic of order p.

(d) For �xed p and with d = 2, �nd the order of each group Vm for m ≥ 0.

0.1.6 Exercises from (Dec 2)

1. [8pts*] Let K be a �eld. A valuation on K is a function v : K → R≥0 such that v(0) = 0 and 0 is the only
element with valuation 0, and such that v(xy) = v(x)v(y) and v(x+ y) ≤ v(x) + v(y) for all x, y ∈ K.

(a) If v is a valuation on K, show that v(1) = v(−1) = 1. Deduce that the function d(x, y) = v(x− y) makes
K into a metric space.

Now suppose K is a number �eld.

(b) If σ : K → C is a real or complex embedding, show that v(x) = |σ(x)| is a valuation on K. (Note that
complex-conjugate embeddings yield the same valuation.)

(c) Suppose P is a prime ideal of OK . Letting x ∈ K be nonzero, if the prime ideal factorization of the
fractional ideal xOK has exact power of P given by P d, for d ∈ Z, show that v(x) = N(P )−d (for all such
x) yields a valuation on K that in fact satis�es the ultrametric inequality v(x + y) ≤ max(v(x), v(y)).
This is the P -adic valuation on K.

(d) A valuation v is Archimedean when for any nonzero x, y ∈ K there exists a positive integer n such
that v(nx) > v(y). Show that the embeddings of (b) are Archimedean while the embeddings of (c) are
non-Archimedean.

(e) We view two valuations as equivalent when they yield the same metric space topology on K, using the
metric from (a); it can be shown that v and w are equivalent if and only if there exists some a > 0 such
that w(x) = v(x)a for all x ∈ K. From (b) and (c) we see that each prime of K yields a valuation of K:
show that valuations associated to di�erent primes are inequivalent.
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2. [1pt] Determine the primes of Q at which the extensions Q(
√
−15), Q(ζ7), and Q(ζ7 + ζ−1

7 ) are rami�ed.

3. [2pts] Show that Q(
√

5,
√

13)/Q(
√

65) is totally unrami�ed, but that Q(
√

3,
√

5)/Q(
√

15) is not.

4. [1pt] Let L/K be a Galois extension and P∞ be an in�nite prime of K. Show that all of the in�nite primes
of L lying above P∞ are of the same type (i.e., all real or all complex).

5. [1pt] Let L/K be a Galois extension of odd degree. Show that the in�nite primes of K are unrami�ed in L.

6. [2pts*] Show that the Hilbert class �eld of K = Q(
√
−5) is L = Q(i,

√
5).

0.1.7 Exercises from (Dec 4)

1. [2pts] Show that the ray class group for any modulus is �nite. [Hint: Start with �niteness of the ideal class
group and then show that adding each of the valuation conditions only changes the index by a �nite amount.]

2. [2pts] Show that the sequence 0 → UK → KS a 7→aOK→ JS → cl(K) → 1 is exact, where UK is the unit group
of K and KS consists of the elements of K× relatively prime to the �nite primes in S. [Hint: For surjectivity
at the end, use the Chinese remainder theorem.]

3. [2pts] Let G be a group with commutator subgroup [G,G]. Show that Gab = G/[G,G] is the maximal abelian
quotient of G, in the sense that if ϕ : G→ H is a group homomorphism where H is abelian, then there exists
a homomorphism ψ : Gab → H such that ϕ = q ◦ ψ where q : G → Gab is the quotient map (i.e., ϕ factors
through Gab).

4. [1pt] Let p be a prime and let a ≤ b. Show that the class number of Q(ζpa) divides the class number of Q(ζpb).

5. [1pt] Suppose that Q(
√
a,
√
b)/Q(

√
b) is unrami�ed, where a, b are squarefree. Show that a divides the dis-

criminant of Q(
√
b).

6. [2pts] Let D < 0 be squarefree. Show that the class number of Q(
√
D) is odd if and only if D = −p where p

is a prime congruent to 3 modulo 4.

0.2 Additional Exercises

1. [7pts] The goal of this problem is to prove that there are only �nitely many number �elds with a given
discriminant X, a result originally due to Hermite. Suppose that K is a number �eld of signature (r, s) and
discriminant ∆ with real embeddings σ1, . . . , σr and nonreal embeddings τ1, τ1, . . . , τs, τs.

(a) Suppose r > 0. Show that there exists an element α ∈ OK such that |σ1(α)| ≤ 1
2 (π2 )−s

√
∆, |σi(α)| ≤ 1

2
for 2 ≤ i ≤ r, and |τj(α)| ≤ 1

2 for all 1 ≤ j ≤ s, and that K = Q(α). [Hint: Note that all other conjugates
of α other than σ1(α) have absolute value less than 1, so they cannot equal α.]

(b) Suppose r = 0. Show that there exists an element α ∈ OK such that |Re(τ1(α))| ≤ 1
2 , |Im(τ1(α))| ≤

1
2 (π2 )−2

√
∆, and |τj(α)| ≤ 1

2 for all 2 ≤ j ≤ s, and that K = Q(α).

(c) Suppose that α ∈ OK has all of its absolute values bounded by a constant M . Show that there are only
�nitely many possible α.

(d) Show that there are �nitely many number �elds of signature (r, s) with discriminant X. Deduce that
there are �nitely many number �elds with discriminant X.

Remark: Let Nn(X) denote the number of degree-n number �elds with absolute discriminant at most X,
up to isomorphism. Results establishing Nn(X) ∼ X for n = 2 are classical, for n = 3 are due to
Davenport and Heilbronn, for n = 4 are due to Cohen and Diaz y Diaz, and for n = 5 are due to
Bhargava and Shankar. For arbitrary n the estimate Nn(X) � X(n+2)/4 is due to Schmidt, and has
subsequently been improved for by Ellenberg and Venkatesh, Couveignes, and Thorne and Lemke Oliver.
More precise heuristics for the number of extensions Nn(X;G) whose Galois group is isomorphic to G
are due to Kluners and Malle, subsequently generalized by Bhargava and others, and improvements in
these bounds over those for general degree-n extensions for general G and speci�c classes of G have
been made by Ellenberg, Venkatesh, Bhargava, Shankar, X. Wang, Matchett Wood, Dummit, Alberts,
J. Wang, Mehta, Lemke Oliver, and numerous others.
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2. [12pts*] The goal of this problem is to study the possible splitting behaviors of a prime in a biquadratic
extension Q(

√
a,
√
b). So let a and b be distinct squarefree integers and set L = Q(

√
a,
√
b).

(a) Show that L/Q is a Galois extension of degree 4 with Galois group isomorphic to the Klein 4-group and
with generators σ, τ with σ(

√
a,
√
b) = (−

√
a,
√
b) and τ(

√
a,
√
b) = (

√
a,−
√
b).

(b) Deduce that L has three quadratic sub�elds given by Q(
√
a),Q(

√
b), and Q(

√
ab) = Q(

√
ab/ gcd(a, b)2).

Now let p be an integer prime and Q be a prime of OL lying over p. We would like to identify all of the
possible factorization behaviors for p in the three quadratic sub�elds, and in L.

(c) Show that p cannot ramify in only one of the quadratic sub�elds. [Hint: Consider discriminants. The
argument involves some casework for p = 2.]

(d) Show that if p is rami�ed in all three quadratic sub�elds, then p = 2 and (p) = Q4 in OL. Give an
example where this occurs.

(e) Show that if p is rami�ed in two quadratic sub�elds and inert in the other then (p) = Q2 in OL, and give
an example. [Hint: For inertness, make (Dp ) = −1 where D is the discriminant of the unrami�ed �eld.]

(f) Show that if p is rami�ed in two quadratic sub�elds and split in the other then (p) = Q2
1Q

2
2 in OL, and

give an example.

(g) Show that if p is unrami�ed in L, then it must be inert in either 0 or 2 of the quadratic sub�elds. [Hint:
Use multiplicativity of the Legendre symbol for odd p, and the fact that the discriminants must be 1
mod 4 for p = 2.]

(h) If p splits in all three quadratic sub�elds, show that (p) = Q1Q2Q3Q4 in OL, and give an example.

(i) If p is inert in two quadratic sub�elds and splits in one, show (p) = Q1Q2 in OL, and give an example.

(j) Show that the cases listed above exhaust all of the possibilities.

3. [5pts] The gosl of this problem is to demonstrate a connection between totally rami�ed primes and Eisenstein-
irreducible polynomials. So suppose L/K is an extension of number �elds and let P be a prime of OK lying
under Q in OL. We say a monic polynomial p(x) = xn+an−1x

n−1 + · · ·+a0 in OK [x] is Eisenstein at P when
each ai ∈ P and a0 6∈ P 2; the theorem of Eisenstein-Schonemann shows that such polynomials are irreducible.

(a) Suppose that α ∈ OL has L = K(α) and that the minimal polynomial m(x) for α over K is Eisenstein at
the prime ideal P . Show that P is totally rami�ed in L. [Hint: Use m to see αn ∈ P hence α ∈ P hence
Qe divides all ai. If [L : K] ≥ e(Q|P ) + 1 show a0 = −(αn + · · ·+ a1α) ∈ Qe+1, contradicting a0 6∈ P 2.]

(b) Conversely, suppose that P is totally rami�ed in L and suppose α ∈ Q\Q2 has L = K(α). Show that
the minimal polynomial m(x) = xn + an−1x

n−1 + · · · + a0 of α is Eisenstein at P . [Hint: Note that
m(x) =

∏
σ(x− σ(α)) and all σ(α) ∈ Q; deduce each ai ∈ P and that since α 6∈ Q2 that

∏
σ σ(α) 6∈ P 2.]

4. [8pts] The goal of this problem is to prove the following result: If a and b are integers such that m(x) =
x3 + ax + b is irreducible and ∆ = −4a3 − 27b2 is squarefree, then the class number of the �eld Q(

√
∆) is

divisible by 3. So let α be a root of m(x) with K = Q(α) and let L be the Galois closure of Q(α)/Q.

(a) Show that L has degree 6 over Q, the Galois group of L/Q is S3, the extension L/Q(
√

∆) is abelian, and
that OK = Z[α].

(b) Show that the in�nite primes are unrami�ed in L/Q(
√

∆). [Hint: Use 0.1.6.5.]

(c) Show that the �nite primes are unrami�ed in L/Q(
√

∆). [Hint: If P is a �nite prime lying above p ∈ Z
that rami�es, show it is totally rami�ed and deduce 3|e(P |p). Conclude pOk = Q3 for some ideal Q and
then that p2 divides ∆.]

(d) Conclude that the Hilbert class �eld of Q(
√

∆) contains L, and deduce that the class number of Q(
√

∆)
is divisible by 3.

(e) Find �ve examples of discriminants ∆ meeting the criteria of this problem.
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