E. Dummit’s Math 7315 ~ Algebraic Number Theory, Fall 2024 ~ Homework 5, due Thu Dec 5th.

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 20 and 40 points’
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1

0.1.1

1.
2.

In-Lecture Exercises

Exercises from (Nov 13)

[2pts*] Find the decomposition and inertia groups for the primes (v/—2), (1 + v/—2), and (5) of Q(v/—2).

[2pts] Suppose L/K is a Galois extension with Galois group G and @ is a prime of Oy, lying over P. Show
that D(Q|P) = G if and only if @ is the unique prime of Oy, lying over P.

3. [3pts] Show that if D is a normal subgroup of G, then P is totally split from K to Lp, and if E is also normal,

then each of the primes Q%) of Lp above P are totally inert from Lp to L and then are totally ramified
from Lg to L. (Thus, we obtain all of the splitting of P in the decomposition field, and then all of the inertia

of P in the inertia field, whence the names for these fields.)

0.1.2 Exercises from (Nov 14)

1.

[3pts*] Let L = Q(i,+/3). Analyze the factorization type of the primes 2, 3, and 5 in Oy, and find the
decomposition and inertia groups and fields for each associated prime.

. [3pts] Suppose L/ K is Galois and @ is a prime of Oy, lying over the prime P of Ok. Show that if o € Gal(L/K),

then D(0Q|P) = oD(Q|P)o~! and E(cQ|P) = 0 E(Q|P)o~!. Deduce that when G is abelian, all primes of
Oy, lying over P have the decomposition and the same inertia subgroups and subfields.

[3pts] Let L = Q(10'/3,¢3). Analyze the factorization types of the primes 2, 3, and 5 in O, and find the
decomposition and inertia groups and fields for each associated prime.

. [2pts] Let p be a prime and H be a subgroup of Gal(Q((,)/Q). Show that o = > __, 0((,) is a generator for

the fixed field of H.

. [2pts] Let L = Q({31). Analyze the factorization types of the primes 2, 5, and 7 in Of, and find the

decomposition and inertia groups and fields for each associated prime.

0.1.3 Exercises from (Nov 20)

1.

2.

[2pts] Suppose L/K is a number field extension and P is a prime of Og. Suppose that P is totally split /
inert / ramified in L. Show that P is totally split / inert / ramified (respectively) in every subfield of L.

[3pts*| Let K = Q(v/D) have discriminant A and let p be an odd prime. Show the following equivalences:
(a) p is ramified in Q(v'D) <= A is zero mod p <= the Legendre symbol (%) = 0.

(b) pis split in Q(v/D) <= A is a nonzero square mod p <= the Legendre symbol (%) = +1.

(¢) pisinert in Q(v/D) <= A is a nonsquare mod p <= the Legendre symbol (%) =—1.

d ,2d

3. [1pt] If u is a primitive root modulo p and d divides p — 1, show that the dth powers modulo p are u®, u**, ...

, uP~1. Deduce again that a is a dth power mod p if and only if the order of a divides (p —1)/d.

2
4. [3pts] By comparing the splitting of p in Q((s) to that of 2 in Q(y/p*), show that (p) = +1 when p=1,3

(mod 8) and (;) = —1 when p = 5,7 (mod 8).



0.1.4 Exercises from (Nov 21)

1. [2pts] Suppose L/K is Galois with Q of Op, lying over P of Ok. Show that if Q' = o(Q) is another prime

lying above P for some o € Gal(L/K), then the corresponding Frobenius element for o@Q|P is given by the
conjugate @ q|p = oo po .
. [3pts*] Suppose n = p¥k where p is prime and does not divide k, and let K = Q({,) and P be a prime of Ok
lying above p.

(a) Show that the inertia field of P|p is Q(¢x). [Hint: Consider ramification.]

(b) Suppose that K’ is a subfield of K in which p is unramified. Show that K C Q((x).

(c) Show that the decomposition field of P|p is the subfield of Q({y) fixed by the automorphism ¢ — (}.
[Hint: This is the Frobenius element.]

. |3pts| Suppose n is not a prime power. For K = Q((,) and K, = Q(¢, + ¢, '), show that the extension
K/K, is unramified at finite primes, so that the different dx/x, = 1. [Hint: Write n = p”k where k > 1. If
P is a prime of K lying over P} in K lying over p in Q, observe that E(P|Py) = E(P|p) N{1,0} where o
is complex conjugation. Use the exercise above and k > 1 to see that o & E(P|p).]

. [2pts] Suppose L is the Galois closure of L/K and @ is an unramified prime of L lying over Q of Oy, lying

F(QIP)

over P of Og. Show that YolQ = Pop - [Hint: Both Frobenius elements act as power maps. How are the

powers related?]

. [2pts] Let L/K be a Galois extension with Galois closure L. Show that the prime P of Ok splits completely
in L if and only if the Frobenius conjugacy class for P is trivial. [Hint: Consider the sizes of the orbits.]

. [3pts*] Let m > 3 and let a be relatively prime to m. Apply the Chebotarev density theorem to the element
a € (Z/mZ)* = Gal(Q((n)/Q) to conclude that the natural and analytic density of primes p with p = a
(mod m) is 1/¢(m).

. [2pts] Let g(x) be a polynomial irreducible over Q. Prove that the discriminant of ¢ is a square if and only if
the Galois group of g(z) is a subgroup of A,.

. [5pts] Find the probable Galois group for each polynomial below, given its factorization modulo the 100
smallest primes not dividing its discriminant A:

(a) g(z) = 2% — 2? — 20 — 3, with A =172 .29%
| Factorization Type [ 1 [22] 3 [ 5 |
’ # Appearances \ 1 \ 20 \ 30 \ 49 ‘
(b) g(z) = 2° — 523 + 5z — 20, with A =2%.3%.55. 112
’ Factorization Type \ 1 \ 2,2 \ 4 \ ) ‘
| # Appearances [ 3] 26 [ 52 ] 19 |
(c) g(x) = 25 + 2% + 23, with A = —26.233.
| Factorization Type | 1 [ 22222 ]33] 4 |
’ # Appearances \3\ 9 \ 27 \ 36 \ 24‘
(d) g(z) =25 — 623 — 62% — 62 — 2, with A =26.36.132,
| Factorization Type [ 22 [ 24| 3 [33] 5 |
| # Appearances | 8 | 24 [ 13 [ 14 [ 41 |
(e) g(x) = 27 — 1425 + 5623 — 562 — 22, with A = 26 . 710,
’ Factorization Type \ 1 \ 3,3 \ 7 ‘
| # Appearances [ 2] 68 | 30 |

9. [5pts] Suppose that ¢(x) € Z[z] is an irreducible monic polynomial of degree n.

(a) Suppose that the Galois group over Q, considered as a subgroup of S,,, contains no n-cycles. Prove that
q(x) is reducible modulo p for every prime p. Show that z* + 1 is an example of such a polynomial.

(b) Suppose that n is even and the discriminant of ¢(z) is a perfect square. Prove that ¢ is reducible modulo
p for every prime p.



0.1.5 Exercises from (Nov 25)

1.

[2pts| Suppose L/K is a number field extension and @ is a prime of Oy, that is wildly ramified over the prime
P of Ok. If Q (and P) lie over the integer prime p, show that p < [L : K].

. [2pts*| Show that the only prime that can be wildly ramified in a quadratic extension Q(v/D)/Q is 2, and

that this occurs if and only if D = 3 (mod 4).

. [1pt] Suppose that ¢ : G — R is a function from a group G to a ring R with 1 such that ¥(g192) = ¥(g1)¥(g2)

for all g1,¢92 € G and ¢(1¢) = 1g. Show that ¢ is a group homomorphism of G into the unit group of R.

. [2pts] Let L/K be a Galois extension of number fields with @ a prime of Oy, lying above the prime P of Ok.

Show that the decomposition and inertia groups D(Q|P) and E(Q|P) are solvable groups.

. [2pts] Let L/K be a Galois extension whose Galois group is not solvable (e.g., S5) and let P be a prime of

Ok . Show that P cannot be totally inert or totally ramified in L.

[1pt] Let L/K be a Galois extension with @ a prime of Op. Let 7 € Q\Q? and define S_; = G\V; and
Sm = Vin\Vin+1 for each m > 0. For any o € S,,, show that the exact power of @ dividing 7 — o(7) is Q™.
[Hint: Apply higher ramification group property (4).]

[4pts] Let L/K be a Galois extension with @ a totally ramified prime of Or. Suppose 7 € Q\Q? has L = K ()
and 7 has minimal polynomial m(z) € Og[z] over K. Show that the exact power of @ dividing the different
Dy /K is the same as that dividing m/(7). [Hint: Let A = Z® Zr @ --- & Zz" " where n = [L : K] and let
I ={reOk:r0OL C A}. Show that O C A* C (IOr)* and deduce that Dy, divides (A*)~' = (m/(7))
divides Dy, i I. Finish by using total ramification to see that @ does not divide /.|

[2pts] Verify Hilbert’s formula for the ramified primes (141) in Q(4), (v/5) in Q(+/5), and (1 — (o) in Q((o)/Q.

[4pts] Let p? > 2 be a prime power and let K = Q(¢pe) and Q = (1 — (pa) be the totally ramified prime above
p, which is the only ramified prime of K.

(a) Find the ramification groups Vp and V4. [Hint: Sylow p-subgroup.]

(b) Show that disc(K) = pder)—p*7" [Hint: Adapt the calculation of disc(Q(¢p)) ]

(c) Show that each of the quotients V;,,/V;,41 is either trivial or cyclic of order p.

(d) For fixed p and with d = 2, find the order of each group V,,, for m > 0.

0.1.6 Exercises from (Dec 2)

0.1.7 Exercises from (Dec 4)

To be added



0.2 Additional Exercises

1. [7pts] The goal of this problem is to prove that there are only finitely many number fields with a given
discriminant X, a result originally due to Hermite. Suppose that K is a number field of signature (r, s) and
discriminant A with real embeddings o1, ..., 0, and nonreal embeddings 71,71, ..., 7Ts, 7s.

(a) Suppose r > 0. Show that there exists an element o € O such that |0 ()| < 2(Z)7*VA, |oy(a)| < 3
for2 <i<r, and|rj(e)| < 1 foralll<j<s, and that K = Q(c). [Hint: Note that all other conjugates
of « other than o1 («) have absolute value less than 1, so they cannot equal «.]

(b) Suppose r = 0. Show that there exists an element o € Ok such that |Re(r(«))| <
1(2)72V/A, and |7j(@)| < & for all 2 < j < s, and that K = Q(a).

(¢) Suppose that « € O has all of its absolute values bounded by a constant M. Show that there are only
finitely many possible a.

3> [Im(r1(a))] <

(d) Show that there are finitely many number fields of signature (r,s) with discriminant X. Deduce that
there are finitely many number fields with discriminant X.

Remark: Let N, (X) denote the number of degree-n number fields with absolute discriminant at most X,
up to isomorphism. Results establishing N, (X) ~ X for n = 2 are classical, for n = 3 are due to
Davenport and Heilbronn, for n = 4 are due to Cohen and Diaz y Diaz, and for n = 5 are due to
Bhargava and Shankar. For arbitrary n the estimate N,(X) < X(+2/4 is due to Schmidt, and has
subsequently been improved for by Ellenberg and Venkatesh, Couveignes, and Thorne and Lemke Oliver.
More precise heuristics for the number of extensions N, (X;G) whose Galois group is isomorphic to G
are due to Kluners and Malle, subsequently generalized by Bhargava and others, and improvements in
these bounds over those for general degree-n extensions for general G and specific classes of G have
been made by Ellenberg, Venkatesh, Bhargava, Shankar, X. Wang, Matchett Wood, Dummit, Alberts,
J. Wang, Mehta, Lemke Oliver, and numerous others.

2. [12pts*] The goal of this problem is to study the possible splitting behaviors of a prime in a biquadratic
extension Q(v/a, vb). So let a and b be distinct squarefree integers and set L = Q(y/a, v/b).

(a) Show that L/Q is a Galois extension of degree 4 with Galois group isomorphic to the Klein 4-group and

with generators o, 7 with o(v/a,vb) = (—v/a,vb) and 7(v/a, vVd) = (v/a, —Vb).
(b) Deduce that L has three quadratic subfields given by Q(y/a),Q(v/d), and Q(vab) = Q(\/ab/ gcd(a, b)?).

Now let p be an integer prime and ) be a prime of Oy lying over p. We would like to identify all of the
possible factorization behaviors for p in the three quadratic subfields, and in L.

(c) Show that p cannot ramify in only one of the quadratic subfields. [Hint: Consider discriminants. The
argument involves some casework for p = 2.]

(d) Show that if p is ramified in all three quadratic subfields, then p = 2 and (p) = Q* in Or. Give an
example where this occurs.

(e) Show that if p is ramified in two quadratic subfields and inert in the other then (p) = Q% in Or, and give
an example. [Hint: For inertness, make (%) = —1 where D is the discriminant of the unramified field.]

(f) Show that if p is ramified in two quadratic subfields and split in the other then (p) = Q?Q% in Or, and
give an example.

(g) Show that if p is unramified in L, then it must be inert in either 0 or 2 of the quadratic subfields. [Hint:
Use multiplicativity of the Legendre symbol for odd p, and the fact that the discriminants must be 1
mod 4 for p = 2.]

(h) If p splits in all three quadratic subfields, show that (p) = Q1Q2Q3Q4 in Of, and give an example.
(i) If p is inert in two quadratic subfields and splits in one, show (p) = Q1Q2 in Oy, and give an example.

(j) Show that the cases listed above exhaust all of the possibilities.



3. [5pts] The gosl of this problem is to demonstrate a connection between totally ramified primes and Eisenstein-
irreducible polynomials. So suppose L/K is an extension of number fields and let P be a prime of Ok lying
under @ in Or. We say a monic polynomial p(z) = 2" +a,_12" "1+ --+ag in O[z] is Eisenstein at P when
each a; € P and ag & P?; the theorem of Eisenstein-Schonemann shows that such polynomials are irreducible.

(a) Suppose that « € O, has L = K(«) and that the minimal polynomial m(x) for @ over K is Eisenstein at
the prime ideal P. Show that P is totally ramified in L. [Hint: Use m to see o™ € P hence a € P hence
Q° divides all a;. If [L : K] > e(Q|P) + 1 show ag = —(a™ + -+ + a1a) € Q°T, contradicting ag & P?.]
(b) Conversely, suppose that P is totally ramified in L and suppose o € Q\Q? has L = K(«). Show that
the minimal polynomial m(z) = 2" + a,—12""' + -+ + a¢ of « is Eisenstein at P. [Hint: Note that
m(z) = [[,(z — o(a)) and all o(a) € Q; deduce each a; € P and that since o € Q? that [[, o(a) € P2]

4. |8pts] The goal of this problem is to prove the following result: If a and b are integers such that m(z) =
23 + ax + b is irreducible and A = —4a® — 27b% is squarefree, then the class number of the field Q(v/A) is
divisible by 3. So let a be a root of m(z) with K = Q(«) and let L be the Galois closure of Q(«)/Q.

(a) Show that L has degree 6 over Q, the Galois group of L/Q is S3, the extension L/Q(v/A) is abelian, and
that OK = Z[a]

(b) Show that the infinite primes are unramified in L/Q(+/A). [Hint: Show that if A is negative, Q(«) has
one real and two complex embeddings, and if A is positive, it has three real embeddings.]

(c) Show that the finite primes are unramified in L/Q(v/A). [Hint: If P is a finite prime lying above p € Z
that ramifies, show it is totally ramified and deduce 3|e(P|p). Conclude pOy = @Q? for some ideal Q and
then that p? divides A.|

(d) Conclude that the Hilbert class field of Q(v/A) contains L, and deduce that the class number of Q(v/A)
is divisible by 3.

(e) Find five examples of discriminants A meeting the criteria of this problem.



