E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 4, due Mon Nov 18th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points' worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 24)

- 1. [2pts] For a Dedekind domain R with fraction field K , show that the sequence of multiplicative groups $1 \to \mathcal{O}_K^* \hookrightarrow K^* \stackrel{a \mapsto aR}{\to} J_R \to \text{cl}(R) \to 1$ is exact. (It is analogous to, and in fact generalizes, the exact sequence $1 \to k^* \hookrightarrow k(C)^* \stackrel{f \mapsto \text{div}(f)}{\to} \text{Div}^0(C) \to \text{Pic}^0(C) \to 1$ for an algebraic curve C defined over an algebraically closed field k .)
- 2. [4pts*] For ideals I and J of a Dedekind domain R, write $I \sim J$ when there exist nonzero $\alpha, \beta \in R$ with $(\alpha)I = (\beta)J.$
	- (a) Show that \sim is an equivalence relation on the ideals of R.
	- (b) Show that the multiplication operation $[I][J] = [IJ]$ on equivalence classes is well defined and gives the nonzero equivalence classes the structure of an abelian group G.
	- (c) Show that the map $\varphi: G \to \text{cl}(R)$ given by $\varphi([I]) = \overline{I}$, where \overline{I} denotes the image of I in the class group J_R/P_R , is well defined and an isomorphism.
- 3. [3pts] With the equivalence relation \sim on ideals as given in the exercise above, show that $I \sim J$ if and only if I is isomorphic to J as an R-module. (Thus, the isomorphism classes of ideals are the same as the equivalence classes in the class group, yielding a third natural way to "discover" the class group.)
- 4. [2pts] Let L/K be an extension of number fields. Use the fact that the class group of \mathcal{O}_K is finite to give another proof that $N_L(I\mathcal{O}_K) = N_K(I)^{[L:K]}$ for any ideal I of \mathcal{O}_K . [Hint: What can be said about $I^{h(K)}$?]

0.1.2 Exercises from (Oct 28)

- 1. [1pt] Show that if K/\mathbb{Q} is Galois, then K must be totally real or totally imaginary.
- 2. [1pt] Show that if K has signature (r, s) , then the sign of disc(K) is $(-1)^s$. [Hint: What does complex conjugation do to the discriminant matrix?]
- 3. [4pts*] Suppose G is an additive subgroup of \mathbb{R}^n . Show that the following are equivalent (in such a case we say G is discrete):
	- (a) G is nowhere dense in \mathbb{R}^n .
	- (b) Every compact subset of \mathbb{R}^n contains finitely many points of G.
	- (c) Some open neighborhood of 0 contains finitely many points of G .
	- (d) The rank of G as an abelian group equals the dimension of $G \otimes_{\mathbb{Z}} \mathbb{R}$ as an \mathbb{R} -vector subspace of \mathbb{R}^n .
- 4. [1pt] Let K be a number field and $\varphi: K \to \mathbb{R}^n$ be the Minkowski map. Show that $\varphi(K)$ is dense in \mathbb{R}^n . [Hint: Replace integer coefficients with rational ones.]
- 5. [1pt] Suppose Λ is a lattice in \mathbb{R}^n with an integral basis v_1, \ldots, v_n . Show that the covolume of Λ is equal to $|\det(v_1,\ldots,v_n)|$.
- 6. [2pts] Let Λ be a lattice in \mathbb{R}^n whose fundamental domain has *n*-measure V. Show that if B is a convex closed centrally-symmetric set in \mathbb{R}^n whose *n*-measure is greater than or equal to 2^nV , then B contains a nonzero point of Λ.

0.1.3 Exercises from (Oct 31)

- 1. [2pts] Show that if K is a number field of degree n over Q with signature (r, s) , show that $|\text{disc } K| \geq (\frac{\pi}{4})^{2s}(\frac{n^n}{n!}$ $\frac{n^n}{n!}$)². Show also that if $n > 1$ then $|\text{disc } K| > 1$, and deduce that Q has no unramified extensions.
- 2. [3pts] Show that for $D = -1, -2, -3, -7, -11, -19, -43, -67, -163$, the class group of $\mathbb{Q}(\sqrt{2})$ D) is trivial.
- 3. [3pts] Show that for $D = 2, 3, 6, 11, 13, 15, 17, 19$, the class group of $\mathbb{Q}(\sqrt{2})$ (D) is trivial.
- 4. [3pts] Show that for $D = 101, 103, 107, 109$, the class group of $\mathbb{Q}(\sqrt{\ }$ D) is trivial.
- 5. [3pts] Show that $\mathbb{Q}(\sqrt{-10})$, $\mathbb{Q}(\sqrt{-13})$, and $\mathbb{Q}(\sqrt{-15})$ all have class number 2.
- 6. [3pts] Show that $\mathbb{Q}(\sqrt{7})$, $\mathbb{Q}(\sqrt{14})$, $\mathbb{Q}(\sqrt{23})$, and $\mathbb{Q}(\sqrt{7})$ 29) all have class number 2.
- 7. [3pts] Show that $\mathbb{Q}(\sqrt{-23})$, $\mathbb{Q}(\sqrt{-59})$, and $\mathbb{Q}(\sqrt{-83})$ all have class number 3.
- 8. [2pts] Show that $\mathbb{Q}(\sqrt{2})$ 79) has class number 4. Which group is its class group isomorphic to?
- 9. [4pts] Show that $\mathbb{Q}(\sqrt{-17})$ and $\mathbb{Q}(\sqrt{-21})$ both have class number 4 but that their class groups are not isomorphic.
- 10. [3pts] Show that $\mathbb{Q}(\sqrt{-103})$ has class number 5.
- 11. [3pts] Show that $\mathbb{Q}(\sqrt{-29})$ has class number 6.
- 12. [3pts] Show that $\mathbb{Q}(\sqrt{-71})$ has class number 7.

0.1.4 Exercises from (Nov 4)

- 1. [1pt] Show that the class group of $K = \mathbb{Q}(\sqrt[3]{5})$ is trivial.
- 2. [2pts] Show that the class group of $K = \mathbb{Q}(\sqrt[3]{6})$ is trivial. (This can be done without computing an integral begins for the sing of integral basis for the ring of integers, but it ends up being $\mathbb{Z}[\sqrt[3]{6}]$.)
- 3. [1pt] For $K = \mathbb{Q}(\alpha)$ with $\alpha^3 \alpha + 1 = 0$, show that the class group of K is trivial.
- 4. [2pts*] Show that the class group of $\mathbb{Q}(\zeta_8)$ is trivial. [Hint: What is $N(1-\zeta_8)$?]
- 5. [2pts] Show that the class group of $\mathbb{Q}(\zeta_9)$ is trivial.
- 6. [3pts] Show that the class group of $\mathbb{Q}(\zeta_{11})$ is trivial. [This isn't as bad as it might look, but there is one difficult prime. Try computing $N(1 + \zeta_{11} - \zeta_{11}^8)$.
- 7. [3pts*] Show that the class group of $\mathbb{Q}(\zeta_{23})$ has order divisible by 3. [Hint: Let P be a prime lying above 23 in $\mathbb{Q}(\sqrt{-23})$ and let Q lie above P in $\mathbb{Q}(\zeta_{23})$. Show that $N_{\mathbb{Q}(\zeta_{23})/\mathbb{Q}(\sqrt{-23})}(Q) = P$ and that P is nonprincipal; deduce Q is nonprincipal and in fact that $[Q]$ has order 3.
- 8. [2pts] Show that the class group of $K = \mathbb{Q}(\sqrt{2})$ $\overline{2}, \sqrt{-3}$) is trivial but that the class group of $F = \mathbb{Q}(\sqrt{-6})$ has order 2. Deduce that a subring of a principal ideal domain need not be a principal ideal domain.

0.1.5 Exercises from (Nov 6)

- 1. [1pt] Let F be a field and let G be a finite multiplicative subgroup of the multiplicative group F^{\times} . Show that G is cyclic. [Hint: Consider solving $x^{\#G} - 1 = 0$ in $F[x]$.]
- 2. [2pts] Suppose that M is an $m \times m$ real matrix whose diagonal entries are positive, whose off-diagonal entries are negative, and whose row sums are all zero. Show that M has rank $m-1$ and that any $m-1$ columns are a basis for M. [Hint: Suppose there is a linear dependence involving $m-1$ of the columns. Rescale to assume that the largest coefficient a_k of the dependence is 1 and the others are at most 1. Look at the kth row to obtain a contradiction.]
- 3. [2pts] Suppose K is a real quadratic field. Show that there are four possible fundamental units, and if one of them is u then the others are $-u$, \overline{u} , and $-\overline{u}$. Conclude that there is a unique fundamental unit of the form $a+b\sqrt{D}$ where $a,b\in\mathbb{Q}$ are positive, and indeed that among all units of \mathcal{O}_K with positive coefficients, the fundamental unit is the one with a and b minimal.

0.1.6 Exercises from (Nov 7)

- 1. [3pts*] Find the fundamental units for the quadratic fields $\mathbb{Q}(\sqrt{2})$ D) for $D = 15, 17, 19, 21, 22, 23, 26$.
- 2. [2pts] For $\alpha^3 \alpha + 1 = 0$, show that α is the fundamental unit of $\mathbb{Q}(\alpha)$.
- 3. [3pts] Show that $4 + 2\sqrt[3]{7} + \sqrt[3]{49}$ is the fundamental unit of $\mathbb{Q}(\sqrt[3]{7})$.
- 4. [3pts] Show that $\frac{1}{3}(23 + 11\sqrt[3]{10} + 5\sqrt[3]{100})$ is the fundamental unit of $\mathbb{Q}(\sqrt[3]{10})$.
- 5. [1pt] Show that the unit ranks of $K = \mathbb{Q}(\zeta_n)$ and $K_+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ are both equal to $\frac{1}{2}\varphi(n) 1$.
- 6. [2pts] Suppose that L/K is an extension of number fields. Show that L and K have the same unit rank if and only if L is totally complex, K is totally real, and $[L : K] = 2$, in which case $K = L \cap \mathbb{R}$ is the maximal real subfield of L .
- 7. [2pts^{*}] Show that $1 + \zeta_8 + \zeta_8^2$ is a fundamental unit for $\mathbb{Q}(\zeta_8)$.

0.2 Additional Exercises

- 1. [7pts] The goal of this problem is to give an upper bound estimate, due to Landau, for the class number in terms of the discriminant. Let K be a number field of degree n over Q and let $\Delta = |{\rm disc}(K)|$. For an integer a, let $F(a)$ denote the number of distinct ideals of \mathcal{O}_K of norm a.
	- (a) Show that $F(ab) = F(a)F(b)$ for relatively prime a, b.
	- (b) For a prime p, show that $F(p^d)$ equals the number of nonnegative integer solutions (a_1, \ldots, a_k) to $d = a_1f_1 + \cdots + a_kf_k$ where the f_k are the inertial degrees of the prime ideals of \mathcal{O}_K lying above p. Deduce that $F(p^d) \leq {d+n \choose n}$.
	- (c) Show that $F(a) = O(a^{\epsilon})$ for any $\epsilon > 0$, in the sense that for any $\epsilon > 0$ there exists a positive constant C_{ϵ} such that $F(a) \leq C_{\epsilon} a^{\epsilon}$ for all a.
	- (d) Show that $h(K) = O(\Delta^{(1/2)+\epsilon})$ for any $\epsilon > 0$. [Hint: The number of distinct ideal classes is at most $\sum_{a\leq c_K} F(a)$ where c_K is the Minkowski constant for K.]
	- Remark: We remark that another (much harder) theorem of Siegel shows that there exists a positive constant c such that $h(K) > c\Delta^{(1/2)-\epsilon}$ for all imaginary quadratic fields K, so that the upper bound of Landau is essentially sharp up to the + ϵ (which can in fact be replaced by a suitable power of log Δ , if one goes more carefully through the argument above).
- 2. [5pts^{*}] The goal of this problem is to prove the following result of Kummer: for any number field K, there exists an extension field L/K such that every ideal of \mathcal{O}_K becomes principal in \mathcal{O}_L .
	- (a) Suppose the classes of the ideals X_1, \ldots, X_k generate the ideal class group. Show that there exist elements $a_i \in \mathcal{O}_K$ with $X_i^{h(K)} = (a_i)$.
	- (b) Continuing (a), let b_i be a root of the polynomial $x^{h(K)} a_i$ in the algebraic closure \overline{K} . Show that X_i becomes principal in the extension $K(b_i)$.
	- (c) Continuing (b), let $L = K(a_1, \ldots, a_k)$. Show that every ideal I of \mathcal{O}_K becomes principal in \mathcal{O}_L . [Hint: Write the ideal class of I as a product of powers of the X_i .
- 3. [6pts] Here is another proof of Stickelberger's criterion that uses our results about ramification. Suppose K is a number field with discriminant D .
	- (a) Suppose that D is even, so that 2 is ramified in K. Let P be a prime ideal of \mathcal{O}_K lying above 2 with $e(P|p) > 1$. Show that P^2 divides $D_{K/\mathbb{Q}}$ and conclude that $D \equiv 0 \pmod{4}$. [Hint: Consider the two cases $e(P|p) = 2$ and $e(P|p) \ge 3$.
	- (b) Suppose that $D = u^2 d$ where u, d are both odd and d is squarefree and greater than 1. Show that 2 must be unramified in $\mathbb{Q}(\sqrt{d})$ and deduce that $D \equiv 1 \pmod{4}$. [Hint: K contains $\sqrt{\text{disc}(K)}$.]
	- (c) Show that $D \equiv 0$ or 1 (mod 4).
- 4. [6pts*] By Stickelberger's criterion (see above, or homework 1), the discriminant D of a number field must be 0 or 1 modulo 4. The goal of this problem is to find all of the number fields with discriminant D for various small values of D , and in particular to see that for some of these D there are no such fields.
	- (a) Show that any cubic field has $|D| \geq 13$ and any field of degree 4 or higher has $|D| \geq 44$. [Use exercise 0.3.1.1.]
	- (b) Show that there is a unique number field of each discriminant $D = -12, -11, -8, -7, -4, -3, 1, 5, 8$ and that there are no number fields of discriminants $D = 4$ and $D = 9$.
	- (c) Show that there is no number field of discriminant $D = 16$ or 25. [Hint: A cubic field with such a discriminant must have Galois group A_3 hence by Kronecker-Weber it is a subfield of $\mathbb{Q}(\zeta_n)$ for some n. Considering ramification, explain why $n = 2^d$ or 5^d respectively, and obtain a contradiction.
	- Remark: With rather substantially more work, by using Minkowski's theorem and some very careful analysis of binary cubic forms, it can be shown that the smallest cubic discriminant is actually −23, from the field $K = \mathbb{Q}(\alpha)$ where $\alpha^3 - \alpha + 1 = 0$.
- 5. [8pts] All of the computations we have discussed can and have been implemented quite efficiently into software, such as Sage. The goal of this problem is to give a brief discussion of how to use Sage to perform some relevant calculations. For the field $K = \mathbb{Q}(a)$ where $a^3 - 109 = 0$, we may construct the field as follows:

```
R.<x> = PolynomialRing(QQ); K.<a> = NumberField( x<sup>2</sup>3 - 109 )
```
The element a is now defined to be generator of the field K obtained as a root of the polynomial $x^3 - 109$. We can then construct ideals and elements in terms of the generator a: for instance, the ideal $I = (3, a - 1)$ can be constructed as

 $I = K.ideal([3, a - 1])$

and for instance we can ask for a reduced set of generators via

I.gens_reduced()

and for a prime ideal factorization via

I.factor()

The Sage documentation details how to use all of the relevant methods defined for number fields and ideals. For instance,

K.class_group()

will return the ideal class group of K as an abstract group, while

K.class_group().gens()

will compute an explicit list of generators for the ideal class group, and

K.unit_group()

will return the unit group of \mathcal{O}_K as an abstract group.

For the fields $K = \mathbb{Q}(\sqrt[3]{109})$ and for $K = \mathbb{Q}(\zeta_{13})$, do the following:

- (a) Find the discriminant and regulator of K.
- (b) Find the prime factorization of the ideals (2) , (3) , (5) , and (7) in \mathcal{O}_K .
- (c) Find the group structure for the ideal class group of K and an explicit list of generators.
- (d) Find the group structure for the unit group of \mathcal{O}_K and an explicit list of generators.