E. Dummit’s Math 7315 ~ Algebraic Number Theory, Fall 2024 ~ Homework 4, due Mon Nov 18th.

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 20 and 40 points’
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 24)

1. [2pts] For a Dedekind domain R with fraction field K, show that the sequence of multiplicative groups
1= 0 = K~ a2y R Jr — cl(R) — 1is exact. (It is analogous to, and in fact generalizes, the exact sequence
1 = k* <= k(C)* frodig(f) Div’(C) — Pic’(C) — 1 for an algebraic curve C defined over an algebraically
closed field k.)

2. [4pts*] For ideals I and J of a Dedekind domain R, write I ~ J when there exist nonzero «, 8 € R with
(a)I = (B)J.
(a) Show that ~ is an equivalence relation on the ideals of R.

(b) Show that the multiplication operation [I][J] = [I.J] on equivalence classes is well defined and gives the
nonzero equivalence classes the structure of an abelian group G.

(c) Show that the map ¢ : G — cl(R) given by o([I]) = I, where I denotes the image of I in the class group
Jr/Pr, is well defined and an isomorphism.

3. [3pts] With the equivalence relation ~ on ideals as given in the exercise above, show that I ~ J if and only if
I is isomorphic to J as an R-module. (Thus, the isomorphism classes of ideals are the same as the equivalence
classes in the class group, yielding a third natural way to “discover” the class group.)

4. [2pts] Let L/K be an extension of number fields. Use the fact that the class group of Ok is finite to give
another proof that Nz (IOx) = N (I)K] for any ideal I of Ok. [Hint: What can be said about I*(%)7?]

0.1.2 Exercises from (Oct 28)

1. |1pt] Show that if K/Q is Galois, then K must be totally real or totally imaginary.

2. |1pt| Show that if K has signature (r,s), then the sign of disc(K) is (—1)®. [Hint: What does complex
conjugation do to the discriminant matrix?]

3. [4pts*] Suppose G is an additive subgroup of R™. Show that the following are equivalent (in such a case we
say @ is discrete):

(a) G is nowhere dense in R".

(b)

(c)
)

(d) The rank of G as an abelian group equals the dimension of G ®7 R as an R-vector subspace of R”.

Every compact subset of R™ contains finitely many points of G.

Some open neighborhood of 0 contains finitely many points of G.

4. [1pt] Let K be a number field and ¢ : K — R™ be the Minkowski map. Show that ¢(K) is dense in R™. [Hint:
Replace integer coefficients with rational ones.]

5. [1pt] Suppose A is a lattice in R™ with an integral basis vy, ..., v,. Show that the covolume of A is equal to
|det(vy, ..., )l

6. [2pts] Let A be a lattice in R™ whose fundamental domain has n-measure V. Show that if B is a convex closed
centrally-symmetric set in R™ whose n-measure is greater than or equal to 2"V, then B contains a nonzero
point of A.



0.1.3 Exercises from (Oct 31)

1.
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11.
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[2pts| Show that if K is a number field of degree n over Q with signature (r, s), show that |disc K| > (%)2(2})2.
Show also that if n > 1 then |disc K| > 1, and deduce that Q has no unramified extensions.

[3pts| Show that for D = —1, =2, =3, =7, —11, —19, —43, —67, —163, the class group of Q(v/D) is trivial.
[3pts| Show that for D = 2, 3, 6, 11, 13, 15, 17, 19, the class group of Q(v/D) is trivial.

[3pts| Show that for D = 101, 103, 107, 109, the class group of Q(+/D) is trivial.

[3pts] Show that Q(1/—10), Q(v/—13), and Q(v/—15) all have class number 2.

[3pts] Show that Q(v/7), Q(v/14), Q(+v/23), and Q(1/29) all have class number 2.

[3pts] Show that Q(v/—23), Q(v/—59), and Q(1/—83) all have class number 3.

[2pts| Show that Q(v/79) has class number 4. Which group is its class group isomorphic to?

[4pts] Show that Q(v/—17) and Q(+/—21) both have class number 4 but that their class groups are not
isomorphic.

[3pts] Show that Q(1/—103) has class number 5.

[3pts] Show that Q(v/—29
[3pts] Show that Q(+/—71

) has class number 6.
)

has class number 7.

0.1.4 Exercises from (Nov 4)
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[1pt] Show that the class group of K = Q(+/5) is trivial.

[2pts] Show that the class group of K = Q(+/6) is trivial. (This can be done without computing an integral
basis for the ring of integers, but it ends up being Z[/6].)

[1pt] For K = Q(«) with a® — o+ 1 = 0, show that the class group of K is trivial.
[2pts*] Show that the class group of Q((g) is trivial. [Hint: What is N(1 — (g)?]
[2pts] Show that the class group of Q({y) is trivial.

[3pts| Show that the class group of Q((11) is trivial. |This isn’t as bad as it might look, but there is one
difficult prime. Try computing N (1 + (11 — ()]

[3pts*] Show that the class group of Q({23) has order divisible by 3. [Hint: Let P be a prime lying above 23
in Q(v/—23) and let Q lie above P in Q(Ca3). Show that Ny, /q(,/~23)(Q) = P and that P is nonprincipal;
deduce @ is nonprincipal and in fact that [@Q] has order 3.]

[2pts] Show that the class group of K = Q(v/2,+/—3) is trivial but that the class group of F = Q(y/—6) has
order 2. Deduce that a subring of a principal ideal domain need not be a principal ideal domain.

0.1.5 Exercises from (Nov 6)

1.

[1pt] Let F be a field and let G be a finite multiplicative subgroup of the multiplicative group F'*. Show that
G is cyclic. [Hint: Consider solving 2#¢ — 1 =0 in F[z].|

. [2pts] Suppose that M is an m X m real matrix whose diagonal entries are positive, whose off-diagonal entries

are negative, and whose row sums are all zero. Show that M has rank m — 1 and that any m — 1 columns
are a basis for M. [Hint: Suppose there is a linear dependence involving m — 1 of the columns. Rescale to
assume that the largest coefficient aj of the dependence is 1 and the others are at most 1. Look at the kth
row to obtain a contradiction.|

[2pts] Suppose K is a real quadratic field. Show that there are four possible fundamental units, and if one of
them is u then the others are —u, w, and —u. Conclude that there is a unique fundamental unit of the form
a + bv/D where a,b € Q are positive, and indeed that among all units of Ok with positive coefficients, the
fundamental unit is the one with a and b minimal.



0.1.6 Exercises from (Nov 7)

1.
2.
3.
4.
3.

0.2

[3pts*| Find the fundamental units for the quadratic fields Q(v/D) for D = 15, 17, 19, 21, 22, 23, 26.
[2pts] For a® — a + 1 = 0, show that « is the fundamental unit of Q(«).

[3pts] Show that 4 + 2+/7 4 /49 is the fundamental unit of Q(+/7).

[3pts] Show that %(23 + 113/10 4 5+/100) is the fundamental unit of Q(V/10).

[1pt] Show that the unit ranks of K = Q(¢,) and Ky = Q((, + (') are both equal to 1¢(n) — 1.

[2pts] Suppose that L/K is an extension of number fields. Show that L and K have the same unit rank if and
only if L is totally complex, K is totally real, and [L : K| = 2, in which case K = L N R is the maximal real
subfield of L.

[2pts*] Show that 1+ (g + (2 is a fundamental unit for Q((g).

Additional Exercises

[7pts] The goal of this problem is to give an upper bound estimate, due to Landau, for the class number in
terms of the discriminant. Let K be a number field of degree n over Q and let A = |disc(K)|. For an integer
a, let F'(a) denote the number of distinct ideals of O of norm a.

(a) Show that F'(ab) = F(a)F(b) for relatively prime a, b.
(b) For a prime p, show that F(p?) equals the number of nonnegative integer solutions (ai,...,ax) to

d = a1f1 + -+ agfr where the f; are the inertial degrees of the prime ideals of O lying above p.
Deduce that F(p?) < (“7™).

(c) Show that F'(a) = O(a®) for any € > 0, in the sense that for any € > 0 there exists a positive constant
C. such that F(a) < C.a® for all a.

(d) Show that h(K) = O(A(/2%€) for any ¢ > 0. [Hint: The number of distinct ideal classes is at most
> a<ey F'(a) where cg is the Minkowski constant for K]

Remark: We remark that another (much harder) theorem of Siegel shows that there exists a positive constant
c such that h(K) > cA1/2)=¢ for all imaginary quadratic fields K, so that the upper bound of Landau
is essentially sharp up to the +€ (which can in fact be replaced by a suitable power of log A, if one goes
more carefully through the argument above).

. [5pts*] The goal of this problem is to prove the following result of Kummer: for any number field K, there

exists an extension field L/K such that every ideal of Ok becomes principal in Oy,.

(a) Suppose the classes of the ideals X1, ..., X generate the ideal class group. Show that there exist elements
K) _

a; € Ok with th( = (al)
(b) Continuing (a), let b; be a root of the polynomial z"(%) — g; in the algebraic closure K. Show that X
becomes principal in the extension K (b;).

(c) Continuing (b), let L = K(ay,...,a;). Show that every ideal I of Ok becomes principal in O. [Hint:
Write the ideal class of I as a product of powers of the Xj.]

. |[6pts] Here is another proof of Stickelberger’s criterion that uses our results about ramification. Suppose K

is a number field with discriminant D.

(a) Suppose that D is even, so that 2 is ramified in K. Let P be a prime ideal of Ok lying above 2 with
e(P|p) > 1. Show that P? divides Dy /g and conclude that D = 0 (mod 4). [Hint: Consider the two
cases e(P|p) = 2 and e(P|p) > 3.]

(b) Suppose that D = u?d where u, d are both odd and d is squarefree and greater than 1. Show that 2 must
be unramified in Q(v/d) and deduce that D = 1 (mod 4). [Hint: K contains \/disc(K).|

(c) Show that D =0 or 1 (mod 4).



4. [6pts*] By Stickelberger’s criterion (see above, or homework 1), the discriminant D of a number field must be
0 or 1 modulo 4. The goal of this problem is to find all of the number fields with discriminant D for various
small values of D, and in particular to see that for some of these D there are no such fields.

(a) Show that any cubic field has |D| > 13 and any field of degree 4 or higher has |D| > 44. [Use exercise
0.3.1.1]

(b) Show that there is a unique number field of each discriminant D = —12, —11, -8, —7,—4,—3,1,5,8 and
that there are no number fields of discriminants D =4 and D = 9.

(c) Show that there is no number field of discriminant D = 16 or 25. [Hint: A cubic field with such a
discriminant must have Galois group As hence by Kronecker-Weber it is a subfield of Q(¢,,) for some n.
Considering ramification, explain why n = 2% or 5¢ respectively, and obtain a contradiction.]

Remark: With rather substantially more work, by using Minkowski’s theorem and some very careful analysis
of binary cubic forms, it can be shown that the smallest cubic discriminant is actually —23, from the
field K = Q(a) where o® —a+1=0.

5. [8pts] All of the computations we have discussed can and have been implemented quite efficiently into software,
such as Sage. The goal of this problem is to give a brief discussion of how to use Sage to perform some relevant
calculations. For the field K = Q(a) where a® — 109 = 0, we may construct the field as follows:

R.<x> = PolynomialRing(QQ); K.<a> = NumberField( x~3 - 109 )

The element a is now defined to be generator of the field K obtained as a root of the polynomial z3 — 109.
We can then construct ideals and elements in terms of the generator a: for instance, the ideal I = (3,a — 1)
can be constructed as

I =K.ideal([ 3, a-11)

and for instance we can ask for a reduced set of generators via
I.gens_reduced()

and for a prime ideal factorization via

I.factor()

The Sage documentation details how to use all of the relevant methods defined for number fields and ideals.
For instance,

K.class_group()

will return the ideal class group of K as an abstract group, while
K.class_group() .gens ()

will compute an explicit list of generators for the ideal class group, and
K.unit_group()

will return the unit group of Ok as an abstract group.

For the fields K = Q(4/109) and for K = Q((13), do the following:

(a)
(b)
(c)

)

(d) Find the group structure for the unit group of Ok and an explicit list of generators.

Find the discriminant and regulator of K.
Find the prime factorization of the ideals (2), (3), (5), and (7) in Ok.

Find the group structure for the ideal class group of K and an explicit list of generators.



