
E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 4, due Mon Nov 18th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points'
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 24)

1. [2pts] For a Dedekind domain R with fraction �eld K, show that the sequence of multiplicative groups

1→ O∗K ↪→ K∗
a 7→aR→ JR → cl(R)→ 1 is exact. (It is analogous to, and in fact generalizes, the exact sequence

1 → k∗ ↪→ k(C)∗
f 7→div(f)→ Div0(C) → Pic0(C) → 1 for an algebraic curve C de�ned over an algebraically

closed �eld k.)

2. [4pts*] For ideals I and J of a Dedekind domain R, write I ∼ J when there exist nonzero α, β ∈ R with
(α)I = (β)J .

(a) Show that ∼ is an equivalence relation on the ideals of R.

(b) Show that the multiplication operation [I][J ] = [IJ ] on equivalence classes is well de�ned and gives the
nonzero equivalence classes the structure of an abelian group G.

(c) Show that the map ϕ : G→ cl(R) given by ϕ([I]) = I, where I denotes the image of I in the class group
JR/PR, is well de�ned and an isomorphism.

3. [3pts] With the equivalence relation ∼ on ideals as given in the exercise above, show that I ∼ J if and only if
I is isomorphic to J as an R-module. (Thus, the isomorphism classes of ideals are the same as the equivalence
classes in the class group, yielding a third natural way to �discover� the class group.)

4. [2pts] Let L/K be an extension of number �elds. Use the fact that the class group of OK is �nite to give
another proof that NL(IOK) = NK(I)[L:K] for any ideal I of OK . [Hint: What can be said about Ih(K)?]

0.1.2 Exercises from (Oct 28)

1. [1pt] Show that if K/Q is Galois, then K must be totally real or totally imaginary.

2. [1pt] Show that if K has signature (r, s), then the sign of disc(K) is (−1)s. [Hint: What does complex
conjugation do to the discriminant matrix?]

3. [4pts*] Suppose G is an additive subgroup of Rn. Show that the following are equivalent (in such a case we
say G is discrete):

(a) G is nowhere dense in Rn.
(b) Every compact subset of Rn contains �nitely many points of G.

(c) Some open neighborhood of 0 contains �nitely many points of G.

(d) The rank of G as an abelian group equals the dimension of G⊗Z R as an R-vector subspace of Rn.

4. [1pt] Let K be a number �eld and ϕ : K → Rn be the Minkowski map. Show that ϕ(K) is dense in Rn. [Hint:
Replace integer coe�cients with rational ones.]

5. [1pt] Suppose Λ is a lattice in Rn with an integral basis v1, . . . , vn. Show that the covolume of Λ is equal to
|det(v1, . . . , vn)|.

6. [2pts] Let Λ be a lattice in Rn whose fundamental domain has n-measure V . Show that if B is a convex closed
centrally-symmetric set in Rn whose n-measure is greater than or equal to 2nV , then B contains a nonzero
point of Λ.
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0.1.3 Exercises from (Oct 31)

1. [2pts] Show that ifK is a number �eld of degree n overQ with signature (r, s), show that |discK| ≥ (π4 )2s(n
n

n! )2.
Show also that if n > 1 then |discK| > 1, and deduce that Q has no unrami�ed extensions.

2. [3pts] Show that for D = −1, −2, −3, −7, −11, −19, −43, −67, −163, the class group of Q(
√
D) is trivial.

3. [3pts] Show that for D = 2, 3, 6, 11, 13, 15, 17, 19, the class group of Q(
√
D) is trivial.

4. [3pts] Show that for D = 101, 103, 107, 109, the class group of Q(
√
D) is trivial.

5. [3pts] Show that Q(
√
−10), Q(

√
−13), and Q(

√
−15) all have class number 2.

6. [3pts] Show that Q(
√

7), Q(
√

14), Q(
√

23), and Q(
√

29) all have class number 2.

7. [3pts] Show that Q(
√
−23), Q(

√
−59), and Q(

√
−83) all have class number 3.

8. [2pts] Show that Q(
√

79) has class number 4. Which group is its class group isomorphic to?

9. [4pts] Show that Q(
√
−17) and Q(

√
−21) both have class number 4 but that their class groups are not

isomorphic.

10. [3pts] Show that Q(
√
−103) has class number 5.

11. [3pts] Show that Q(
√
−29) has class number 6.

12. [3pts] Show that Q(
√
−71) has class number 7.

0.1.4 Exercises from (Nov 4)

1. [1pt] Show that the class group of K = Q( 3
√

5) is trivial.

2. [2pts] Show that the class group of K = Q( 3
√

6) is trivial. (This can be done without computing an integral
basis for the ring of integers, but it ends up being Z[ 3

√
6].)

3. [1pt] For K = Q(α) with α3 − α+ 1 = 0, show that the class group of K is trivial.

4. [2pts*] Show that the class group of Q(ζ8) is trivial. [Hint: What is N(1− ζ8)?]

5. [2pts] Show that the class group of Q(ζ9) is trivial.

6. [3pts] Show that the class group of Q(ζ11) is trivial. [This isn't as bad as it might look, but there is one
di�cult prime. Try computing N(1 + ζ11 − ζ811).]

7. [3pts*] Show that the class group of Q(ζ23) has order divisible by 3. [Hint: Let P be a prime lying above 23
in Q(

√
−23) and let Q lie above P in Q(ζ23). Show that NQ(ζ23)/Q(

√
−23)(Q) = P and that P is nonprincipal;

deduce Q is nonprincipal and in fact that [Q] has order 3.]

8. [2pts] Show that the class group of K = Q(
√

2,
√
−3) is trivial but that the class group of F = Q(

√
−6) has

order 2. Deduce that a subring of a principal ideal domain need not be a principal ideal domain.

0.1.5 Exercises from (Nov 6)

1. [1pt] Let F be a �eld and let G be a �nite multiplicative subgroup of the multiplicative group F×. Show that
G is cyclic. [Hint: Consider solving x#G − 1 = 0 in F [x].]

2. [2pts] Suppose that M is an m×m real matrix whose diagonal entries are positive, whose o�-diagonal entries
are negative, and whose row sums are all zero. Show that M has rank m − 1 and that any m − 1 columns
are a basis for M . [Hint: Suppose there is a linear dependence involving m − 1 of the columns. Rescale to
assume that the largest coe�cient ak of the dependence is 1 and the others are at most 1. Look at the kth
row to obtain a contradiction.]

3. [2pts] Suppose K is a real quadratic �eld. Show that there are four possible fundamental units, and if one of
them is u then the others are −u, u, and −u. Conclude that there is a unique fundamental unit of the form
a + b

√
D where a, b ∈ Q are positive, and indeed that among all units of OK with positive coe�cients, the

fundamental unit is the one with a and b minimal.
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0.1.6 Exercises from (Nov 7)

1. [3pts*] Find the fundamental units for the quadratic �elds Q(
√
D) for D = 15, 17, 19, 21, 22, 23, 26.

2. [2pts] For α3 − α+ 1 = 0, show that α is the fundamental unit of Q(α).

3. [3pts] Show that 4 + 2 3
√

7 + 3
√

49 is the fundamental unit of Q( 3
√

7).

4. [3pts] Show that 1
3 (23 + 11 3

√
10 + 5 3

√
100) is the fundamental unit of Q( 3

√
10).

5. [1pt] Show that the unit ranks of K = Q(ζn) and K+ = Q(ζn + ζ−1n ) are both equal to 1
2ϕ(n)− 1.

6. [2pts] Suppose that L/K is an extension of number �elds. Show that L and K have the same unit rank if and
only if L is totally complex, K is totally real, and [L : K] = 2, in which case K = L ∩ R is the maximal real
sub�eld of L.

7. [2pts*] Show that 1 + ζ8 + ζ28 is a fundamental unit for Q(ζ8).

0.2 Additional Exercises

1. [7pts] The goal of this problem is to give an upper bound estimate, due to Landau, for the class number in
terms of the discriminant. Let K be a number �eld of degree n over Q and let ∆ = |disc(K)|. For an integer
a, let F (a) denote the number of distinct ideals of OK of norm a.

(a) Show that F (ab) = F (a)F (b) for relatively prime a, b.

(b) For a prime p, show that F (pd) equals the number of nonnegative integer solutions (a1, . . . , ak) to
d = a1f1 + · · · + akfk where the fk are the inertial degrees of the prime ideals of OK lying above p.
Deduce that F (pd) ≤

(
d+n
n

)
.

(c) Show that F (a) = O(aε) for any ε > 0, in the sense that for any ε > 0 there exists a positive constant
Cε such that F (a) ≤ Cεaε for all a.

(d) Show that h(K) = O(∆(1/2)+ε) for any ε > 0. [Hint: The number of distinct ideal classes is at most∑
a≤cK F (a) where cK is the Minkowski constant for K.]

Remark: We remark that another (much harder) theorem of Siegel shows that there exists a positive constant
c such that h(K) > c∆(1/2)−ε for all imaginary quadratic �elds K, so that the upper bound of Landau
is essentially sharp up to the +ε (which can in fact be replaced by a suitable power of log ∆, if one goes
more carefully through the argument above).

2. [5pts*] The goal of this problem is to prove the following result of Kummer: for any number �eld K, there
exists an extension �eld L/K such that every ideal of OK becomes principal in OL.

(a) Suppose the classes of the idealsX1, . . . , Xk generate the ideal class group. Show that there exist elements

ai ∈ OK with X
h(K)
i = (ai).

(b) Continuing (a), let bi be a root of the polynomial xh(K) − ai in the algebraic closure K. Show that Xi

becomes principal in the extension K(bi).

(c) Continuing (b), let L = K(a1, . . . , ak). Show that every ideal I of OK becomes principal in OL. [Hint:
Write the ideal class of I as a product of powers of the Xi.]

3. [6pts] Here is another proof of Stickelberger's criterion that uses our results about rami�cation. Suppose K
is a number �eld with discriminant D.

(a) Suppose that D is even, so that 2 is rami�ed in K. Let P be a prime ideal of OK lying above 2 with
e(P |p) > 1. Show that P 2 divides DK/Q and conclude that D ≡ 0 (mod 4). [Hint: Consider the two
cases e(P |p) = 2 and e(P |p) ≥ 3.]

(b) Suppose that D = u2d where u, d are both odd and d is squarefree and greater than 1. Show that 2 must
be unrami�ed in Q(

√
d) and deduce that D ≡ 1 (mod 4). [Hint: K contains

√
disc(K).]

(c) Show that D ≡ 0 or 1 (mod 4).
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4. [6pts*] By Stickelberger's criterion (see above, or homework 1), the discriminant D of a number �eld must be
0 or 1 modulo 4. The goal of this problem is to �nd all of the number �elds with discriminant D for various
small values of D, and in particular to see that for some of these D there are no such �elds.

(a) Show that any cubic �eld has |D| ≥ 13 and any �eld of degree 4 or higher has |D| ≥ 44. [Use exercise
0.3.1.1.]

(b) Show that there is a unique number �eld of each discriminant D = −12,−11,−8,−7,−4,−3, 1, 5, 8 and
that there are no number �elds of discriminants D = 4 and D = 9.

(c) Show that there is no number �eld of discriminant D = 16 or 25. [Hint: A cubic �eld with such a
discriminant must have Galois group A3 hence by Kronecker-Weber it is a sub�eld of Q(ζn) for some n.
Considering rami�cation, explain why n = 2d or 5d respectively, and obtain a contradiction.]

Remark: With rather substantially more work, by using Minkowski's theorem and some very careful analysis
of binary cubic forms, it can be shown that the smallest cubic discriminant is actually −23, from the
�eld K = Q(α) where α3 − α+ 1 = 0.

5. [8pts] All of the computations we have discussed can and have been implemented quite e�ciently into software,
such as Sage. The goal of this problem is to give a brief discussion of how to use Sage to perform some relevant
calculations. For the �eld K = Q(a) where a3 − 109 = 0, we may construct the �eld as follows:

R.<x> = PolynomialRing(QQ); K.<a> = NumberField( x^3 - 109 )

The element a is now de�ned to be generator of the �eld K obtained as a root of the polynomial x3 − 109.
We can then construct ideals and elements in terms of the generator a: for instance, the ideal I = (3, a− 1)
can be constructed as

I = K.ideal([ 3, a - 1 ])

and for instance we can ask for a reduced set of generators via

I.gens_reduced()

and for a prime ideal factorization via

I.factor()

The Sage documentation details how to use all of the relevant methods de�ned for number �elds and ideals.
For instance,

K.class_group()

will return the ideal class group of K as an abstract group, while

K.class_group().gens()

will compute an explicit list of generators for the ideal class group, and

K.unit_group()

will return the unit group of OK as an abstract group.

For the �elds K = Q( 3
√

109) and for K = Q(ζ13), do the following:

(a) Find the discriminant and regulator of K.

(b) Find the prime factorization of the ideals (2), (3), (5), and (7) in OK .
(c) Find the group structure for the ideal class group of K and an explicit list of generators.

(d) Find the group structure for the unit group of OK and an explicit list of generators.
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