E. Dummit’s Math 7315 ~ Algebraic Number Theory, Fall 2024 ~ Homework 3, due Wed Oct 30th.

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 20 and 40 points’
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 7)

1. [1pt] If P is a prime ideal of O that lies above the integer prime p, show that N(P) is a power of p.

2. [1pt] We have previously observed that an element o € Ok of norm +p for a prime p is irreducible. Show in
fact that such an element is prime.

3. [1pt] Let p be a prime. Show that (1 —¢,) is a prime ideal of Z[(,] that lies above p € Z. [Hint: Z[(,]/(1 — ()
is isomorphic to Z[z]/(1 — z, ®p(x)).]

4. [3pts*] Let L/K/F be an extension tower of number fields with R a prime ideal of Oy, lying over the prime
ideal @ of Ok lying over the prime ideal P of Op.

(a) Show that the ramification index is multiplicative in towers: e(R|P) = e(R|Q)e(Q|P).
(b) Show that the inertial degree is multiplicative in towers: f(R|P) = f(R|Q)f(Q|P).

5. [1pt] Show that if Q is a prime ideal of Oy, lying over the prime ideal P of O, then Ny (Q) = Ng (P)/ (@),

0.1.2 Exercises from (Oct 9)

1. [3pts*] Compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok for K = Q(v/-2), Q(v/—3),
and Q(v/5). Identify which primes ramify, split, and remain inert in each case.

2. [2pts] For K = Q(+/5), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok. (Recall
that Og = Z[a] as noted in an earlier exercise.)

3. [2pts*] For K = Q(a) where a® — a + 1 = 0, compute the prime ideal factorizations of (2), (3), (5), (7), and
(23) in Ok. (Recall that Ox = Z[«] as noted in an earlier exercise.)

0.1.3 Exercises from (Oct 16)

1. [3pts*] For K = Q((7), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in Ok . Determine
also the general factorization behavior of (p) in terms of the residue class of p modulo 7.

2. [2pts| For K = Q(v/5,4/13), compare the prime ideal factorizations of (2), (3), (5), and (7) in K to those in
the other two subfields Q(v/13) and Q(+/65).

3. [2pts*] For K = Q(v/3,/7), find the prime ideal factorizations of (2), (3), (5), and (7) in Oy = Z[¥3EVT].
Compare these factorizations to the corresponding factorizations in Op for F = Q(v/3).



0.1.4 Exercises from (Oct 17)

1.

[1pt] Let K be a number field and let I be a nonzero ideal of Ok with ¢ € Ok arbitrary. Show that there
are infinitely many elements a = ¢ (mod I) such that K = Q(a). [Hint: Let b € Ok generate K/Q and
N = N(I). Show that infinitely many ¢, = a + kNb for k € Z are generators of K/Q.]

. |2pts| Let p be a prime and let f,(n) be the number of monic irreducible polynomials of degree n in Fp[z].

Show that f,(n) = £ 3, u(d)p™/* where u denotes the Mébius p-function.

[1pt] Suppose that K/Q is an extension of degree 3. Show that if p is an odd prime, then there exists some
a € Ok such that [Ok : Z[«]] is not divisible by p. Show also that if 2 splits completely in K, then for any
a € Ok, the index [Ok : Z[a]] is divisible by 2.

[2pts*] Suppose K = Q(«) where Ok = Z[a]. Prove that an integer prime p is ramified in K if and only if p
divides the discriminant disc(K). [Hint: Note disc(K) = disc(m(z)) where m(z) is the minimal polynomial
of a over Q, and apply Dedekind-Kummer.]

0.1.5 Exercises from (Oct 21)

[1pt] If A is a nonzero fractional ideal of Op, show that A** = A.

[1pt] Suppose A is a nonzero fractional ideal of Q. Show that A=! C A*.

[1pt*] Suppose A, B are nonzero fractional ideals of Oy. Show that if A C B then B~! C A=! and B* C A*.
[1pt] In K = Q(+/—5), compute a basis of A* for A = O and for A = (2,1 + v/—5)Ok.

[1pt] Show that for any ideal I of O, we have Dy x(I) = Dy - I: thus, we may view the notation Dy, /g (1)
as representing a product or a function, interchangeably.

[1pt] Suppose aq,...,ay is a basis of K/Q with dual basis of,...,af. Show that disc(af,...,a)) =

disc(avq, ..., )"t [Hint: Show that the product of the matrices {o;(c;)}1<i j<n and the transpose of
{O’i(a;)}lgi’jgn is the identity matrix.]

0.1.6 Exercises from (Oct 23)

1.

[1pt] Suppose R is a subring of S and d : S — M is a derivation such that d(r) = 0 for all » € R. Prove the
“chain rule” for polynomials: for any p(z) € R[x] and any a € S, show that d(p(a)) = p’(a)d(a) where p’ is
the usual formal derivative of p.

. [2pts*] Let @Q be a nonzero prime ideal of Op. Show that the zero divisors in Op/Q° are the elements of

Q/Qc.
[2pts] Show that L/K is unramified if and only if disc(L) = +disc(K )],
[2pts*] Show that the extension Q(v/—3,v/5)/Q(yv/—15) is unramified.

. [3pts] Let a® — a — 1 = 0. Show that the extension Q(a,/—23)/Q(y/—23) is unramified.



0.2 Additional Exercises

1. [10pts] The goal of this problem is to give an approach for defining the relative norm of an ideal that parallels
our definition of the relative norm of an element. Let L/K be an extension of number fields.

We first do the Galois case, so suppose L/K is Galois with Galois group G. For an ideal I of Oy, define its
relative ideal norm Ny, k() to be the intersection O N ][, cq o ().

(a) Show that for a prime ideal @ of Op lying over a prime ideal P of Ok, we have Np,x(Q) = pr@p),
[Hint: First show that for any ideal J of Ok it is true that J = JOr N K]

(b) Show that for any ideal I of Oy, it is true that Nz /x(I)Or = [[,cq o(I).

(c) Show that the relative ideal norm is completely multiplicative: Ny, x(IJ) = Nk (I)Np/k(J) for any
ideals I, .J of Oy.

(d) Show that for the principal ideal I = Oy, the norm ideal Nk (I) is principal and generated by the
element norm Ny /g ().

(e) Show that if L/Q is Galois, then Ny q([) is the principal ideal of Z generated by the ideal norm
Np(I) =[O : I]. (In particular, when L = Q(v/D), we can compute ideal norms by finding a generator

for Np,o(I) =1I-1 where I = {7 :r € I} is the conjugate of I.)

In the non-Galois case, we use (a) to motivate the definition: for a prime ideal @ lying over P, we set
N1k (Q) = PF@F) and then extend multiplicatively to all ideals via their prime factorizations. Observe
(trivially) that the ideal norm is completely multiplicative.

(f) Show that if L/K/F is an extension tower, then for any ideal I of Oy, we have N,/ p(I) = Nk /p(Np k(1))

(g) Let L be the Galois closure of L/K and I be an ideal of O. Show that Ny k() = Ox N]],cq0(),
where S is a set of coset representatives for the subgroup H of Gal(L/K) fixing L.

2. [4pts] The goal of this problem is to prove that in any number field extension L/K, there are infinitely many
prime ideals P of O that split in Oy, (i.e., are not inert and not ramified).

(a) Suppose that ¢(z) is a nonconstant polynomial with integer coefficients. Show that there are infinitely
many primes for which ¢(x) has a root modulo p. [Hint: If there are only finitely many, say p1, ..., pk,
pick some a with g(a) = £p{* - pi* and pick b = a (mod P(1“+1 . ~pZ’“+l). If q(b) = j:p}{1 ~~ka, show
b; = a; for all i.]

(b) Show that there are infinitely many primes p that split in the Galois closure L/Q.
(c) Show that there are infinitely many primes that split in L/K.

3. [4pts*] The goal of this problem is to give a lower bound on the power of p that divides the discriminant of a
number field. So suppose K is a number field and p is a prime with prime ideal factorization pOg = Py* - - - P.*.

(a) Prove that disc(K) is divisible by p°® where s = Zle[e(Pi\p) — 1] f(Pilp)-

(b) Prove that if none of the primes P; are wildly ramified, then the exact power of p dividing disc(K) is p®,
with s as in (a).



