
E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 3, due Wed Oct 30th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points'
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 7)

1. [1pt] If P is a prime ideal of OK that lies above the integer prime p, show that N(P ) is a power of p.

2. [1pt] We have previously observed that an element α ∈ OK of norm ±p for a prime p is irreducible. Show in
fact that such an element is prime.

3. [1pt] Let p be a prime. Show that (1− ζp) is a prime ideal of Z[ζp] that lies above p ∈ Z. [Hint: Z[ζp]/(1− ζp)
is isomorphic to Z[x]/(1− x,Φp(x)).]

4. [3pts*] Let L/K/F be an extension tower of number �elds with R a prime ideal of OL lying over the prime
ideal Q of OK lying over the prime ideal P of OF .

(a) Show that the rami�cation index is multiplicative in towers: e(R|P ) = e(R|Q)e(Q|P ).

(b) Show that the inertial degree is multiplicative in towers: f(R|P ) = f(R|Q)f(Q|P ).

5. [1pt] Show that if Q is a prime ideal of OL lying over the prime ideal P of OK , then NL(Q) = NK(P )f(Q|P ).

0.1.2 Exercises from (Oct 9)

1. [3pts*] Compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK for K = Q(
√
−2), Q(

√
−3),

and Q(
√

5). Identify which primes ramify, split, and remain inert in each case.

2. [2pts] For K = Q( 3
√

5), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK . (Recall
that OK = Z[α] as noted in an earlier exercise.)

3. [2pts*] For K = Q(α) where α3 − α+ 1 = 0, compute the prime ideal factorizations of (2), (3), (5), (7), and
(23) in OK . (Recall that OK = Z[α] as noted in an earlier exercise.)

0.1.3 Exercises from (Oct 16)

1. [3pts*] For K = Q(ζ7), compute the prime ideal factorizations of (2), (3), (5), (7), and (11) in OK . Determine
also the general factorization behavior of (p) in terms of the residue class of p modulo 7.

2. [2pts] For K = Q(
√

5,
√

13), compare the prime ideal factorizations of (2), (3), (5), and (7) in K to those in
the other two sub�elds Q(

√
13) and Q(

√
65).

3. [2pts*] For K = Q(
√

3,
√

7), �nd the prime ideal factorizations of (2), (3), (5), and (7) in OK = Z[
√
3+
√
7

2 ].

Compare these factorizations to the corresponding factorizations in OF for F = Q(
√

3).
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0.1.4 Exercises from (Oct 17)

1. [1pt] Let K be a number �eld and let I be a nonzero ideal of OK with c ∈ OK arbitrary. Show that there
are in�nitely many elements a ≡ c (mod I) such that K = Q(a). [Hint: Let b ∈ OK generate K/Q and
N = N(I). Show that in�nitely many ck = a+ kNb for k ∈ Z are generators of K/Q.]

2. [2pts] Let p be a prime and let fp(n) be the number of monic irreducible polynomials of degree n in Fp[x].
Show that fp(n) = 1

n

∑
d|n µ(d)pn/d where µ denotes the Möbius µ-function.

3. [1pt] Suppose that K/Q is an extension of degree 3. Show that if p is an odd prime, then there exists some
α ∈ OK such that [OK : Z[α]] is not divisible by p. Show also that if 2 splits completely in K, then for any
α ∈ OK , the index [OK : Z[α]] is divisible by 2.

4. [2pts*] Suppose K = Q(α) where OK = Z[α]. Prove that an integer prime p is rami�ed in K if and only if p
divides the discriminant disc(K). [Hint: Note disc(K) = disc(m(x)) where m(x) is the minimal polynomial
of α over Q, and apply Dedekind-Kummer.]

0.1.5 Exercises from (Oct 21)

1. [1pt] If A is a nonzero fractional ideal of OL, show that A∗∗ = A.

2. [1pt] Suppose A is a nonzero fractional ideal of OL. Show that A−1 ⊆ A∗.

3. [1pt*] Suppose A,B are nonzero fractional ideals of OL. Show that if A ⊆ B then B−1 ⊆ A−1 and B∗ ⊆ A∗.

4. [1pt] In K = Q(
√
−5), compute a basis of A∗ for A = OK and for A = (2, 1 +

√
−5)OK .

5. [1pt] Show that for any ideal I of OL, we have DL/K(I) = DL/K · I: thus, we may view the notation DL/K(I)
as representing a product or a function, interchangeably.

6. [1pt] Suppose α1, . . . , αn is a basis of K/Q with dual basis α∗1, . . . , α
∗
n. Show that disc(α∗1, . . . , α

∗
n) =

disc(α1, . . . , αn)−1. [Hint: Show that the product of the matrices {σi(αj)}1≤i,j≤n and the transpose of
{σi(α∗j )}1≤i,j≤n is the identity matrix.]

0.1.6 Exercises from (Oct 23)

1. [1pt] Suppose R is a subring of S and d : S → M is a derivation such that d(r) = 0 for all r ∈ R. Prove the
�chain rule� for polynomials: for any p(x) ∈ R[x] and any a ∈ S, show that d(p(a)) = p′(a)d(a) where p′ is
the usual formal derivative of p.

2. [2pts*] Let Q be a nonzero prime ideal of OL. Show that the zero divisors in OL/Qe are the elements of
Q/Qe.

3. [2pts] Show that L/K is unrami�ed if and only if disc(L) = ±disc(K)[L:K].

4. [2pts*] Show that the extension Q(
√
−3,
√

5)/Q(
√
−15) is unrami�ed.

5. [3pts] Let α3 − α− 1 = 0. Show that the extension Q(α,
√
−23)/Q(

√
−23) is unrami�ed.
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0.2 Additional Exercises

1. [10pts] The goal of this problem is to give an approach for de�ning the relative norm of an ideal that parallels
our de�nition of the relative norm of an element. Let L/K be an extension of number �elds.

We �rst do the Galois case, so suppose L/K is Galois with Galois group G. For an ideal I of OL, de�ne its
relative ideal norm NL/K(I) to be the intersection OK ∩

∏
σ∈G σ(I).

(a) Show that for a prime ideal Q of OL lying over a prime ideal P of OK , we have NL/K(Q) = P f(Q|P ).
[Hint: First show that for any ideal J of OK it is true that J = JOL ∩K.]

(b) Show that for any ideal I of OL, it is true that NL/K(I)OL =
∏
σ∈G σ(I).

(c) Show that the relative ideal norm is completely multiplicative: NL/K(IJ) = NL/K(I)NL/K(J) for any
ideals I, J of OL.

(d) Show that for the principal ideal I = αOL, the norm ideal NL/K(I) is principal and generated by the
element norm NL/K(α).

(e) Show that if L/Q is Galois, then NL/Q(I) is the principal ideal of Z generated by the ideal norm

NL(I) = [OL : I]. (In particular, when L = Q(
√
D), we can compute ideal norms by �nding a generator

for NL/Q(I) = I · I where I = {r : r ∈ I} is the conjugate of I.)

In the non-Galois case, we use (a) to motivate the de�nition: for a prime ideal Q lying over P , we set
NL/K(Q) = P f(Q|P ) and then extend multiplicatively to all ideals via their prime factorizations. Observe
(trivially) that the ideal norm is completely multiplicative.

(f) Show that if L/K/F is an extension tower, then for any ideal I ofOL we haveNL/F (I) = NK/F (NL/K(I)).

(g) Let L̂ be the Galois closure of L/K and I be an ideal of OL. Show that NL/K(I) = OK ∩
∏
σ∈S σ(I),

where S is a set of coset representatives for the subgroup H of Gal(L̂/K) �xing L.

2. [4pts] The goal of this problem is to prove that in any number �eld extension L/K, there are in�nitely many
prime ideals P of OK that split in OL (i.e., are not inert and not rami�ed).

(a) Suppose that q(x) is a nonconstant polynomial with integer coe�cients. Show that there are in�nitely
many primes for which q(x) has a root modulo p. [Hint: If there are only �nitely many, say p1, . . . , pk,
pick some a with q(a) = ±pa11 · · · p

ak
k and pick b ≡ a (mod pa1+1

1 · · · pak+1
k ). If q(b) = ±pb11 · · · p

bk
k , show

bi = ai for all i.]

(b) Show that there are in�nitely many primes p that split in the Galois closure L̂/Q.
(c) Show that there are in�nitely many primes that split in L/K.

3. [4pts*] The goal of this problem is to give a lower bound on the power of p that divides the discriminant of a
number �eld. So supposeK is a number �eld and p is a prime with prime ideal factorization pOK = P e11 · · ·P

ek
k .

(a) Prove that disc(K) is divisible by ps where s =
∑k
i=1[e(Pi|p)− 1]f(Pi|p).

(b) Prove that if none of the primes Pi are wildly rami�ed, then the exact power of p dividing disc(K) is ps,
with s as in (a).
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