
E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 2, due Thu Oct 10th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points'
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Sep 19)

1. [2pts] Show that xn − 1 =
∏
d|n Φd(x). [Hint: Group together the roots of unity of each order d|n.]

2. [2pts] Show that Φn(x) =
∏
d|n(xd − 1)µ(n/d) where µ(n) =

{
0 if n is not squarefree

(−1)k if n = p1 · · · pk for distinct primes pi
denotes the Möbius µ-function. Use this recurrence relation to calculate Φ6(x) and Φ20(x).

3. [1pt] For a prime p, show directly that Φp(x) = xp−1 +xp−2 + · · ·+x+1 is irreducible. [Hint: Use Eisenstein's
criterion on Φp(x+ 1) = 1

x [(x+ 1)p − 1].]

4. [1pt] For any prime power pd, show that Φpd(x) = Φp(x
pd−1

). [Hint: Show both sides equal
∏p−1
i=1 (xp

d−1−ζip).]

5. [3pts*] Let p be an odd prime. Show thatQ(ζp) contains a unique quadratic sub�eld and that it isQ(
√

(−1)(p−1)/2p).
[Hint: Use Galois theory for uniqueness, and discriminants to get the �eld itself.]

6. [3pts] Show that every quadratic �eld is a sub�eld of some cyclotomic �eld Q(ζn). [Hint: Take a composite
of Q(ζ8) and the Q(ζp) for various p.]

Remark: This problem is a special case of the Kronecker-Weber theorem: every number �eld K with abelian
Galois group over Q is a sub�eld of some cyclotomic �eld.

0.1.2 Exercises from (Sep 25)

1. [1pt] For a prime p, show that p = u(1− ζpd)ϕ(p
d) where u is a unit in Z[ζpd ].

2. [2pts] If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that the ring of

integers of Q(
√
D,
√
E) is Z[

1 +
√
D

2
,

1 +
√
E

2
], and compute an integral basis for it.

3. [3pts*] If −D < −4 is squarefree and −D ≡ 2, 3 (mod 4), show that O√−D = Z[
√
−D] is not a unique

factorization domain. [Hint: If D is odd, use 2 · (1 + D)/2 = (1 +
√
−D)(1 −

√
−D), and if D is even use

2 · (D/2) =
√
−D · (−

√
−D).]

0.1.3 Exercises from (Sep 26)

1. [2pts] If R is an integral domain, show that the following conditions for R to be Noetherian are equivalent:

(a) Every ideal of R is �nitely generated.

(b) Every ascending chain I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · of ideals of R is eventually constant (i.e., there exists N
such that In = IN for all n ≥ N).

(c) Every nonempty collection S of ideals of R contains a maximal element (i.e., an ideal I such that if J ∈ S
has I ⊆ J then J = I).

2. [1pt] Show that a �nite integral domain is a �eld.
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3. [3pts] Suppose S is an integral ring extension of the commutative ring R with 1 (i.e., every element of S is
the root of a monic polynomial in R[x]).

(a) Show that if Q is a prime ideal of S, then P = Q ∩R is a prime ideal of R.

(b) Show that if S is a domain then R is a �eld if and only if S is a �eld. [Hint: Use the monic polynomial
satis�ed by a nonzero element to construct an inverse for it.]

(c) Show that an ideal Q of S is maximal in S if and only if P = Q ∩R is maximal in R. [Hint: Note S/Q
is an integral extension of R/P .]

4. [2pts] Suppose that R is a commutative ring with 1 and S is a ring containing R. Recall that the integral
closure of R in S consists of the elements of S containing R, and R is integrally closed when its integral closure
is just R itself.

(a) Show that the integral closure of R in S is a subring of S containing R. [Hint: If s, t are integral over R,
then R[s] and R[t] are �nitely-generated R-modules, hence so is R[s, t].]

(b) Show that the integral closure of R in S is integrally closed in S. [Hint: Show that integrality is transitive.]

5. [1pt] Show that principal ideal domains are Dedekind domains. [Hint: Use the general fact that UFDs are
integrally closed.]

0.1.4 Exercises from (Sep 30)

1. [1pt] If R is a Noetherian integral domain, show that fractional ideals of R are the same as �nitely-generated
R-submodules of K. [Hint: Put things over a common denominator.]

2. [1pt] Suppose P is a prime ideal of an integral domain and IJ ⊆ P for some ideals I and J . Show that I ⊆ P
or J ⊆ P . (Note that this property is the ideal analogue of the prime divisibility property p|ab implies p|a or
p|b.)

0.1.5 Exercises from (Oct 2)

1. [1pt] If I is a nonzero ideal of a Dedekind domain R, show that I can be written uniquely in the form
I =

∏
Pi prime P

ai
i where the product is taken over all prime ideals of R and the ai are nonnegative integers

only �nitely many of which are positive.

2. [1pt] Show that the group of fractional ideals in a Dedekind domain is a free abelian group generated by the
nonzero prime ideals.

3. [1pt] If A is any ideal in a Dedekind domain R, show that there are only �nitely many ideals of R that contain
A.

4. [1pt] For any ideals A and B in a Dedekind domain, show that AB = (A+B)(A ∩B).

5. [2pts*] If I and J are ideals in a commutative ring with 1, show that IJ ⊆ I ∩ J , and also that if I + J = R
then IJ = I ∩ J .

0.1.6 Exercises from (Oct 3)

1. [2pts] Let R be an integral domain and let M be a maximal ideal of R. For any d ≥ 0, show that Md/Md+1

is an R/M -vector space.

2. [4pts*] Show that the prime ideals of Z[
√
−2] are as follows: the ideal (

√
−2), the ideals (p) where p is a prime

congruent to 5 or 7 modulo 8, and the two ideals (a+ b
√
−2) and (a− b

√
−2) where a2 + 2b2 = p is a prime

congruent to 1 or 3 mod 4.
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0.2 Additional Exercises

1. [4pts] The famously unsolved inverse Galois problem asks whether every �nite group G occurs as a Galois
group over Q. The goal of this problem is to show every �nite abelian group is a Galois group over Q.

(a) For any d ≥ 2, show that there exists a number �eld K, Galois over Q, with Galois group Z/dZ. You
may assume Dirichlet's theorem on primes in arithmetic progressions. [Hint: Choose any prime p ≡ 1
(mod d) via Dirichlet's theorem and take an appropriate sub�eld of Q(ζp).]

(b) Let G be a �nite abelian group. Prove that there exists a number �eld K, Galois over Q, such that
Gal(K/Q) ∼= G. [Hint: Take a composite of �elds as in (a).]

2. [10pts*] Let n > 2 and de�ne θ = 2 cos(2π/n) = ζn + ζ−1n .

(a) Show that Q(ζn) is a degree-2 extension of Q(θ). Deduce that the extension Q(θ)/Q has degree ϕ(n)/2.

(b) Show that the extension Q(θ)/Q is Galois and that its Galois group is isomorphic to (Z/nZ)×/{±1}.
[Hint: Show Q(θ) is the �xed �eld of complex conjugation.]

(c) Show that the Galois conjugates of θ are the numbers 2 cos(2πk/n) for k ∈ Z. Deduce that Q(θ) is a
totally real �eld: every complex embedding of Q(θ) lies inside R.

(d) For k = ϕ(n)/2, show that {1, ζn, θ, θζn, θ2, θ2ζn, . . . , θk−1, θk−1ζn} is an integral basis for Z[ζn].

(e) For k = ϕ(n)/2, show that {1, θ, θ2, . . . , θk−1} is an integral basis for OQ(θ). Deduce that OQ(θ) = Z[θ].
[Hint: First explain why OQ(θ) = R ∩ Z[ζn], and then use the basis for Z[ζn] from (d).]

(f) If n = p is an odd prime, show that disc(θ) = p(p−3)/2. [Hint: Compute NQ(ζp)/Q(θ) directly, and then

note [NQ(θ)/Q(θ)]2 = NQ(ζp)/Q(θ). Finally note that
√

disc(θ) ∈ Q(θ).]

3. [10pts*] The goal of this problem is to determine which imaginary quadratic integer rings O√−D are Euclidean.

(a) Show that Z[
√
−2], Z[

√
2], and Z[

√
3] are Euclidean with norm function |N(a+ b

√
D)| = |a2 −Db2|.

(b) Suppose that −D ≡ 1 (mod 4). Prove that any z ∈ C di�ers from an element in O√−D by a complex

number whose norm is at most (1 +D)2/(16D). [Hint: The elements of O√−D form a lattice in C. Use
symmetry to reduce the distance calculation to one inside a triangle, and then show the largest distance
occurs at the circumcenter.]

(c) Show that O√−D is a Euclidean domain for −D = −3, −7, and −11.

From (a), (c), and exercise 0.1.2.3 above, the only remaining cases are for −D ≡ 1 (mod 4) and −D ≤ −15.
If R is an integral domain, we say an element u ∈ R is a universal side divisor if it is not zero, not a unit,
and every x ∈ R can be written in the form x = qu+ z where z is either zero or a unit. Equivalently, u is a
universal side divisor when every nonzero residue class modulo u is represented by a unit of R.

(d) Suppose R is a Euclidean domain that is not a �eld. If u is a nonzero nonunit of R of minimal norm
among nonzero nonunits in R (with respect to the norm function on R), show u is a universal side divisor.

(e) Suppose D < −3. If u is a universal side divisor in O√−D, show that u must divide one of x− 1, x, x+ 1
for any x ∈ O√−D.

(f) Suppose D < −11. Show O√−D has no universal side divisors and conclude that O√−D is not Euclidean.

[Hint: Apply (e) when x = 2 and x = (1 +
√
−D)/2.]

Remark: Here we see that the Euclidean imaginary quadratic rings are also norm-Euclidean (meaning that
they are Euclidean with respect to the norm function). There do exist rings of integers that are Euclidean
but not norm-Euclidean, and there also exist rings of integers that are not Euclidean but are k-stage
Euclidean (meaning that the remainder bound holds but only after k stages of division).
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