E. Dummit's Math 7315 ∼ Algebraic Number Theory, Fall 2024 ∼ Homework 2, due Thu Oct 10th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 40 points' worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Sep 19)

- 1. [2pts] Show that $x^n 1 = \prod_{d|n} \Phi_d(x)$. [Hint: Group together the roots of unity of each order $d|n$.]
- 2. [2pts] Show that $\Phi_n(x) = \prod_{d|n} (x^d 1)^{\mu(n/d)}$ where $\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not squarefree} \\ 0 & \text{if } n = n, \text{ and } n \text{ is finite}} \end{cases}$ $(-1)^k$ if $n = p_1 \cdots p_k$ for distinct primes p_i denotes the Möbius μ -function. Use this recurrence relation to calculate $\Phi_6(x)$ and $\Phi_{20}(x)$.
- 3. [1pt] For a prime p, show directly that $\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible. [Hint: Use Eisenstein's criterion on $\Phi_p(x+1) = \frac{1}{x}[(x+1)^p - 1]$.
- 4. [1pt] For any prime power p^d , show that $\Phi_{p^d}(x) = \Phi_p(x^{p^{d-1}})$. [Hint: Show both sides equal $\prod_{i=1}^{p-1} (x^{p^{d-1}} \zeta_p^i)$.]
- 5. [3pts*] Let p be an odd prime. Show that $\mathbb{Q}(\zeta_p)$ contains a unique quadratic subfield and that it is $\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p})$. [Hint: Use Galois theory for uniqueness, and discriminants to get the field itself.]
- 6. [3pts] Show that every quadratic field is a subfield of some cyclotomic field $\mathbb{Q}(\zeta_n)$. [Hint: Take a composite of $\mathbb{Q}(\zeta_8)$ and the $\mathbb{Q}(\zeta_p)$ for various p.

0.1.2 Exercises from (Sep 25)

- 1. [1pt] For a prime p, show that $p = u(1 \zeta_{p^d})^{\varphi(p^d)}$ where u is a unit in $\mathbb{Z}[\zeta_{p^d}]$.
- 2. [2pts] If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that the ring of [2pts] if *D* and *E* are relatively prior-
integers of $\mathbb{Q}(\sqrt{D}, \sqrt{E})$ is $\mathbb{Z}[\frac{1+\sqrt{D}}{2}]$ $\frac{\sqrt{D}}{2}, \frac{1+\sqrt{E}}{2}$ $\frac{1}{2}$, and compute an integral basis for it.
- 3. [3pts^{*}] If $-D < -4$ is squarefree and $-D \equiv 2,3 \pmod{4}$, show that $\mathcal{O}_{\sqrt{-D}} = \mathbb{Z}[\sqrt{2}]$ $=\mathbb{Z}[\sqrt{-D}]$ is not a unique factorization domain. [Hint: If D is odd, use $2 \cdot (1 + D)/2 = (1 + \sqrt{-D})(1 - \sqrt{-D})$, and if D is even use ractorization domain. [Hint:
2 · $(D/2) = \sqrt{-D} \cdot (-\sqrt{-D}).$]

0.1.3 Exercises from (Sep 26)

- 1. [2pts] If R is an integral domain, show that the following conditions for R to be Noetherian are equivalent:
	- (a) Every ideal of R is finitely generated.
	- (b) Every ascending chain $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ of ideals of R is eventually constant (i.e., there exists N such that $I_n = I_N$ for all $n \geq N$).
	- (c) Every nonempty collection S of ideals of R contains a maximal element (i.e., an ideal I such that if $J \in S$ has $I \subseteq J$ then $J = I$).
- 2. $[1pt]$ Show that a finite integral domain is a field.

Remark: This problem is a special case of the Kronecker-Weber theorem: every number field K with abelian Galois group over $\mathbb Q$ is a subfield of some cyclotomic field.

- 3. [3pts] Suppose S is an integral ring extension of the commutative ring R with 1 (i.e., every element of S is the root of a monic polynomial in $R[x]$.
	- (a) Show that if Q is a prime ideal of S, then $P = Q \cap R$ is a prime ideal of R.
	- (b) Show that if S is a domain then R is a field if and only if S is a field. [Hint: Use the monic polynomial satisfied by a nonzero element to construct an inverse for it.
	- (c) Show that an ideal Q of S is maximal in S if and only if $P = Q \cap R$ is maximal in R. [Hint: Note S/Q is an integral extension of R/P .
- 4. [2pts] Suppose that R is a commutative ring with 1 and S is a ring containing R. Recall that the integral closure of R in S consists of the elements of S containing R, and R is integrally closed when its integral closure is just R itself.
	- (a) Show that the integral closure of R in S is a subring of S containing R. [Hint: If s, t are integral over R, then $R[s]$ and $R[t]$ are finitely-generated R-modules, hence so is $R[s, t]$.
	- (b) Show that the integral closure of R in S is integrally closed in S. [Hint: Show that integrality is transitive.]
- 5. [1pt] Show that principal ideal domains are Dedekind domains. [Hint: Use the general fact that UFDs are integrally closed.]

0.1.4 Exercises from (Sep 30)

- 1. [1pt] If R is a Noetherian integral domain, show that fractional ideals of R are the same as finitely-generated R-submodules of K. Hint: Put things over a common denominator.
- 2. [1pt] Suppose P is a prime ideal of an integral domain and $IJ \subseteq P$ for some ideals I and J. Show that $I \subseteq P$ or $J \subseteq P$. (Note that this property is the ideal analogue of the prime divisibility property p|ab implies p|a or $p|b.$

0.1.5 Exercises from (Oct 2)

- 1. [1pt] If I is a nonzero ideal of a Dedekind domain R , show that I can be written uniquely in the form $I = \prod_{P_i \text{ prime}} P_i^{a_i}$ where the product is taken over all prime ideals of R and the a_i are nonnegative integers only nitely many of which are positive.
- 2. [1pt] Show that the group of fractional ideals in a Dedekind domain is a free abelian group generated by the nonzero prime ideals.
- 3. [1pt] If A is any ideal in a Dedekind domain R, show that there are only finitely many ideals of R that contain A.
- 4. [1pt] For any ideals A and B in a Dedekind domain, show that $AB = (A + B)(A \cap B)$.
- 5. [2pts*] If I and J are ideals in a commutative ring with 1, show that $IJ \subseteq I \cap J$, and also that if $I + J = R$ then $IJ = I \cap J$.

0.1.6 Exercises from (Oct 3)

- 1. [2pts] Let R be an integral domain and let M be a maximal ideal of R. For any $d \geq 0$, show that M^d/M^{d+1} is an R/M -vector space.
- 2. [4pts*] Show that the prime ideals of $\mathbb{Z}[\sqrt{-2}]$ are as follows: the ideal $(\sqrt{-2})$, the ideals (p) where p is a prime congruent to 5 or 7 modulo 8, and the two ideals $(a + b\sqrt{-2})$ and $(a - b\sqrt{-2})$ where $a^2 + 2b^2 = p$ is a prime congruent to 1 or 3 mod 4.

0.2 Additional Exercises

- 1. $|4pts|$ The famously unsolved inverse Galois problem asks whether every finite group G occurs as a Galois group over $\mathbb Q$. The goal of this problem is to show every finite *abelian* group is a Galois group over $\mathbb Q$.
	- (a) For any $d \geq 2$, show that there exists a number field K, Galois over Q, with Galois group $\mathbb{Z}/d\mathbb{Z}$. You may assume Dirichlet's theorem on primes in arithmetic progressions. [Hint: Choose any prime $p \equiv 1$ (mod d) via Dirichlet's theorem and take an appropriate subfield of $\mathbb{Q}(\zeta_p)$.
	- (b) Let G be a finite abelian group. Prove that there exists a number field K , Galois over \mathbb{Q} , such that $Gal(K/\mathbb{Q}) \cong G$. [Hint: Take a composite of fields as in (a).]
- 2. [10pts^{*}] Let $n > 2$ and define $\theta = 2\cos(2\pi/n) = \zeta_n + \zeta_n^{-1}$.
	- (a) Show that $\mathbb{Q}(\zeta_n)$ is a degree-2 extension of $\mathbb{Q}(\theta)$. Deduce that the extension $\mathbb{Q}(\theta)/\mathbb{Q}$ has degree $\varphi(n)/2$.
	- (b) Show that the extension $\mathbb{Q}(\theta)/\mathbb{Q}$ is Galois and that its Galois group is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}/\{\pm 1\}$. [Hint: Show $\mathbb{Q}(\theta)$ is the fixed field of complex conjugation.]
	- (c) Show that the Galois conjugates of θ are the numbers $2\cos(2\pi k/n)$ for $k \in \mathbb{Z}$. Deduce that $\mathbb{Q}(\theta)$ is a totally real field: every complex embedding of $\mathbb{Q}(\theta)$ lies inside R.
	- (d) For $k = \varphi(n)/2$, show that $\{1, \zeta_n, \theta, \theta \zeta_n, \theta^2, \theta^2 \zeta_n, \dots, \theta^{k-1}, \theta^{k-1} \zeta_n\}$ is an integral basis for $\mathbb{Z}[\zeta_n]$.
	- (e) For $k = \varphi(n)/2$, show that $\{1, \theta, \theta^2, \dots, \theta^{k-1}\}$ is an integral basis for $\mathcal{O}_{\mathbb{Q}(\theta)}$. Deduce that $\mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{Z}[\theta]$. [Hint: First explain why $\mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{R} \cap \mathbb{Z}[\zeta_n]$, and then use the basis for $\mathbb{Z}[\zeta_n]$ from (d).]
	- (f) If $n = p$ is an odd prime, show that disc(θ) = $p^{(p-3)/2}$. [Hint: Compute $N_{\mathbb{Q}(\zeta_p)/\mathbb{Q}}(\theta)$ directly, and then note $[N_{\mathbb{Q}(\theta)/\mathbb{Q}}(\theta)]^2 = N_{\mathbb{Q}(\zeta_p)/\mathbb{Q}}(\theta)$. Finally note that $\sqrt{\text{disc}(\theta)} \in \mathbb{Q}(\theta)$.
- 3. [10pts*] The goal of this problem is to determine which imaginary quadratic integer rings $\mathcal{O}_{\sqrt{-D}}$ are Euclidean.
	- (a) Show that $\mathbb{Z}[\sqrt{-2}]$, $\mathbb{Z}[\sqrt{2}]$, and $\mathbb{Z}[\sqrt{2}]$ 3] are Euclidean with norm function $|N(a + b)$ √ $|\overline{D}| = |a^2 - Db^2|.$
	- (b) Suppose that $-D \equiv 1 \pmod{4}$. Prove that any $z \in \mathbb{C}$ differs from an element in $\mathcal{O}_{\sqrt{-D}}$ by a complex number whose norm is at most $(1+D)^2/(16D)$. [Hint: The elements of $\mathcal{O}_{\sqrt{-D}}$ form a lattice in \mathbb{C} . Use symmetry to reduce the distance calculation to one inside a triangle, and then show the largest distance occurs at the circumcenter.]
	- (c) Show that $\mathcal{O}_{\sqrt{-D}}$ is a Euclidean domain for $-D = -3, -7,$ and -11 .

From (a), (c), and exercise 0.1.2.3 above, the only remaining cases are for $-D \equiv 1 \pmod{4}$ and $-D \le -15$. If R is an integral domain, we say an element $u \in R$ is a <u>universal side divisor</u> if it is not zero, not a unit, and every $x \in R$ can be written in the form $x = qu + z$ where z is either zero or a unit. Equivalently, u is a universal side divisor when every nonzero residue class modulo u is represented by a unit of R .

- (d) Suppose R is a Euclidean domain that is not a field. If u is a nonzero nonunit of R of minimal norm among nonzero nonunits in R (with respect to the norm function on R), show u is a universal side divisor.
- (e) Suppose $D < -3$. If u is a universal side divisor in $\mathcal{O}_{\sqrt{-D}}$, show that u must divide one of $x-1, x, x+1$ for any $x \in \mathcal{O}_{\sqrt{-D}}$.
- (f) Suppose $D < -11$. Show $\mathcal{O}_{\sqrt{-D}}$ has no universal side divisors and conclude that $\mathcal{O}_{\sqrt{-D}}$ is not Euclidean. [Hint: Apply (e) when $x = 2$ and $x = (1 + \sqrt{-D})/2$.]
- Remark: Here we see that the Euclidean imaginary quadratic rings are also norm-Euclidean (meaning that they are Euclidean with respect to the norm function). There do exist rings of integers that are Euclidean but not norm-Euclidean, and there also exist rings of integers that are not Euclidean but are k-stage Euclidean (meaning that the remainder bound holds but only after k stages of division).