E. Dummit’s Math 7315 ~ Algebraic Number Theory, Fall 2024 ~ Homework 2, due Thu Oct 10th.

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 20 and 40 points’
worth). Starred problems are especially recommended. Prepare to present 1-2 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Sep 19)

1. [2pts] Show that 2™ — 1 = [],,, ®a(z). [Hint: Group together the roots of unity of each order d|n.]

0 if n i t i
2. [2pts] Show that ®,(x) = [T, (z* — 1)*"/*) where p(n) = . 17 1S nob squaretree .
(=1)* if n=p;---pg for distinct primes p;

denotes the Mobius p-function. Use this recurrence relation to calculate ®¢(z) and ®q0(x).

3. [1pt] For a prime p, show directly that ®,(z) = 2P~ 4+ 2P~ 2+ ..+ 2+ 1 is irreducible. [Hint: Use Eisenstein’s
criterion on ®,(z + 1) = L[(z + 1)P — 1]]

4. [1pt] For any prime power p?, show that ®,4(z) = ®,(z*" ). [Hint: Show both sides equal [T/~ (z#" " — i)

5. [3pts*| Let p be an odd prime. Show that Q((,) contains a unique quadratic subfield and that it is Q(/(—1)®=1)/2p).
[Hint: Use Galois theory for uniqueness, and discriminants to get the field itself.]

6. [3pts] Show that every quadratic field is a subfield of some cyclotomic field Q(¢,). [Hint: Take a composite
of Q(¢s) and the Q(¢,) for various p.|

Remark: This problem is a special case of the Kronecker-Weber theorem: every number field K with abelian
Galois group over Q is a subfield of some cyclotomic field.

0.1.2 Exercises from (Sep 25)

1. [1pt] For a prime p, show that p = u(1 — de)‘P(pd) where u is a unit in Z[(,q].
2. [2pts] If D and E are relatively prime squarefree integers congruent to 1 modulo 4, show that the ring of

1 D 1 E
integers of Q(v/D,VE) is Z[ +2\F, +2\F

3. [3pts*|] If —D < —4 is squarefree and —D = 2,3 (mod 4), show that O —5 = Z[v/—D] is not a unique
factorization domain. [Hint: If D is odd, use 2- (1 + D)/2 = (1+ +v/—D)(1 —+/—D), and if D is even use
2-(D/2) =v-D-(-=v-D)]

|, and compute an integral basis for it.

0.1.3 Exercises from (Sep 26)
1. [2pts| If R is an integral domain, show that the following conditions for R to be Noetherian are equivalent:

(a) Every ideal of R is finitely generated.

(b) Every ascending chain I; C I, C --- C I, C --- of ideals of R is eventually constant (i.e., there exists N
such that I,, = Iy for all n > N).

(¢) Every nonempty collection S of ideals of R contains a maximal element (i.e., an ideal I such that if J € S
has I C J then J =1).

2. [1pt] Show that a finite integral domain is a field.



3. [3pts] Suppose S is an integral ring extension of the commutative ring R with 1 (i.e., every element of S is
the root of a monic polynomial in Rx]).

(a) Show that if @ is a prime ideal of S, then P = Q N R is a prime ideal of R.

(b) Show that if S is a domain then R is a field if and only if S is a field. [Hint: Use the monic polynomial
satisfied by a nonzero element to construct an inverse for it.]

(c) Show that an ideal @ of S is maximal in S if and only if P = Q N R is maximal in R. |Hint: Note S/Q
is an integral extension of R/P.]

4. [2pts] Suppose that R is a commutative ring with 1 and S is a ring containing R. Recall that the integral
closure of R in S consists of the elements of S containing R, and R is integrally closed when its integral closure
is just R itself.

(a) Show that the integral closure of R in S is a subring of S containing R. [Hint: If s,¢ are integral over R,
then R[s] and R[t] are finitely-generated R-modules, hence so is R[s,].]
(b) Show that the integral closure of R in S is integrally closed in S. [Hint: Show that integrality is transitive.]

5. [1pt] Show that principal ideal domains are Dedekind domains. [Hint: Use the general fact that UFDs are
integrally closed.]

0.1.4 Exercises from (Sep 30)

1. [1pt] If R is a Noetherian integral domain, show that fractional ideals of R are the same as finitely-generated
R-submodules of K. [Hint: Put things over a common denominator.]

2. [1pt] Suppose P is a prime ideal of an integral domain and IJ C P for some ideals I and J. Show that I C P
or J C P. (Note that this property is the ideal analogue of the prime divisibility property p|ab implies p|a or

plb.)

0.1.5 Exercises from (Oct 2)

1. [1pt] If I is a nonzero ideal of a Dedekind domain R, show that I can be written uniquely in the form
I=1] Py prime P! where the product is taken over all prime ideals of R and the a; are nonnegative integers
ounly finitely many of which are positive.

2. [1pt] Show that the group of fractional ideals in a Dedekind domain is a free abelian group generated by the
nonzero prime ideals.

3. [Ipt] If A is any ideal in a Dedekind domain R, show that there are only finitely many ideals of R that contain
A.

4. [1pt] For any ideals A and B in a Dedekind domain, show that AB = (A + B)(AN B).

5. [2pts*] If I and J are ideals in a commutative ring with 1, show that IJ C I N J, and also that if I + J =R
then IJ=1NJ.

0.1.6 Exercises from (Oct 3)

1. [2pts] Let R be an integral domain and let M be a maximal ideal of R. For any d > 0, show that M9 /Md4+!
is an R/M-vector space.

2. [4pts*] Show that the prime ideals of Z[/—2] are as follows: the ideal (1/—2), the ideals (p) where p is a prime
congruent to 5 or 7 modulo 8, and the two ideals (a + by/—2) and (a — by/—2) where a? + 2b? = p is a prime
congruent to 1 or 3 mod 4.



0.2 Additional Exercises

1. [4pts] The famously unsolved inverse Galois problem asks whether every finite group G occurs as a Galois
group over Q. The goal of this problem is to show every finite abelian group is a Galois group over Q.

(a) For any d > 2, show that there exists a number field K, Galois over Q, with Galois group Z/dZ. You
may assume Dirichlet’s theorem on primes in arithmetic progressions. [Hint: Choose any prime p = 1
(mod d) via Dirichlet’s theorem and take an appropriate subfield of Q(().]

(b) Let G be a finite abelian group. Prove that there exists a number field K, Galois over Q, such that
Gal(K/Q) = G. [Hint: Take a composite of fields as in (a).]

2. [10pts*] Let n > 2 and define 6 = 2 cos(27/n) = ¢, + ¢, L.

(a) Show that Q(¢,) is a degree-2 extension of Q(6). Deduce that the extension Q(#)/Q has degree ¢(n)/2.

(b) Show that the extension Q(0)/Q is Galois and that its Galois group is isomorphic to (Z/nZ)* /{£1}.
[Hint: Show Q(6) is the fixed field of complex conjugation.]

(c) Show that the Galois conjugates of 6 are the numbers 2 cos(2wk/n) for k € Z. Deduce that Q(f) is a
totally real field: every complex embedding of Q(6) lies inside R.

(d) For k = p(n)/2, show that {1,¢,,0,0(,,0%,0%C,,...,0F1 0F=1¢,} is an integral basis for Z[(,].

(e) For k = ¢(n)/2, show that {1,0,62,...,6*"1} is an integral basis for Og(g). Deduce that Ogg) = Z[6].
[Hint: First explain why Og9) = RN Z[(,], and then use the basis for Z[(,] from (d).]

(f) If n = p is an odd prime, show that disc(#) = p®~*/2. [Hint: Compute Ng,)/q(f) directly, and then
note [Ng(p),0(0)]> = Ngc,)/0(0)- Finally note that /disc(6) € Q(60).]

3. [10pts*] The goal of this problem is to determine which imaginary quadratic integer rings O —p are Euclidean.

(a) Show that Z[v/—2], Z[v/2], and Z[/3] are Euclidean with norm function |N(a + bv/D)| = |a* — Db?|.

(b) Suppose that —D =1 (mod 4). Prove that any 2 € C differs from an element in O ,—5 by a complex
number whose norm is at most (1 + D)?/(16D). [Hint: The elements of O ,—5 form a lattice in C. Use
symmetry to reduce the distance calculation to one inside a triangle, and then show the largest distance
occurs at the circumcenter.|

(c) Show that O 3 is a Euclidean domain for —D = —3, -7, and —11.

From (a), (c¢), and exercise 0.1.2.3 above, the only remaining cases are for —D =1 (mod 4) and —D < —15.
If R is an integral domain, we say an element v € R is a universal side divisor if it is not zero, not a unit,
and every x € R can be written in the form x = qu + z where z is either zero or a unit. Equivalently, u is a
universal side divisor when every nonzero residue class modulo w is represented by a unit of R.

(d) Suppose R is a Euclidean domain that is not a field. If w is a nonzero nonunit of R of minimal norm
among nonzero nonunits in R (with respect to the norm function on R), show w is a universal side divisor.

(e) Suppose D < —3. If u is a universal side divisor in O 5, show that « must divide one of z —1, z, v +1
for any z € O —5.

(f) Suppose D < —11. Show O, —5 has no universal side divisors and conclude that O 5 is not Euclidean.
[Hint: Apply (e) when x =2 and z = (1+ +v—D)/2/]

Remark: Here we see that the Euclidean imaginary quadratic rings are also norm-Euclidean (meaning that
they are Euclidean with respect to the norm function). There do exist rings of integers that are Euclidean
but not norm-Euclidean, and there also exist rings of integers that are not Euclidean but are k-stage
Euclidean (meaning that the remainder bound holds but only after k stages of division).



