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4 Elements of Algebra

Our goal in this chapter is to discuss two foundational objects in algebra: groups and �elds. We begin with a
broad introduction to groups via the axiomatic de�nition, and then discuss various fundamental examples of groups
such as the integers modulo m, dihedral groups, and symmetric groups. We then establish some basic properties
of groups, subgroups, and element orders in groups, culminating in Cauchy's theorem on elements of prime order
and Lagrange's theorem on orders of subgroups. We also discuss �elds and give various fundamental examples of
�elds and ordered �elds: the integers modulo a prime p, the rational numbers, the real numbers, and the complex
numbers.

4.1 Groups

• The set of symmetries of a geometric or algebraic object carries a natural structure under composition.

◦ This composition operation is associative (since function composition is associative), there is always an
identity element (namely, the identity symmetry that leaves the object unchanged), and every element
has an inverse (namely, the �inverse� symmetry that reverses everything).

◦ To study the collection of symmetries, therefore, is essentially the same as studying algebraic structures
with a single operation that possess three properties of associativity, existence of an identity, and existence
of inverses.
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4.1.1 The Formal De�nition of a Group

• De�nition: A group is any set G having a (closed) binary operation ? that satis�es the three axioms [G1]-[G3]:

[G1] The operation ? is associative: g ? (h · k) = (g ? h) ? k for any elements g, h, k in G.

[G2] There is a (two-sided) identity element e: e ? g = g = g ? e for any element g in G.

[G3] Every element has a (two-sided) inverse: for any g in G, there exists g−1 in G with g ?g−1 = e = g−1 ?g.

• Note that we do not assume the operation ? in the group is commutative. More precisely:

• De�nition: If a group satis�es axiom [G4], we say it is an abelian group1.

[G4] The operation ? is commutative: g ? h = h ? g for any elements g, h in G.

• De�nition: If G is a group, the order of G, denoted as |G| or #G, is the cardinality of G as a set.

• There are a number of common conventions regarding group notation.

◦ Because the group operation is associative, we do not need to specify the order in which the multiplications
are performed when we have more than 2 terms, and can simply write expressions like g ? h ? k without
needing to use parentheses to distinguish between (g ? h) ? k and g ? (h ? k).2

◦ If g ∈ G, for any positive integer n we de�ne gn = g ? g ? · · · ? g︸ ︷︷ ︸
n terms

, g−n = g−1 ? g−1 ? · · · ? g−1︸ ︷︷ ︸
n terms

, and g0 = e.

◦ We will frequently omit the symbol for the group operation ? and simply write gh for g ? h.

◦ We will also often write the operation as · or + when it represents multiplication or addition in a context
where those operations are already familiar, and write 1 or 0 for the corresponding identity elements
respectively. Also, when the group operation is addition, we write inverses additively, as −a rather than
a−1.

• Here are some basic examples (and non-examples) of groups:

• Example: The nonzero rational numbers form an abelian group under multiplication.

◦ Explicitly, for [G1] we have (a · b) · c = a · (b · c) for all rationals a, b, c, for [G2] we have an identity 1 with
1 · a = a = a · 1 for all rationals a, for [G3] every rational number a has a multiplicative inverse a−1 such
that a · a−1 = 1 = a−1 · a, and for [G4] we have a · b = b · a for all rationals a, b.

• Example: The integers form an abelian group under addition.

◦ Explicitly, for [G1] we have (a+ b) + c = a+ (b+ c) for all integers a, b, c, for [G2] we have an identity 0
with 0 + a = a = a + 0 for all integers a, for [G3] every integer a has an additive inverse −a such that
a+ (−a) = 0 = (−a) + a, and for [G4] we have a+ b = b+ a for all integers a, b.

• Non-Example: The integers do not form a group under multiplication, because 0 has no multiplicative inverse.

◦ Even if we exclude 0, the nonzero integers still do not form a group, because 2 (and 3, and 4, etc.) all
fail to possess multiplicative inverses.

• Non-Example: The positive integers do not form a group under addition.

◦ Although [G1] holds, [G2] does not since there is no additive identity inside the positive integers.

• Non-Example: The nonnegative integers do not form a group under addition.

1Less commonly, abelian groups are also called commutative groups. A group that is not abelian is called non-abelian. The term
�abelian� is named after Neils Henrik Abel, who was a foundational �gure in the study of groups; it is stylized in lowercase (rather than
in uppercase as �Abelian�) in honor of the depth of his contribution.

2Technically, this statement requires a proof; it is straightforward though tedious to use induction on the number of terms in the
product to establish that all such products are equal to the one where the order is composed left-to-right, as in ((g ? h) ∗ k) ? l.

2



◦ Although [G1] and [G2] both hold (since now the set contains 0, the additive identity), [G3] does not
since for example 1 does not possess an additive inverse inside the nonnegative integers.

• Example: For any m > 1, the integers modulo m form an abelian group under addition, of order m.

◦ Explicitly, for [G1] we have (a + b) + c = a + (b + c) for all residue classes a, b, c, for [G2] we have an
identity 0 with 0 + a = a = a+ 0 for all residue classes a, for [G3] every residue class a has an additive
inverse −a (namely −a) such that a + (−a) = 0 = (−a) + a, and for [G4] we have a + b = b + a for all
residue classes a, b.

• Example: The set {1,−1} forms an abelian group under multiplication. This group has order 2.

◦ It is easy to see that multiplication here is associative and commutative, that 1 is an identity, and that
both elements are their own inverses.

• Example: The set G = {e}, with operation e · e = e, is a group called the trivial group.

◦ This group has order 1, and in fact is the only possible group structure for a group of order 1.

• Example: The set V4 = {e, a, b, c} with identity e, and other multiplications given by a2 = b2 = c2 = 1,
ab = ba = c, ac = ca = b, and bc = cb = a, forms an abelian group of order 4.

◦ It is straightforward (although tedious) to verify that multiplication is associative. In this group, every
element is its own inverse.

◦ This group is called the Klein 4-group (in German, �Viergruppe�) and is denoted V4 or K4.

• Example: If m is a modulus, the set (Z/mZ)× of residue classes relatively prime to m forms an abelian group
under multiplication.

◦ As we saw in our discussion of residue class arithmetic, multiplication is associative and commutative, the
residue class 1 is a multiplicative identity, and each residue class relatively prime tom has a multiplicative
inverse (by the Euclidean algorithm).

◦ For example, with m = 5 we have four residue classes {1, 2, 3, 4}. We have inverses 1
−1

= 1, 2
−1

= 3,
3
−1

= 2, and 4
−1

= 4.

• Example: For any positive integer n, if ζn = e2πi/n, then the set G = {1, ζn, ζ2n, . . . , ζn−1n } forms a group of
order n under multiplication.

◦ Explicitly: associativity is inherited from C, the identity element is 1, and (ζkn)
−1 = ζn−kn for any

0 ≤ k ≤ n− 1.

◦ This group consists of the solutions to the equation xn−1 = 0 in C, which are called the nth roots of unity.
For this reason the group is often called the group of nth roots of unity.

◦ For example, when n = 4, we obtain the multiplicative group G = {1, i,−1,−i}, where i =
√
−1 is the

imaginary unit. In this group we have for example i2 = −1, (−1) ·(−i) = i, i ·(−i) = 1, and also i−1 = −i
and (−i)−1 = i.

• We can deduce a few properties of group arithmetic immediately from the axioms:

• Proposition (Basic Group Arithmetic): Let G be a group. The following properties hold in G:

1. The identity element e is unique, and e−1 = e.

◦ Proof: For (1), if there were two identity elements e and e′, then e′ = e · e′ = e by the left-identity
property of e and the right-identity property of e′. The second statement follows immediately by
observing that ee = e.

2. G has left and right cancellation: for any g, h, k in G, either of gh = gk or hg = kg implies h = k.

◦ Proof: If gh = gk then h = eh = (g−1g)h = g−1(gh) = g−1(gk) = (g−1g)k = ek = k. The other
statement follows similarly.
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3. Inverses are unique. Also, a one-sided inverse of g is automatically a two-sided inverse of g.

◦ Proof: If h and k are both inverses of g, then gh = e = gk, so by cancellation we see h = k.

◦ The second statement follows by observing that gh = e implies h = eh = (g−1g)h = g−1(gh) =
g−1e = g−1, and likewise hg = e also implies h = g−1.

4. For any g, h ∈ G, (gh)−1 = h−1g−1, and (g−1)−1 = g.

◦ Proof: We have (h−1g−1)(gh) = h−1(g−1g)h = h−1eh = h−1h = e and likewise for the product in
the other order.

◦ For the second statement note (g−1)−1g−1 = e = gg−1, so cancelling g−1 yields (g−1)−1 = g.

• We can also construct new groups using Cartesian products.

◦ Recall that if S and T are sets, the Cartesian product S×T is the set of ordered pairs (s, t) where s ∈ S
and t ∈ T .

• Proposition (Cartesian Products of Groups): If (G, ?) and (H, ◦) are groups, then the Cartesian product
G ×H is also a group, with operation performed componentwise: (g1, h1)4(g2, h2) = (g1 ? g2, h1 ◦ h2). The
identity element is eG×H = (eG, eH) and inverses are given by (g, h)−1 = (g−1, h−1). The group G ×H has
order #G ·#H, and is abelian if and only if both G and H are abelian.

◦ Proof: Each of the group axioms for G × H follows immediately from the corresponding axioms in G
and H, and the statement about the order follows from the de�nition of Cartesian product for sets.

◦ For the abelian condition, clearly (g1, h1)4(g2, h2) = (g1 ? g2, h1 ◦ h2) is equal to (g2, h2)4(g1, h1) =
(g2 ? g1, h2 ◦ h1) for all g1, g2 ∈ G and h1, h2 ∈ H if and only if g1 ? g2 = g2 ? g1 and h1 ◦ h2 = h2 ◦ h1 for
all g1, g2 ∈ G and h1, h2 ∈ H.

• Example: The Cartesian product (Z/3Z)× (Z/5Z) is an abelian group of order 3 · 5 = 15.

4.1.2 Dihedral Groups

• As we brie�y outlined, groups arise naturally from studying symmetries of objects. Among the simplest
objects in geometry are regular n-gons, whose associated symmetry group is called the dihedral group, and
denoted3 D2·n.

◦ Geometrically, these symmetries are the possible ways to move an n-gon around in space (rotating or
re�ecting it) and then placing it back on top of itself so that all of the vertices and edges line up.

◦ For example, for n = 4 (corresponding to the symmetries of a square), one possibility is to rotate the
square π/2 radians counterclockwise in the plane around its center. Another possibility is to re�ect the
square about one of its diagonals (in fact there are two such maps).

• If we label the vertices of the n-gon 1, 2, . . . , n, then we can identify all of these symmetries as functions acting
on the vertices.

◦ For example, if we label the vertices of the square as 1, 2, 3, 4 counterclockwise, then a counterclockwise
rotation of π/2 radians would correspond to the function σ with σ(1) = 2, σ(2) = 3, σ(3) = 4, and
σ(4) = 1.

◦ The collection of symmetries D2·n of the regular n-gon can then be made into a group as follows: if g
and h are both elements of D2·n, we de�ne the composition g · h to be the symmetry obtained by �rst
applying h, and then g (i.e., by function composition).

◦ This operation is associative since function composition is associative, the identity element is the identity
transformation (i.e., the symmetry leaving all vertices �xed), and the inverse of a symmetry g is the
symmetry g−1 that reverses all of the rigid motions of g.

3Many authors denote the symmetry group of the n-gon as Dn (emphasizing the geometric �avor of the group), but in group
theory literature the notation D2n (emphasizing the elements of the group) is more common. We adopt the notation D2·n as a sort of
compromise between these two.
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• Proposition (Order of D2·n): For any integer n ≥ 3, the dihedral group D2·n has order 2n.

◦ Proof: Under a symmetry, the vertex labeled 1 can be moved to any of the n vertices, and then the
vertex labeled 2 must go to one of the 2 vertices adjacent to it. But once we have �xed the locations of
vertices 1 and 2, then all of the other vertices' locations are determined uniquely (since vertex 3 must go
to the unique vertex adjacent to the new position of vertex 2 that is not already occupied by vertex 1,
and so forth).

◦ Thus there are at most 2n possible symmetries of a regular n-gon, so #D2·n ≤ 2n.

◦ On the other hand, we can explicitly list 2n distinct symmetries: there are the n possible rotations
counterclockwise about the center by 2πk/n radians for 0 ≤ k ≤ n − 1, and there are also n possible
re�ections about a line through the center of the n-gon.

◦ Explicitly: if n is odd, these are the n lines passing through one vertex and the center, while if n is
even there are n/2 lines passing through a pair of opposite vertices and n/2 others that bisect a pair of
opposite sides.

◦ Each of these symmetries is di�erent, so D2·n has order 2n as claimed.

• We can give a more concrete description of the elements in D2·n in terms of particular rotations and re�ections.

◦ Explicitly, let r represent the counterclockwise rotation of the n-gon by 2π/n radians: as a function
on vertices, we have r(1) = 2, r(2) = 3, ... , r(n − 1) = n, and r(n) = 1. Then rk represents a
counterclockwise rotation by 2πk/n radians, so the elements {e, r, r2, . . . , rn−1} are distinct, and rn = e.

◦ Also, let s represent the re�ection of the n-gon across the line through vertex 1 and the center of the
n-gon. As a permutation, we have s(1) = 1, s(2) = n, s(3) = n− 1, ... , and s(n) = 2. It is then easy to
see that s2 is the identity element, and that s 6= ri for any i, since the only power of r that �xes vertex
1 is the identity element.

◦ From this we can conclude that all of the elements {s, sr, sr2, . . . , srn−1} are distinct, since sri = srj

would imply ri−j = e by cancellation, and they are also all distinct from the elements {e, r, r2, . . . , rn−1}
since sri = rj would imply s = rj−i by cancellation.

◦ Hence we see that D2·n = {e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.
◦ To describe the multiplication of any two elements in this list, we �rst observe that rs = sr−1 (so in
particular, D2·n is always non-abelian). This relation can be visualized geometrically, since rotating and
then re�ecting is equivalent to re�ecting and then rotating in the opposite direction.

◦ Alternatively, we can compute rs(1) = r(1) = 2 and rs(2) = r(n) = 1, and also sr−1(1) = s(n) = 2 and
sr−1(2) = s(1) = 2. Then since rs and sr−1 agree on vertices 1 and 2, they agree on all vertices, so they
are equal.

◦ Then by an easy induction, we see that ris = sr−i for all i.

• To summarize the discussion, D2·n = {e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, where r and s are elements
satisfying the relations rn = s2 = e and rs = sr−1.

◦ Using these relations (and the ancillary fact that ris = sr−i for any i) we can compute the product of
any two elements in D2·n.

◦ For example, in D2·7, we have (sr5)(r4) = sr9 = sr2, (r4)(sr5) = sr−4(r5) = sr, and (sr2)(sr) =
s(r2s)r = s(sr−2)r = s2r−1 = r6.

4.1.3 Symmetric Groups and Permutations

• Another natural class of groups arises from �symmetries� of sets.

◦ To illustrate the idea, observe that the set S3 of permutations of the set A = {1, 2, 3} (formally, the set
of bijections of S with itself) forms a group under composition.

◦ Note that there are a total of 3! = 6 such bijections. A somewhat-convenient way to represent these
maps is to write a list of the elements of the domain and target vertically: thus the map f with f(1) = 2,

f(2) = 3, and f(3) = 1 would be written as

(
1 2 3
2 3 1

)
.
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◦ In this notation, the 6 elements of S3 are

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,(

1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.

◦ To compute the product of two elements in S3, we can simply trace the behavior of each element of
{1, 2, 3} under the corresponding composition of functions.

◦ Thus, for example, if g =

(
1 2 3
2 1 3

)
and h =

(
1 2 3
3 1 2

)
, to compute the product gh we observe

that (i) h sends 1 to 3, and g sends 3 to 3, so gh sends 1 to 3, (ii) h sends 2 to 1, and g sends 1 to 2, so
gh sends 2 to 2, and (iii) h sends 3 to 2, and g sends 2 to 1, so gh sends 3 to 1.

◦ Thus, gh =

(
1 2 3
3 2 1

)
. In a similar way we can compute hg =

(
1 2 3
1 3 2

)
, so we see in particular

that S3 is non-abelian.

◦ It is very tedious to verify that these operations actually form a group using this explicit description
(checking associativity, for example, requires 63 individual calculations), and the notation is also quite
cumbersome.

• We can clarify matters by generalizing this idea to arbitrary sets.

• Proposition (Symmetric Groups): If A is any set, the set of bijections from A to itself forms a group under
function composition. This group is the symmetric group on the set A and is denoted SA. When #A = n is
�nite we have #SA = n!, and when A is in�nite, SA is in�nite.

◦ Proof: The group operation is well-de�ned because the composition of two bijections is also a bijection.
Property [G1] follows because function composition is associative, property [G2] follows because the
identity map is a bijection, and property [G3] follows because the inverse of a bijection is also a bijection.

◦ For the statement about the cardinality, suppose �rst that #A = n. Then, as we showed using pigeonhole
ideas, a function f : A→ A is a bijection if and only if f is one-to-one. But there are n! possible one-to-
one functions from A to A, since the �rst element of A has n possible destinations, the second then has
n− 1 possible destinations, and so forth, yielding a total number of n · (n− 1) · · · · 2 · 1 = n! possible f .

◦ Finally, if A is in�nite, for any �xed x ∈ A and any y ∈ A consider the map fy that interchanges x and
y and leaves all other elements alone. Then fy is a bijection for each y ∈ A, so since there are in�nitely
many y ∈ A this already yields in�nitely many bijections.

• We will primarily be interested in the case where A = {1, 2, . . . , n}, in which case we will write the group
as Sn, the symmetric group on n objects. The elements of this group are called permutations because they
rearrange the elements of the set.

◦ First, we would like a more convenient way to describe the elements in Sn. We can achieve this by
writing permutations in terms of cycles (a1 a2 . . . ak).

◦ Explicitly, the cycle (a1 a2 . . . ak) is the permutation σ with σ(a1) = a2, σ(a2) = a3, ... , σ(ak−1) = ak,
and σ(ak) = a1, where all other elements are mapped to themselves. This permutation �cycles� the
elements a1, a2, . . . , ak one step forward (whence the name).

◦ Thus, for example, inside S4 the cycle (2 1 4) is the permutation with σ(2) = 1, σ(1) = 4, σ(4) = 2, and
σ(3) = 3.

◦ Not every permutation can be written as a single cycle, but it is not hard to see that every permutation
can be written as a product of disjoint cycles (i.e., cycles having no elements in common) such as
(1 3) (2 4), which represents the permutation with σ(1) = 3, σ(3) = 1, σ(2) = 4, and σ(4) = 2. Such a
representation is called the cycle decomposition of σ.

◦ Explicitly, to determine all of the cycles in the cycle decomposition of a permutation σ, we start with
the smallest number x not contained in one of the cycles we have identi�ed, and repeatedly apply σ until
we obtain a repeated element. In other words, we evaluate a1 = x, a2 = σ(a1), a3 = σ(a2), a4 = σ(a3),
... until the list repeats.
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◦ It is easy to see that the �rst repeated value will always be x (since ai = aj implies σ(ai−1) = σ(aj−1) so
that ai−1 = aj−1 since σ is a bijection), and so we obtain a cycle (x a2 . . . ak) containing x. We repeat
this process until we have identi�ed the cycles containing every element in {1, 2, . . . , n}.

• Example: Find the cycle decomposition of the permutation σ ∈ S6 with σ(1) = 3, σ(2) = 5, σ(3) = 4,
σ(4) = 1, σ(5) = 2, and σ(6) = 6.

◦ We start with n = 1: we compute σ(1) = 3, σ(3) = 4, and σ(4) = 1. This gives the cycle (1 3 4).

◦ The smallest number not yet used is n = 2: then σ(2) = 5 and σ(5) = 2, so we obtain the cycle (2 5).

◦ The smallest number not yet used is n = 6: since σ(6) = 6 we obtain the cycle (6).

◦ Since we have used all 6 elements in cycles, we see that the cycle decomposition of σ is (1 3 4)(2 5)(6) .

• Example: Find the cycle decomposition of the permutation σ ∈ S7 with σ(1) = 1, σ(2) = 3, σ(3) = 4,
σ(4) = 7, σ(5) = 5, σ(6) = 6, and σ(7) = 2.

◦ Since σ(1) = 1 we obtain the cycle (1). Then since σ(2) = 3, σ(3) = 4, σ(4) = 7, and σ(7) = 2 we obtain
the cycle (2 3 4 7).

◦ Then since σ(5) = 5 we obtain the cycle (5). Finally since σ(6) = 6 we obtain the cycle (6).

◦ Since we have used all 7 elements in cycles, the cycle decomposition of σ is (1)(2 3 4 7)(5)(6) .

• De�nition: The length of a cycle is the number of elements it contains. A cycle of length k is called a k-cycle,
and 2-cycles are often called transpositions.

◦ The notation for cycle decompositions is not unique. For example, the cycle (1 3 4) corresponds to
the same permutation as the cycle (3 4 1), and the cycle decomposition (1 3 4)(2 5)(6) is the same as
(2 5)(6)(1 3 4).

◦ We adopt the convention of writing the cycles with the smallest element �rst, and ordering the cycles in
increasing order of their �rst element. Under this convention, it follows by a straightforward induction
argument that the cycle decomposition is unique, and that the algorithm we described above will compute
it.

◦ It is also common to omit 1-cycles when we write cycle decompositions, with the convention always
being that any unlisted elements are �xed (i.e., mapped to themselves). Thus, we would simply write
(1 3 4)(2 5) ∈ S6 and omit the 1-cycle (6). This convention is useful when describing permutations that
�x most of the elements in the set.

• We can also compute products using cycle decompositions, with the important remark that the products of
cycles are read right-to-left, since they are representing compositions of functions.

◦ We can compute the cycle decomposition of the product by tracing what happens to each element
1, 2, . . . , n under each of the cycles from right-to-left, and then using the cycle decomposition algorithm.

• Example: If g = (1 3 4)(2 5) and h = (1 2)(3 5) inside S5, compute the cycle decomposition of gh.

◦ Since h sends 1 to 2, and g sends 2 to 5, the composition gh sends 1 to 5.

◦ To compute the next element in the cycle containing 1 we need to determine where gh sends 5. Since h
sends 5 to 3, and g sends 3 to 4, we see that gh sends 5 to 4.

◦ Continuing, we see gh(4) = g(4) = 1, which completes a cycle (1 5 4).

◦ Also, since gh(2) = g(1) = 3 and gh(3) = g(5) = 2, we get the other cycle (2 3). Thus the cycle

decomposition of gh is (1 5 4)(2 3) .

• Example: The six elements in S3 have respective cycle decompositions e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

◦ We can compute, for example, (1 2)(1 3) = (1 3 2), by tracing what happens to each element from right
to left in each of the cycles. (Explicitly, these tracings would look something like 1→ 3→ 3, 3→ 1→ 2,
and 2→ 2→ 1.)
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◦ Similarly, (1 3)(1 2) = (1 2 3), (1 3 2)(1 2) = (2 3), and (1 2)(1 3 2)(1 3) = (2 3) as well.

• Since a cycle (a1 a2 . . . ak) represents the permutation that shifts a1 to a2, a2 to a3, ... , and ak to a1, the
inverse of the cycle simply shifts in reverse: it sends ak to ak−1, ak−1 to ak−2, ... , a3 to a2, a2 to a1, and a1
to ak.

◦ This describes to the cycle (ak ak−1 . . . a3 a2 a1) obtained by reversing the order of the elements. Rear-
ranging it to put the smallest element a1 �rst yields the equivalent description (a1 ak ak−1 . . . a3 a2).

• Example: Find the inverses of (1 2 3 4 5) and (1 5)(2 4 3) in S5 and verify that the inverses compose with the
originals to yield the identity.

◦ First, we have (1 2 3 4 5)−1 = (5 4 3 2 1) = (1 5 4 3 2) . Indeed, (1 5 4 3 2)(1 2 3 4 5) = (1)(2)(3)(4)(5) = e

by tracing the results from right to left: 1→ 2→ 1, 2→ 3→ 2, 3→ 4→ 3, 4→ 5→ 4, and 5→ 1→ 5.

◦ For the inverse of (1 5)(2 4 3) we simply reverse the order of each cycle, and the order in which the cycles

are multiplied, and then rearrange as needed: [(1 5)(2 4 3)]−1 = (5 1)(3 4 2) = (1 5)(2 3 4) .

◦ Indeed, (1 5)(2 3 4) · (1 5)(2 4 3) = (1)(2)(3)(4)(5) = e by tracing what happens to each of 1, 2, 3, 4, 5 from
right to left, as above.

4.1.4 Subgroups and Orders

• We have a natural notion of subgroup:

• De�nition: If G is a group, we say a subset S of G is a subgroup if it also possesses the structure of a group,
under the same operations as G.

◦ Example: The set (2Z,+) of even integers under addition is a subgroup of (Z,+) because (2Z,+) is also
a group: addition of even integers is associative, there is an additive identity 0, and the additive inverse
of an even integer is also even.

◦ Observe that if S is a subset of a group, in order for the operation ? to be well-de�ned inside S, we must
have g ? h ∈ S for any g, h ∈ S.
◦ Then axiom [G1] automatically holds in S, since it holds in G. In order for [G2] to hold in S, there
must be an identity element eS in S with the property that geS = g for every g ∈ S. However, by the
cancellation law in G, since geS = g = geG, we see that eS = eG: in other words, S must contain the
identity element of G.

◦ Finally, in order for [G3] to hold in S, we require that every g ∈ S must have an inverse g−1S . Since
gg−1S = eS = eG = gg−1G by cancellation in G we must have g−1S = g−1G , which is to say, the inverse of g
must be in S.

• Proposition (Subgroup Criterion): A subset S of G is a subgroup if and only if S contains the identity of G
and is closed under the group operation of G and inverses. Equivalently, S is a subgroup if and only if eG ∈ S
and for any g, h ∈ S, the element gh−1 ∈ S.

◦ Proof: If S is a subgroup, then as noted above S must contain the identity of G and be closed under the
group operation and inverses. Conversely, if S contains the identity of G and is closed under the group
operation and inverses, then it is also a group.

◦ For the second statement, if S is a subgroup then eG ∈ S and for any g, h ∈ S we must have h−1 ∈ S
and then gh−1 ∈ S.
◦ Conversely, if eG ∈ S and gh−1 ∈ S for any g, h ∈ S, setting g = eG implies that h−1 ∈ S so S is closed
under inverses.

◦ Then for any k ∈ S, setting h = k−1 and using the fact that (k−1)−1 = k implies that gh−1 = gk ∈ S so
S is closed under the group operation, hence is a subgroup.

• Using the subgroup criterion, we can construct additional examples of groups.
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◦ Example: For any group G, the sets {e} and G are always subgroups of G. The subgroup {e} is called
the trivial subgroup.

◦ Example: The set {3n : n ∈ Z} = {. . . ,−6,−3, 0, 3, 6, . . . } under addition is a subgroup of (Z,+) since
it satis�es the subgroup criterion.

◦ Example: The set of positive rational numbers under multiplication is a subgroup of (C\{0}, ·) since it
satis�es the subgroup criterion.

◦ Example: The set {2n : n ∈ Z} = {. . . , 2−2, 2−1, 1, 2, 4, 8, . . . , } under multiplication is a subgroup of
(Q+, ·) since it satis�es the subgroup criterion.

◦ Example: The set {e, (1 2)} is a subgroup of S3 since it satis�es the subgroup criterion. The set is closed
under multiplication since (1 2)(1 2) = e and it is closed under inverses since (1 2)−1 = (1 2).

◦ Non-Example: The set {e, (1 2 3)} is not a subgroup of S3 since it is not closed under multiplication:
the product (1 2 3)(1 2 3) = (1 3 2) is not in the set. The set is also not closed under inverses, since
(1 2 3)−1 = (3 2 1) = (1 3 2) is also not in the set.

◦ Example: The set {e, (1 2 3), (1 3 2)} is a subgroup of S3 since it satis�es the subgroup criterion.

◦ Non-Example: The set (Z≥0,+) of nonnegative integers under addition is not a subgroup of (Z,+) since
it is not closed under additive inverses.

◦ Non-Example: The set of odd integers together with 0, under addition, is not a subgroup of (Z,+) since
it is not closed under the group operation of addition.

• If g is an element of G, the set of powers of g, namely {. . . , g−2, g−1, e, g, g2, . . . } play an important role in
understanding the behavior of multiplication by g.

• De�nition: If g is an element of the groupG, the subgroup generated by g is the set 〈g〉 = {. . . , g−2, g−1, e, g, g2, . . . }
of powers of g. The order of g, written |g|, is the order of this subgroup. Equivalently, the order of g is the
smallest positive integer n such that gn = e, if such an n exists, and otherwise (when gn 6= e for any positive
integer n) the order of g is ∞.

◦ If G is a �nite group, then every element of G has �nite order, since the set of powers {e, g, g2, . . . } must
be �nite, and if ga = gb with a < b then cancelling ga yields gb−a = e.

◦ More generally, if gn = e for some n > 0, then the order of g divides n by an application of the division
algorithm.

◦ Example: The order of the identity element in any group is always 1.

◦ Example: Inside G = {1, i,−1,−i}, the element −1 has order 2 since (−1)2 = 1 but −1 6= 1. Similarly,
both i and −i have order 4.
◦ Example: Inside (Z,+), the order of every nonidentity element is ∞.

◦ Example: Inside (Z/7Z,+), the order of every nonidentity element is 7.

◦ Example: Inside (Z/6Z,+), the order of 2 is 3 since 2 + 2 + 2 = 0 but 2 6= 0 and 2 + 2 6= 0. In a similar
way, the orders of 0, 1, 2, 3, 4, 5 are respectively 1, 6, 3, 2, 3, and 6.

◦ Example: Inside (Z/11Z)×, the powers of 2 are {2, 4, 8, 5, 10, 9, 7, 3, 6, 1}. We see that 2
10

= 1 but no
lower power is equal to 1, so the order of 2 is 10 inside (Z/11Z)×.
◦ Example: Every nonidentity element in the group (Z/pZ)n, the Cartesian product of n copies of Z/pZ,
has order p.

◦ Example: In the dihedral group D2·n, since rn = e but rk 6= e for 0 < k < n, we see that |r| = n. One
may make a similar calculation to see more generally that the order of rk is n/ gcd(k, n).

◦ Example: In D2·n, since (srk)2 = s(rks)rk = s(sr−k)rk = s2 = e, we see that the order of srk is 2 for
any k.

◦ Example: In the symmetric group Sn, the order of any n-cycle σ = (a1 a2 . . . an) is n, since σn = 1, but
σk(a1) = ak (so σk 6= e) for 1 ≤ k ≤ n− 1.

◦ More generally, in Sn, if a lies in a k-cycle for the permutation τ , then τn(a) = a only when k divides n
by the same argument as above. Thus, the order of τ is the least common multiple of the lengths of the
cycles in its cycle decomposition.
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◦ Example: The six elements e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2) in S3 have respective orders 1, 2, 2, 2, 3, 3.

◦ Example: The element τ = (1 3 5)(2 6) in S6 has order 6. Indeed, the powers of τ are τ2 = (1 5 3),
τ3 = (2 6), τ4 = (1 3 5), τ5 = (1 5 3)(2 6), and τ6 = 1, so τ indeed has order 6.

• The existence of elements having a particular order in G can be a bit di�cult to characterize. Even when the
order of G is composite it is possible that all its nonidentity elements have prime order, such as the case of
S3 above, so the most we could hope for in general is for the existence of elements of prime order. In fact, we
do have such a result:

• Theorem (Cauchy's Theorem): Suppose G is a group and p is a prime dividing #G. Then there exists an
element of G of order p.

◦ Proof: Consider the set S of ordered p-tuples of elements (g1, g2, . . . , gp) in G such that g1g2 · · · gp = e.
Since such a tuple is characterized by having gp = (gp−1 · · · g2g1)−1, we can choose g1, g2, . . . , gp−1
arbitrarily and then gp is determined.

◦ Therefore there are exactly (#G)p−1 such p-tuples, so in particular the cardinality of S is divisible by p.

◦ Now we de�ne an equivalence relation on these p-tuples by saying that (g1, . . . , gp) ∼ (h1, . . . , hp) if we
may apply a cyclic permutation to (g1, . . . , gp) that yields (h1, . . . , hp).

◦ Indeed, if (g1, g2, . . . , gp) ∈ S then any cyclic permutation, such as (g2, . . . , gp, g1), is also in S. If not all
the elements in the tuple are equal, then there are p distinct cyclic permutations of this tuple in S, while
if all elements are equal there is only 1, namely (g, g, . . . , g).

◦ Thus, since #S is divisible by p, and the number of tuples of the �rst type is divisible by p, the number
of tuples of the second type must be divisible by p. In particular, there must be at least one tuple
(g, g, . . . , g) with g 6= e: then gp = e so g is an element of order p.

4.1.5 Group Isomorphisms

• Some of the groups we have already described have very similar-looking structures, even though the actual
sets and operations themselves are di�erent. For example, compare the structure of the additive group Z/2Z
to the multiplicative group {1,−1}:

+ 0 1

0 0 1
1 1 0

· 1 −1
1 −1 1
−1 1 −1

◦ Both groups have an identical structure: in each group we have an identity element and a nonidentity
element, and the composition rules are also the same (the identity composed with any element gives that
element back, and the nonidentity composed with itself gives the identity).

◦ We can see that if we �relabel� the two residue classes 0 and 1 with the numbers 1 and −1, and corre-
spondingly convert the operation + on Z/2Z to the operation · on {1,−1}, then the �rst group becomes
the second group. Likewise, by using the inverse labeling, we can convert the second group into the �rst
group.

◦ More formally, we can phrase this using the language of functions: for the function f : (Z/2Z)→ {−1, 1}
with f(0) = 1 and f(1) = −1, we have f(a+ b) = f(a) ·f(b) for all residue classes a, b ∈ Z/2Z. Note here
that f is a bijection, as well, so that each element of the �rst group corresponds to a unique element of
the second group.

• For another example, consider the dihedral group D2·3 and the symmetric group S3 (the multiplications are
done as (row label) times (column label)):

D2·3 e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr
r2 r2 e r sr sr2 s
s s sr sr2 e r r2

sr sr sr2 s r2 e r
sr2 sr2 s sr r r2 e

S3 e (1 2 3) (1 3 2) (1 2) (2 3) (1 3)

e e (1 2 3) (1 3 2) (1 2) (2 3) (1 3)
(1 2 3) (1 2 3) (1 3 2) e (1 3) (1 2) (2 3)
(1 3 2) (1 3 2) e (1 2 3) (2 3) (1 3) (1 2)
(1 2) (1 2) (2 3) (1 3) e (1 2 3) (1 3 2)
(2 3) (2 3) (1 3) (1 2) (1 3 2) e (1 2 3)
(1 3) (1 3) (1 2) (2 3) (1 2 3) (1 3 2) e
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◦ One may check (carefully!) that if we replace e with e, r with (1 2 3), r2 with (1 3 2), s with (1 2), sr
with (2 3), and sr2 with (1 3), then the multiplication table for the dihedral group D2·3 on the left turns
into the multiplication table for S3 on the right.

◦ In other words, this bijection f : D2·3 → S3 preserves the composition operation in the two groups,
meaning that f(g1g2) = f(g1)f(g2) for all elements g1 and g2 in D2·3.

◦ In fact, there is a pleasant way to understand where this bijection comes from: as we saw earlier, the
symmetry group of the equilateral triangle is the dihedral group D2·3.

◦ Now consider the actions of the various symmetries on the set {1, 2, 3} of the three vertices of the
triangle: certainly each symmetry yields a permutation of the vertices, and di�erent symmetries permute
the vertices di�erently, so we equally well view the set of symmetries as a subgroup of S3. But since
there are six symmetries and six permutations in S3, in fact the set of symmetries coincides with the
group S3 as well.

◦ We obtain the explicit bijection f above simply by writing down the permutation on the vertices obtained
by applying each of the possible symmetries of the triangle.

• Motivated by the examples above, we can now formalize the notion of when two groups have identical struc-
tures:

• De�nition: Let (G, ?) and (H, ◦) be groups. A group isomorphism ϕ from G to H is a bijective function
ϕ : G→ H such that ϕ(g1 ? g2) = ϕ(g1) ◦ϕ(g2) for all g1 and g2 in G. If there is an isomorphism ϕ : G→ H,
we say G and H are isomorphic, and write G ∼= H.

◦ We will often suppress the notation for the group operations and write the condition simply as ϕ(g1g2) =
ϕ(g1)ϕ(g2).

◦ Example: For G = (R,+) and H = (R+, ·), the map ϕ : G→ H de�ned via ϕ(x) = ex is an isomorphism
from G to H. The map respects the group operation since ex+y = exey, and it is a bijection since it has
an inverse map ϕ−1(x) = ln(x).

◦ Example: For G = Z/6Z and H = (Z/2Z) × (Z/3Z), the map ϕ : G → H de�ned via ϕ(n mod 6) =
(n mod 2, n mod 3) is an isomorphism of groups.

• Here are some fundamental properties of isomorphisms:

• Proposition (Properties of Isomorphisms): If G,H,K are any groups, the following hold:

1. The identity map iG : G→ G de�ned by iG(g) = g for all g ∈ G is an isomorphism from G to G.

◦ Proof: Clearly iG is a bijection and respects the group operation.

2. If ϕ : G→ H is an isomorphism, then the inverse map ϕ−1 : H → G is also an isomorphism.

◦ Proof: We have previously shown that the inverse function of a bijection is also a bijection.

◦ Now suppose ϕ−1(h1) = g1 and ϕ−1(h2) = g2, so that ϕ(g1) = h1 and ϕ(g2) = h2.

◦ Then ϕ(g1g2) = ϕ(g1)ϕ(g2) = h1h2, meaning that ϕ−1(h1h2) = g1g2 = ϕ−1(h1)ϕ
−1(h2), so ϕ−1 is

also an isomorphism.

3. If ϕ : G → H and ψ : H → K are isomorphisms, then the composition ψϕ : G → K is also an
isomorphism.

◦ Proof: The composition of two bijections is a bijection, and also (ψϕ)(g1g2) = ψ(ϕ(g1g2)) =
ψ(ϕ(g1)ϕ(g2)) = ψϕ(g1)ψϕ(g2), so ψϕ is an isomorphism.

4. The isomorphism relation ∼= on groups is an equivalence relation.

◦ Proof: (1) gives re�exivity, (2) gives symmetry, and (3) gives transitivity.

5. Isomorphisms map the identity to the identity: if ϕ : G→ H is an isomorphism then ϕ(eG) = eH .

◦ Proof: We have ϕ(eG)ϕ(g) = ϕ(eGg) = ϕ(g) = eHϕ(g), so cancelling ϕ(g) yields eH = ϕ(eG).

6. Isomorphisms preserve powers and orders: if ϕ : G → H is an isomorphism and g ∈ G, then ϕ(gn) =
ϕ(g)n and |g| = |ϕ(g)|.
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◦ Proof: For n ≥ 0 the statement ϕ(gn) = ϕ(g)n follows by induction using ϕ(gn) = ϕ(gn−1g) =
ϕ(gn−1)ϕ(g) = ϕ(g)n.

◦ For the second statement, by (5) and the above we see that gn = eG if and only if ϕ(g)n = eH , so g
and ϕ(g) must have the same order.

• In order to show that two given groups are isomorphic, we essentially need to construct an isomorphism
between them, which can often be di�cult to do4. Even if we are handed an isomorphism, actually verifying
that it is an isomorphism can be very time-consuming.

◦ On the other hand, it is often easier to show that two given groups cannot be isomorphic to one another,
if one of the properties of isomorphisms above fails.

◦ For example, the group D2·4 is not isomorphic to S3, because the former has order 8 and the latter has
order 6, and so there cannot even exist a bijection between their underlying sets of elements.

◦ In a similar way we can see that D2·4 is not isomorphic to Z/8Z, because the latter is abelian and the
former is not; likewise, S3 is not isomorphic to Z/6Z.
◦ Also, Z/8Z is not isomorphic to (Z/2Z)× (Z/4Z), because the former has an element of order 8 (namely
1) while the latter does not have any elements of order 8.

• A fundamental goal of group theory is to classify (up to isomorphism) all of the groups of a given order.

◦ One can show, for example, that the two groups D2·3 ∼= S3 and Z/6Z ∼= (Z/2Z) × (Z/3Z) are the only
groups of order 6, up to isomorphism.

◦ But even to prove this fact only from the results we have developed so far is rather di�cult. To progress
further, we need some additional tools.

4.1.6 Cosets of Subgroups and Lagrange's Theorem

• De�nition: If H is a subgroup of G and a ∈ G, the set aH = {ah : h ∈ H} is called a left coset of H. We
also de�ne the index of H in G, denoted [G : H], to be the number of distinct left cosets of H in G.

◦ We also have a symmetric notion of Ha = {ha : h ∈ H}, which is called a right coset of H. If G is
abelian, then left and right cosets are the same, but when G is non-abelian, this need not be the case.
We will see in a moment that the de�nition of the index is independent of whether we use left or right
cosets.

◦ Example: If H = {e, r2} in G = D2·4, then there are four left cosets of H in G, namely eH = r2H =
{e, r2}, rH = r3H = {r, r3}, sH = sr2H = {s, sr2}, and srH = sr3H = {sr, sr3}.
◦ Example: If H = {1, (1 2 3), (1 3 2)} in G = S3, then there are two left cosets of H in G, so [G : H] = 2.
Explicitly, these cosets are 1H = (1 2 3)H = (1 3 2)H = {1, (1 2 3), (1 3 2)} and (1 2)H = (1 3)H =
(2 3)H = {(1 2), (1 3), (2 3)}.
◦ Example: If H = {1, (1 3)} in G = S3, then there are three left cosets of H in G, so [G : H] = 3.
Explicitly, these cosets are 1H = (1 3)H = {1, (1 3)}, (1 2)H = (1 3 2)H = {(1 2), (1 3 2)}, and (2 3)H =
(1 2 3)H = {(2 3), (1 2 3)}.
◦ Example: If H = 2Z = {. . . ,−2, 0, 2, 4, . . . } in G = Z, then there are two (left) cosets of H in G, so
[G : H] = 2. These cosets are 0 +H = {. . . ,−2, 0, 2, 4, . . . } and 1 +H = {. . . ,−3, 1, 3, 5, . . . }.

• In each of the examples above, all of the left cosets have the same size (which is then the same size as eH = H),
and the left cosets form a partition of G. This is true in general:

• Proposition (Properties of Cosets): Let H be a subgroup of G. Then the following hold:

1. For any a ∈ G, the map f : H → aH de�ned by f(h) = ah is a bijection between H and gH.

4In fact, it has been shown that the isomorphism problem for groups (given two groups, decide whether or not they are isomorphic)
is undecidable, in the sense that there exists no algorithm that is guaranteed to determine whether two arbitrary groups are isomorphic
in a �nite amount of time. Of course, the isomorphism problem can always be solved for two �nite groups in �nite time, since there are
only �nitely many possible bijections from one to the other, but the general philosophy is still that this is a hard question!
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◦ Proof: By de�nition of aH, the map f is surjective. On the other hand, f(h1) = f(h2) is equivalent
to ah1 = ah2, which by cancellation implies h1 = h2: thus, f is also injective, hence it is a bijection.

2. For any a ∈ G, the only left coset of H containing a is aH.

◦ Proof: Clearly aH is a left coset of H containing a since e ∈ H, so we need to show it is the only
one.

◦ If a ∈ bH then by de�nition a = bh for some h ∈ H.

◦ Then for any h′ ∈ H, since hh′ ∈ H because H is a subgroup, we see that ah′ = b(hh′) ∈ bH. Thus
bH contains aH.

◦ On the other hand, for any bh′′ ∈ bH, since b = ah−1 we can write bh′′ = a(h−1h′′) ∈ aH because
h−1h′′ ∈ H again because H is a subgroup. Thus, aH contains bH, so they are equal.

3. Any two left cosets of H in G are either disjoint or identical. Thus, the left cosets of H in G partition G.

◦ Proof: Suppose aH and bH are left cosets of H. If they are disjoint we are done, so suppose they
have some common element g.

◦ But then by (2), this means aH = gH = bH, so aH = bH. The other statement is immediate since
any g ∈ G is contained in the left coset gH.

4. For any a, b ∈ G, we have aH = bH if and only if a−1b ∈ H.

◦ Proof: If aH = bH then since b ∈ aH this means b = ah for some h ∈ H: then a−1b = a−1ah = h ∈
H.

◦ Conversely, if a−1b ∈ H, then b = ah for some h ∈ H, and so b ∈ aH. Then by (2), this means
bH = aH.

• These properties seem rather simple, but we can deduce a very important consequence from them:

• Theorem (Lagrange's Theorem): If H is a subgroup of G, then #G = #H · [G : H], where if one side is in�nite
then both are. In particular, if G is a �nite group, then the order of any subgroup H divides the order of G.

◦ Proof: By our properties of cosets, each left coset of H has a bijection with H, and so all of the left
cosets have the same cardinality.

◦ Since the left cosets form a partition of G, we may partition the #G elements into a total of [G : H] left
cosets each of which has size #H.

◦ Thus, #G = #H · [G : H]. The second statement follows immediately from this relation, since [G : H]
is an integer.

◦ Remark: If we work with right cosets instead of left cosets, we obtain the same formula: thus, the number
of left cosets is equal to the number of right cosets.

• Corollary (Orders of Elements): If G is a �nite group of order n, then for every g ∈ G the order of g divides
n, and gn = e.

◦ Proof: Suppose g has order k and let H = {. . . , g−2, g−1, e, g, g2, . . . } = {e, g, g2, . . . , gk−1} be the sub-
group of G consisting of all powers of g. Then H is a subgroup of G since it is closed under multiplication
and inverses, and it has order k.

◦ Thus by Lagrange's theorem, k, the order of H, divides n. The second statement follows immediately.

• Although its proof is seemingly easy, Lagrange's theorem is an extremely important tool in unraveling the
structure of groups (particularly, �nite groups) since it substantially narrows the possible orders for elements
and subgroups of G.

◦ A convenient way to organize this information is by drawing the subgroup lattice of G (more formally
called the Hasse diagram of G): we arrange all of the subgroups of G starting with the smallest subgroups
at the bottom, and then draw paths to indicate immediate containments.
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◦ For Z/nZ the subgroups are in bijection with the divisors of n, and 〈a〉 is contained in 〈b〉 precisely when
a divides b. Here are a few examples of the resulting subgroup lattices:

◦ Here are subgroup lattices for some of the other small groups we have described:

4.2 Fields

• We now give a brief discussion of �elds with the goal of describing the special properties of the real numbers
and the complex numbers.

4.2.1 The Formal De�nition of a Field

• De�nition: A �eld is any set F having two (closed) binary operations + and · that satisfy the nine axioms
[F1]-[F9]:

[F1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any elements a, b, c in F .

[F2] The operation + is commutative: a+ b = b+ a for any elements a, b in F .

[F3] There is an additive identity 0 satisfying a+ 0 = a for all a in F .

[F4] Every element a in F has an additive inverse −a satisfying a+ (−a) = 0.

[F5] The operation · is associative: a · (b · c) = (a · b) · c for any elements a, b, c in F .

[F6] The operation · is commutative: a · b = b · a for any elements a, b in F .

[F7] There is a multiplicative identity 1 6= 0, satisfying 1 · a = a = a · 1 for all a in F .

[F8] Every nonzero a in F has a multiplicative inverse a−1 satisfying a · a−1 = 1.

[F9] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any elements a, b, c in F .

◦ For convenience, in a �eld F we can also de�ne the operations of subtraction via a − b = a + (−b) and
division via a/b = a · b−1 (the latter whenever b 6= 0).
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• Example: The set Q of rational numbers is a �eld.

◦ We established all of these properties of Q when we described the elements of Q as equivalence classes
of fractions a/b for integers a and b with b 6= 0.

• Non-Example: The set Z of integers is not a �eld.

◦ Although eight of the nine properties hold for Z, property [F8] does not, because there are many nonzero
elements of Z, such as 2 and 3, that do not have a multiplicative inverse in Z.

• Example: The set R of real numbers is a �eld, as is the set C of complex numbers.

◦ Again, as with Q, the real numbers and complex numbers have the property that every nonzero element
has a multiplicative inverse.

• Example: If p is a prime number, the set Z/pZ of residue classes modulo p is a �eld.

◦ Unlike the other examples of �elds above, this �eld only has �nitely many elements: they are the p
residue classes 0, 1, ... , p− 1.

• Example: The set S = {a+ b
√
2 : a, b ∈ Q} forms a �eld, denoted Q(

√
2) (typically read as �Q adjoin

√
2�).

◦ The arithmetic in Q(
√
2) is as follows: (a+b

√
2)+(c+d

√
2) = (a+c)+(b+d)

√
2, and (a+b

√
2)(c+d

√
2) =

(ac+ 2bd) + (ad+ bc)
√
2.

◦ The associative and commutative properties of addition and multiplication, and the distributive law, are
all inherited from R. The additive identity is 0 = 0 + 0

√
2, the multiplicative identity is 1 = 1 + 0

√
2,

and the additive inverse of a+ b
√
2 is −a− b

√
2.

◦ Finally, we need to show that every nonzero element has a multiplicative inverse. We can do this by

rationalizing the denominator: explicitly, we have
1

a+ b
√
2
=

1

a+ b
√
2
· a− b

√
2

a− b
√
2
=
a− b

√
2

a2 − 2b2
.

◦ Since
√
2 is irrational, as long as one of a, b is nonzero, the expression a2 − 2b2 is a nonzero rational

number, so we obtain an inverse (a+ b
√
2)−1 =

a

a2 − 2b2
− b

a2 − 2b2
√
2.

• Notice that if F is a �eld, (F,+) is an abelian group, as is (F\{0}, ·).

◦ Therefore, all of the basic properties of abelian groups yield basic properties of �eld arithmetic. Here are
some such properties:

• Proposition (Basic Field Arithmetic): Let F be a �eld. The following properties hold in F :

1. The additive identity 0 is unique, as is the multiplicative identity 1.

2. Addition has a cancellation law: for any a, b, c ∈ F , if a+ b = a+ c, then b = c.

3. Additive inverses are unique.

4. For any a ∈ F , 0 · a = 0 = a · 0.
5. For any a ∈ F , −(−a) = a.

6. For any a ∈ F , (−1) · a = −a = a · (−1).
7. For any a, b ∈ F , −(a+ b) = (−a) + (−b).
8. For any a, b ∈ F , (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
9. For any a, b ∈ F , if a · b = 0 then a = 0 or b = 0.

◦ Proofs: These follow from the �eld axioms using similar calculations to the ones we gave for properties
of arithmetic in Z and in groups.
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4.2.2 Ordered Fields

• The rational numbers and real numbers have a familiar ordering, which we can formalize by identifying the
special subset consisting of �positive elements� of the �eld.

• De�nition: An ordered �eld is a �eld (F,+, ·) along with a subset P (the �positive elements� of F ) with the
following properties:

[O1] For every a ∈ F , precisely one of the following holds: a ∈ P , a = 0, or (−a) ∈ P .
[O2] The set P is closed under addition: if a, b ∈ P then a+ b ∈ P .
[O3] The set P is closed under multiplication: if a, b ∈ P then a · b ∈ P .

• Example: The rational numbers Q are an ordered �eld upon taking P to be the set of positive rational
numbers.

◦ More explicitly, using the de�nition of Q as collections of equivalence classes of fractions [a/b], we can
de�ne P to be the set of equivalence classes of fractions [a/b] where both a and b are both positive
integers.

• Example: The real numbers R are an ordered �eld upon taking P to be the set of positive real numbers.

• Non-Example: The complex numbers C are not an ordered �eld for any choice of subset P .

◦ By [O1], since i 6= 0 either i or −i would have to be in P .

◦ But because i · i · i = −i and (−i) · (−i) · (−i) = i, [O3] would force both i and −i to be in P , but this
contradicts [O1].

• Non-Example: The integers modulo p are not an ordered �eld for any choice of subset P .

◦ By [O1], either 1 or −1 would have to be in P .

◦ But then by [O2] either 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p terms

= 0 or (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
p terms

= 0 would be in P , but either

way this contradicts [O1].

• Using the ordering on an ordered �eld, we can de�ne the various inequality symbols:

• De�nition: If F is an ordered �eld and a, b ∈ F , we write a < b (equivalently b > a) when b− a ∈ P , and we
write a ≤ b (equivalently, b ≥ a) when b− a ∈ P or b− a = 0.

• We then have the following basic properties of inequalities:

• Proposition (Basic Ordered Field Arithmetic): Let F be an ordered �eld and a, b ∈ F .

1. Exactly one of a < b, a = b, a > b is true.

2. If a > 0 and b > 0 then a+ b > 0 and ab > 0.

3. If a < b then a+ c < b+ c for any c ∈ F .
4. If a < b and c > 0 then ac < bc.

5. If a < b and b < c then a < c.

6. If a > 0 then ab > 0 if and only if b > 0, and if a < 0 then ab > 0 if and only if b < 0.

7. For any a 6= 0 it is true that a2 > 0. In particular, 1 > 0.

◦ Proofs: These follow from the ordered �eld axioms. For example, (1) is merely a rewriting of [O1],
while (2) is a rewriting of [O2] and [O3]. Items (3), (4), and (5) follow from manipulating [O2] and
[O3] appropriately, while (6) follows by breaking into cases based on whether b > 0, b = 0, or b < 0.

◦ For (7), note that if a 6= 0 then by [O1] either a ∈ P or (−a) ∈ P . But since a ·a = a2 = (−a) · (−a),
either way [O3] implies that a2 ∈ P , meaning that a2 > 0. Then since 12 = 1 we see 1 > 0.
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4.2.3 Least Upper Bounds and the Real Numbers

• Our �nal goal is to characterize the �eld of real numbers by an additional special property of their ordering
known as the least upper bound axiom.

• De�nition: Suppose F is an ordered �eld and S is a subset of F . We say an element x ∈ F is an upper bound
for S if s ≤ x for all s ∈ S. If S has some upper bound x ∈ F , we say that S is bounded above.

◦ We remark that an upper bound for S need not be an element of S itself, it only needs to be an element
of F that is greater than or equal to all elements of S.

◦ Example: In Q, the set S = {1, 2, 3, 4, 5} has an upper bound x = 5, since s ≤ 5 is true for all s ∈ S.
The element x = 6 is also an upper bound for S, since s ≤ 6 is also true for all s ∈ S.

◦ Example: In Q, the set S = { n

n+ 1
: n ∈ Z>0} = {

1

2
,
2

3
,
3

4
,
4

5
, . . . } has an upper bound x = 1, since

n

n+ 1
≤ 1 is true for all positive integers n.

◦ Example: In Q, the set S = {r ∈ Q : r2 ≤ 2} has an upper bound x = 2, since if r > 2 then r2 > 4, so
taking the contrapositive shows that if r2 ≤ 2 then r ≤ 2. In fact, any rational number x ≥

√
2 is an

upper bound for S.

◦ Example: In Q, the set S = Z has no upper bound, since there is no rational number x such that n ≤ x
for all integers n ∈ Z.
◦ Example: In R, the set S = {x : 0 < x < 1}, the open interval (0, 1), has an upper bound x = 1, since
s ≤ 1 is true for all s ∈ S.

• To show that a set S is bounded above, we need only give some upper bound for S. Of course, any larger
element is then also an upper bound (by transitivity), so the most useful upper bound on a set would be the
smallest possible one.

• De�nition: Suppose F is an ordered �eld and S is a subset of F that is bounded above. We say that x ∈ F is
a least upper bound if x is an upper bound of S, and x is the smallest upper bound: namely, if y is any other
upper bound, then x ≤ y.

◦ Equivalently, if we consider the set U of all upper bounds of S, then a least upper bound is a smallest
element of U , if one exists. We saw earlier in our discussion of smallest elements that there is at most
one smallest element in any partially ordered set.

◦ Example: In Q, the set S = {1, 2, 3, 4, 5} has least upper bound 5, since 5 is an upper bound, and any
other upper bound y must satisfy 5 ≤ y.

◦ Example: In Q, the set S = { n

n+ 1
: n ∈ Z>0} = {

1

2
,
2

3
,
3

4
,
4

5
, . . . } has least upper bound 1. As noted

above, 1 is an upper bound. Any smaller upper bound would necessarily be of the form 1 − r for some

positive rational number r, say r =
p

q
. But then 1 − r = 1 − p

q
≤ 1 − 1

q
< 1 − 1

2q
=

2q − 1

2q
, which is

a contradiction because the number
2q − 1

2q
is an element of S that is larger than this purported upper

bound 1−r. So there is no upper bound of S that is less than 1, so 1 is the least upper bound of S. Note
here that 1 is not actually an element of S, but that the elements of S approach 1 �arbitrarily closely�
from below.

◦ Example: In Q, the set S = {r ∈ Q : r2 ≤ 2} has no least upper bound. The set of upper bounds of S
is all rational numbers x with x ≥

√
2, and this set has no smallest element since

√
2 is irrational (as we

proved using prime factorizations), but can be approximated arbitrarily closely from above by rational
numbers (using truncations of its decimal expansion rounded upward, for instance).

◦ Example: In R, the set S = {r ∈ Q : r2 ≤ 2} has a least upper bound, namely x =
√
2. Like in the

previous example, the set of upper bounds of S is all real numbers x with x ≥
√
2, but now this set does

have a smallest element since
√
2 is a real number.

◦ Example: In R, the empty set ∅ is bounded above, since any real number is an upper bound. However,
∅ has no least upper bound: precisely because any real number is an upper bound, there is no smallest
upper bound.
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• In the last few examples, we can see an important di�erence between least upper bounds in Q and in R: there
are some sets of rational numbers that are bounded above but do not have a least upper bound. However,
when we pass to R, theose issues disappeared.

◦ In fact, we found a subset of R that was bounded above but had no least upper bound: the empty set.

◦ The miraculous fact is that this is the only subset of R that is bounded above with no least upper bound.

◦ We formalize this as follows:

• De�nition: An ordered �eld F is complete if it satis�es the following axiom:

[C] If S is a nonempty subset of F that is bounded above, then S has a least upper bound.

• Theorem (Characterization of R): If F is a complete ordered �eld, then F is simply the real numbers up
to a relabeling of the elements. More precisely, there exists a bijection f : F → R that preserves addition,
multiplication, and orderings, in the sense that for any a, b ∈ F it is true that f(a + b) = f(a) + f(b),
f(a · b) = f(a) · f(b), and if a < b then f(a) < f(b).

◦ In other words, this theorem says that the least upper bound axiom characterizes the real numbers, in
that the real numbers are the only ordered �eld satisfying the least upper bound axiom, up to a relabeling
of the elements.

◦ The function f is what is known as an isomorphism: a function that preserves all of the relevant algebraic
properties of the object under study (in this case, an ordered �eld).

• The least upper bound axiom is incredibly useful in developing calculus and (more abstractly) mathematical
analysis, since it holds the key to understanding the notion of a limit and the closely related notion of a
continuous function.

◦ Intuitively, the least upper bound axiom ensures that there are no �holes� in the real numbers, in contrast
to Q which is �missing� elements like

√
2 that arise naturally as least upper bounds.

• We can also use the underlying idea of the least upper bound axiom to give a construction of the real numbers
from the rational numbers, as follows:

◦ For each real number α, consider the set Sα = {r ∈ Q : r < α} of rational numbers less than α. Then α
is the least upper bound of Sα. So if we can characterize these sets Sα in Q, we can reverse the process
and use a set Sα to �de�ne� a real number α.

◦ Each set Sα is a nonempty proper subset of Q with no largest element. Also, if x is rational and x ∈ Sα
then for any rational y < x we have y ∈ Sα.
◦ In fact, these properties characterize the sets Sα, which are called Dedekind cuts since they �cut� the
rational numbers into two pieces (one set Sα consisting of all numbers below the cut, and the other Scα
consisting of all numbers above the cut).

• Starting with this description of the sets Sα (nonempty proper subsets of Q that are �closed below�), we can
then de�ne how to add, multiply, and order the Sα, which provides an construction of the real numbers from
the rational numbers.

◦ Explicitly, we de�ne the sum Sα + Sβ = {x + y : x ∈ Sα and y ∈ Sβ}, along with the additive
identity S0 = {x ∈ Q : x < 0} and the slightly trickier additive inverse S−α = {x ∈ Q : −x 6∈
Sα and − x is not the least element of Scα}. One may then directly verify the �eld axioms [F1]-[F4].

◦ Next we de�ne the order relation as Sα < Sβ when Sαis a proper subset of Sβ , and verify the order
axioms [O1]-[O2].

◦ Then we de�ne multiplication by writing Sα · Sβ = S−α · S−β = {x · y : x ∈ Sα and y ∈ Sβ} ∪ {z ∈ Q :
z ≤ 0} when S0 ≤ Sα, Sβ , and also set S−α · Sβ = Sα · S−β as the additive inverse set of Sα · Sβ .
◦ We also take the multiplicative identity S1 = {x ∈ Q : x < 1} and multiplicative inverse Sα−1 = {1/x :
x > 0 and 1/x 6∈ Sα and 1/x is not the least element of Scα} ∪ {z ∈ Q : z ≤ 0} for S0 < Sα and S−α−1

as the additive inverse set of Sα−1 .
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◦ Using these de�nitions we can (with suitable tedious casework) we verify the remaining �eld axioms
[F5]-[F9], order axioms [O2]-[O3], and the least upper bound axiom [C], to see that this collection of sets
Sα is indeed a complete ordered �eld.

◦ Therefore, by our uniqueness theorem, these sets Sα along with these operations of addition, multiplica-
tion, and ordering provide an explicit construction of R.

• As a conceptual matter, we emphasize that the underlying details of how to construct R are not really that
important for understanding the real numbers themselves: rather, it is the axiomatic description of R as a
complete ordered �eld that provides the most useful standpoint for working with properties of real numbers.

◦ In fact, another common construction of R uses equivalence classes of Cauchy sequences.

◦ But our theorem characterizing R in fact dictates that any property of R can be proven using only the
axiomatic description by itself, without referring to any details about the construction of R.

4.2.4 The Complex Numbers

• De�nition: A complex number is a number of the form a + bi, where a and b are real numbers and i is the
so-called �imaginary unit�, de�ned so that i2 = −1. The real part of z = a + bi, denoted Re(z), is the real
number a, while the imaginary part of z = a+ bi, denoted Im(z), is the real number b. The set of all complex
numbers is denoted C.

◦ The notation
√
−1 is also often used to denote the imaginary unit i. In certain disciplines (especially

electrical engineering), the letter j may instead be used to denote
√
−1, rather than i (which is instead

used to denote electrical current).

◦ Examples: Some complex numbers are 4 + 3i, 3 − πi, 6i = 0 + 6i, and −5 = −5 + 0i. Their real parts
are 4, 3, 0, and −5 respectively, while their imaginary parts are 3, −π, 6, and 0 respectively.

• De�nition: The complex conjugate of z = a+ bi, denoted z, is the complex number a− bi. The modulus (also
called the absolute value, magnitude, or length) of z = a+ bi, denoted |z|, is the real number

√
a2 + b2.

◦ The notation for conjugate varies among disciplines. The notation z∗ is often used in physics and
computer programming to denote the complex conjugate (in place of z) since it is easier to type on a
standard keyboard.

◦ Example: For z = 3 + 4i we have z = 3− 4i and |z| =
√
32 + 42 = 5.

• Two complex numbers are added (or subtracted) simply by adding (or subtracting) their real and imaginary
parts: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

◦ Example: The sum of 1 + 2i and 3− 4i is 4− 2i . The di�erence is (1 + 2i)− (3− 4i) = −2 + 6i .

• Two complex numbers are multiplied using the distributive law and the fact that i2 = −1: (a+ bi)(c+ di) =
ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

◦ Example: The product of 1 + 2i and 3− 4i is (1 + 2i)(3− 4i) = 3 + 6i− 4i− 8i2 = 11 + 2i .

◦ Observe in particular that for z = a+ bi, we have |z|2 = a2 + b2 = z · z.

• For division, we rationalize the denominator using the conjugate:
a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac+ bd

c2 + d2
+

bc− ad
c2 + d2

i.

◦ Example: The quotient of 2i by 1− i is 2i

1− i
=

2i(1 + i)

(1− i)(1 + i)
=
−2 + 2i

2
= −1 + i .

• Here are a few more simple properties of complex number arithmetic:

• Proposition (Complex Arithmetic): Suppose z and w are complex numbers.
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1. We have Re(z) = (z + z)/2 and Im(z) = (z − z)/(2i).
2. We have z + w = z + w, zw = z · w, and z = z.

3. We have |z| = |z| and |zw| = |z| · |w|.
4. We have z = z if and only if z is real, while z = −z if and only if z is purely imaginary (of the form ri

where r is real).

5. We have Re(z) ≤ |z| and Im(z) ≤ |z|.
6. (Triangle Inequality) We have |z + w| ≤ |z|+ |w|.

◦ Proofs: (1)-(5) are easy algebraic calculations.

◦ For (6), use (1) and (2) to observe zw + wz = 2Re(zw), and (5) and (3) to observe 2Re(zw) ≤
2 |zw| = 2 |z| |w|.
◦ Then |z + w|2 = (z+w)(z + w) = zz+zw+wz+ww = |z|2+|w|2+2Re(zw) ≤ |z|2+|w|2+2 |z| |w| =
(|z|+ |w|)2. Since both |z + w| and |z|+ |w| are nonnegative, taking the square root yields the desired
|z + w| ≤ |z|+ |w|.

• We emphasize that (2) above shows that the conjugate is both additive and multiplicative.

◦ Example: If z = 1 + 2i and w = 3 − i, then z = 1 − 2i and w = 3 + i. We compute z + w = 4 + i,
z + w = 4− i , zw = 5 + 5i and z · w = 5− 5i, so indeed z + w = z + w and zw = z · w.

◦ The multiplicativity of the conjugate explains the procedure for performing division: we write
z

w
=

z · w
w · w

=
z · w
|w|2

, where the denominator is now the real number |w|2.

• We often think of the real numbers geometrically, as a line. The natural way to think of the complex numbers
is as a plane, with the x-coordinate denoting the real part and the y-coordinate denoting the imaginary part.

◦ In this geometric view of the complex numbers, addition corresponds to vector addition in the plane.
Explicitly, if we think of the complex number a + bi as a vector, it represents �adding (a, b)� to the
coordinates of a point, while c + di represents �adding (c, d)� to the coordinates of a point. The sum
(a+ bi) + (c+ di) is then obtained by adding (a, b) and then (c, d) to the coordinates of a point, which
is the same as adding (a+ c, b+ d) to it.

◦ Geometrically, we can think of this �vector addition� using a parallelogram whose pairs of parallel sides
are v = (a, b) and w = (c, d) and whose diagonal is v +w = (a+ c, b+ d), as shown above.

◦ Multiplication of complex numbers also has a very nice geometric interpretation: multiplying a complex
number a+ bi by a real number r will scale its length by r, while multiplying a complex number a+ bi
by the imaginary unit i corresponds to a π/2-radian (90-degree) counterclockwise rotation.
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• One may give a more direct geometric description of complex multiplication by rewriting the description of a
complex number using basic trigonometry.

◦ From the right-triangle diagram above, for z = x+ yi, if r is the length of the segment joining x+ iy to
the origin 0, and θ is the angle made by this segment and the positive real axis, then we have x = r cos θ
and y = r sin θ, and also r =

√
x2 + y2 = |z| and tan θ = y/x. (The angle θ is called the argument of z

and sometimes denoted θ = arg(z).)

◦ For z = x + yi, we thus have z = r cos θ + (r sin θ)i = r(cos θ + i sin θ). This expression is called the
polar form of the complex number z, contrasting with the rectangular form z = x+ yi.

◦ Example: If z = 1 + i, then the corresponding values of r and θ above are r = |z| =
√
2 and θ =

tan−1(1) =
π

4
, so we can write z in polar form as z =

√
2
[
cos

π

4
+ i sin

π

4

]
. Indeed, we may check that

√
2
[
cos

π

4
+ i sin

π

4

]
=
√
2
[√

2
2 + i

√
2
2

]
= 1 + i, as it should be.

◦ Using the polar form we can give another interpretation of multiplication: if we have complex numbers
z = r[cos θ+ i sin θ] and w = s[cosϕ+ i sinϕ], then the product zw = rs(cos θ+ i sin θ)(cosϕ+ i sinϕ) =
rs[(cos θ cosϕ− sin θ sinϕ) + (cos θ sinϕ+ sin θ cosϕ)i] = rs[cos(θ + ϕ) + i sin(θ + ϕ)].

◦ So we see that the length of zw is the product of the lengths of z and w, while the argument of zw is
the sum of the arguments of z and w: this is often summarized as �lengths multiply, angles add� when
multiplying complex numbers.

4.2.5 Solving Polynomial Equations

• Finding formulas for the roots of a polynomial has been a very classical problem in algebra.

◦ The methods for �nding solutions to quadratic equations az2 + bz + c = 0 have been well understood
for thousands of years, as various procedures were described (in essentially as complete detail as the
methods and notation of the time would allow) by the ancient Egyptians and Greeks.

◦ Explicitly, if a, b, c are real numbers and a 6= 0, then we may complete the square in the expression
az2 + bz + c = 0 and write it as a(z + b

2a )
2 + 4ac−b2

4a = 0.

◦ Moving the constant term to the right-hand side and dividing by a yields (z + b
2a )

2 = b2−4ac
4a2 and now

taking the square root and solving for z yields the familiar quadratic formula z =
−b±

√
b2 − 4ac

2a
.

◦ Many textbooks introduce complex numbers as a tool for giving meaning to the formal symbols obtained
when using the quadratic formula to �solve� quadratic equations that do not have real solutions, because
in the situation where b2 − 4ac < 0, the solutions are not real numbers but rather complex numbers.

◦ For example, the formula states that the solutions to z2 + 2z + 2 = 0 are z =
−2±

√
−4

2
= −1± i, and

indeed we can check directly that the expression z2 + 2z + 2 evaluates to 0 when z = −1 + i or −1− i.

21



◦ The quadratic formula yields the factorization az2+bz+c = a(z−r1)(z−r2) where r1 =
−b−

√
b2 − 4ac

2a

and r2 =
−b+

√
b2 − 4ac

2a
are the two roots.

• One reason we are interested in the complex numbers is that all polynomial equations have their solutions
inside C:

• Theorem (Fundamental Theorem of Algebra): Suppose p(z) = anz
n+an−1z

n−1+· · ·+a1z+a0 is a polynomial
with complex coe�cients an, an−1, . . . , a0 of any degree n. Then p(z) can be factored completely over the
complex numbers: namely, it can be written as p(z) = a(z − r1)(z − r2) · · · (z − rn) for some (not necessarily
distinct) complex numbers ri.

◦ The statement of this theorem was given as far back as 1629 by Girard, but it was not generally believed
to be true for all polynomials until the late 1700s, when attempts to prove it were given by Euler,
Lagrange, Laplace, and others. Gauss published an essentially correct proof in 1799 that had a small
gap, and the �rst fully correct proof was given by Argand in 1806. (Gauss eventually gave several other
fully rigorous proofs in the 1810s.) Since then, many other di�erent proofs of the fundamental theorem
of algebra have been given, some of which require little more than basic facts about polynomials and
continuous functions, and the triangle inequality.

◦ Here is an outline of one such proof: induct on the degree n. The base case n = 1 is trivial.

◦ For the inductive step, suppose that p(z) has degree n + 1. We �rst show that |p(z)| must achieve its
global minimum value at some complex number (this uses some basic facts about continuous functions
and the fact that |p(z)| grows to ∞ as |z| grows to ∞), and then we also show that if |p(α)| > 0, then
there is some value β near α with |p(β)| < |p(α)| (this is an estimate that can eventually be obtained
using the triangle inequality).

◦ Together these two facts imply that the minimum value of |p(z)| must be zero, so p(z) has some factor
z − r. Dividing p(z) by this factor yields a polynomial of degree n, which by the inductive hypothesis
must have a factorization: multiplying it by z − r then yields a factorization of p(z).

◦ Interestingly, however, all known proofs of this theorem for general polynomials are non-constructive,
in that they do not give explicit formulas for the roots r1, ... , rn of the polynomials in terms of the
coe�cients. (There are proofs that construct the roots as limits of in�nite sequences, but these procedures
do not give explicit formulas for the roots.)

• The problem of �nding a general formula for the roots of a cubic equation, analogous to the quadratic formula,
was considered by the ancient Egyptians and Greeks, who were unable to �nd such a formula. Ultimately,
the story of how the cubic formula was eventually discovered and publicized is rather convoluted, and we will
brie�y summarize it.

◦ Minimal progress was made on solving the cubic until the early 1500s, when del Ferro discovered a
method for solving cubics of the form t3 + pt = q. However, due to the nature of Renaissance patronage,
he did not publicize his method, but only taught it to his student Fior.

◦ In 1535, Fior in turn challenged another scholar, Niccolo Fontana (nicknamed Tartaglia due to a physical
deformity), who eventually (re)discovered the solution to the cubic, and (again, as was normal at the
time) kept it a secret.

◦ Eventually, Gerolamo Cardano (an avid astrologer and gambler who at one time was one of the most
well-regarded physicians in Europe, who was eventually jailed for heresy and then pardoned by the Pope)
was able, after repeated entreaties and vows never to reveal Tartaglia's method, to coax Tartaglia into
revealing it.

◦ Cardano was then able to extend Tartaglia's method to solve the general cubic equation, and eventually
took a student, Ludovico Ferrari, who was able to extend Cardano's techniques to solve degree-4 equa-
tions. Cardano and Ferrari eventually discovered that del Ferro had solved the cubic prior to Tartaglia's
discovery of the solution, and published his generalization in 1545, giving credit to del Ferro, Fior, and
Tartaglia. (Despite receiving proper attribution, Tartaglia nonetheless felt betrayed by Cardano, despite
the fact that del Ferro had developed the technique prior to Tartaglia.)
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• We will present a solution of the cubic similar to Cardano's (and presumably, also to Tartaglia's).

• Theorem (Cardano's Formulas): If p and q are complex numbers, then one root of the polynomial of g(t) =

t3 + pt + q is the sum A + B where A =
3

√
−q
2
+

√
q2

4
+
p3

27
and B =

3

√
−q
2
−
√
q2

4
+
p3

27
where the cube

roots are chosen so that AB = −p/3.

◦ Proof: From the algebraic identity (A + B)3 − 3AB(A + B) = A3 + B3, we can see that if we take
A+B = t, 3AB = −p, and A3 +B3 = −q, then the identity becomes t3 + pt+ q = 0.

◦ The equation 3AB = −p implies B = −p/(3A), and then A3 +B3 = −q becomes A3 − p3/(27A3) = −q,
whence A6 + qA3 − p3/27 = 0.

◦ Solving this quadratic in A3 yields A3 = −q
2
+

√
q2

4
+
p3

27
and so A =

3

√
−q
2
+

√
q2

4
+
p3

27
.

◦ One may then check that for B =
3

√
−q
2
−
√
q2

4
+
p3

27
we do have 3AB = −p and A3 +B3 = −q, so we

obtain the root t = A+B as claimed.

• Example: Solve the cubic equation t3 − 15t− 4 = 0 using Cardano's formulas.

◦ Plugging in p = −15 and q = −4 yields A = 3
√
2 +
√
−121 and B = 3

√
−2 +

√
−121, yielding the root

r = 3
√

2 +
√
−121 + 3

√
−2 +

√
−121.

◦ Notice that the cube roots involve complex numbers. Interestingly, however, it is not hard to check that
the three roots of this cubic are the real numbers 4 and −2 ±

√
3, so if Cardano's formula is correct,

there must be a way to simplify it to obtain a real number.

◦ In fact, it is precisely this perplexing appearance of square roots of negative numbers in the formulas for
real solutions to a cubic equation that led to the initial development of complex numbers in mathematics
in the �rst place!

◦ Speci�cally, in 1572 Bombelli observed that one may formally compute (2±
√
−1)3 = ±2 +

√
−121, and

so one may take A = 2 +
√
−1 and B = 2−

√
−1 to obtain the correct roots A+B = 4.

◦ In fact, it turns out to be impossible to give general formulas involving only real radicals for the solutions
of cubic polynomials with 3 real roots, and so (rather by necessity) resolving this di�culty could only be
achieved by working with non-real numbers.

• With the cubic formula, the next question becomes: what about polynomials of larger degree?

◦ Indeed, as mentioned earlier, Cardano's student Ferrari found a formula for the solutions of degree-4
polynomials in 1540 and published the solution along with Cardano's solution of the cubic in 1545.

◦ But they, and everyone who came after them, were unable to extend their results to give a general
solution in radicals for degree-5 polynomials.

◦ In fact, there is a very good reason for this: there is no such formula! This nonexistence result is known
as the Abel-Ru�ni theorem: an incomplete proof was given by Ru�ni in 1799 that was re�ned and
completed in 1813, and a more general result was proven by Abel in 1824.

◦ As a speci�c example, the roots of p(z) = z5 + z + 1 cannot be expressed in terms of radicals.

◦ In fact, the key idea in the Abel-Ru�ni theorem involves relating the behavior of the roots of a degree-5
polynomial to the properties of subgroups of the symmetric group S5!

◦ Precisely, the idea is that the group S5 acts on the roots of a degree-5 polynomial by permuting them, and
by studying this action appropriately, one can relate the existence of a solution in radicals to a certain
property of the group of permutations that S5 lacks, which quite appropriately is called �solvability�!
(This approach of using group theory to study the roots of polynomials is known as Galois theory and
was pioneered by Évariste Galois, who was, sadly, killed in a duel at the age of 20.)

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019-2024. You may not reproduce or distribute this
material without my express permission.
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