		$\overline{P \downarrow P \mid Q \downarrow Q \mid (P \downarrow P) \downarrow (Q \downarrow Q) \mid P \wedge Q}$	

1. We construct a truth table for each statement that shows they are equivalent:

This result can also be shown using equivalences:

- 2. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.
	- Solution 1: First, suppose $A \subseteq B$: we must show that $B^c \subseteq A^c$. Notice that $A \subseteq B$ means that if $x \in A$ then $x \in B$. Taking the contrapositive of this statement shows that if $x \notin B$ then $x \notin A$. Equivalently, this says $x \in B^c$ implies $x \in A^c$ which means precisely that $B^c \subseteq A^c$, as desired.
	- Now suppose $B^c \subseteq A^c$: we must show that $A \subseteq B$. The hypothesis says that $x \in B^c$ implies $x \in A^c$, which equivalently says if $x \notin B$ then $x \notin A$. Taking the contrapositive yields the statement that if $x \in A$ then $x \in B$, which implies $A \subseteq B$ as desired.
	- Solution 2: We use a chain of equivalences: $A \subseteq B \iff x \in A$ implies $x \in B \iff x \notin B$ implies $x \notin A \iff x \in B^c \text{ implies } x \in A^c \iff B^c \subseteq A^c.$

3. Each part was worth 3 points.

- (a) We want a prime number n such that $n + 8$ is not prime. Some examples of such n are $n = 2, 7, 13, 19$.
- (b) We want a set A such that $A \subseteq \{1, 2, 3, 4, 5\}$ and $A \cap \{3, 4, 5\}$ is empty. There are several choices: $A = \{1, 2\}, A = \{1\}, A = \{2\}, \text{or } A = \emptyset.$
- (c) We want a positive integer n that is not prime but doesn't have two different prime factors. Some examples of such n are $n = 1$ (no prime factors) or n equal to a prime power such as 4, 8, 9, 16, or 25.
- (d) In words this statement says "for all real x there exists a real y such that $xy = 1$ ". For most values of x there is such a value of y, namely, $y = 1/x$. But for $x = 0$, there exists no y with $xy = 1$ because xy is always 0 no matter what y is. Thus, $x = 0$ is a counterexample (in fact, the only one).

4. We use (strong) induction on n .

- For the base cases we take $n = 0$ and $n = 1$: we have $b_0 = 2 = 3^0 + 1$ and $b_1 = 4 = 3^1 + 1$ as required.
- For the inductive step, suppose that $b_{n-1} = 3^{n-1} + 1$ and $b_{n-2} = 3^{n-2} + 1$. Then by definition we see $b_n = 4b_{n-1} - 3b_{n-2} = 4(3^{n-1} + 1) - 3(3^{n-2} + 1) = 4 \cdot 3^{n-1} + 4 - 3 \cdot 3^{n-2} - 3 = 3 \cdot 3^{n-1} + 1 = 3^n + 1$, as required.
- Therefore, the result holds for all $n \geq 0$ by induction.
- Remark: Common errors included starting with the wrong base case, failing to do 2 base cases, and writing the steps in the proof of the inductive step in the wrong order.
- 5. Part (a) was worth 5 points while (b) and (c) were worth 4 points.
	- (a) We use the Euclidean algorithm:

$$
460 = 10 \cdot 44 + 20
$$

$$
44 = 2 \cdot 20 + 4
$$

$$
20 = 5 \cdot 4
$$

The last nonzero remainder is 4, so the greatest common divisor is $|4|$.

- (b) We have $\text{lcm}(a, b) = ab/\text{gcd}(a, b) = |460 \cdot 44/4 = 5060|$
- (c) We use the extended Euclidean algorithm to solve for the remainders one at a time. This yields

$$
20 = 460 - 10 \cdot 44
$$

$$
4 = 44 - 2 \cdot 20 = 44 - 2 \cdot (460 - 10 \cdot 44) = -2 \cdot 460 + 21 \cdot 44
$$

Therefore, we can take $x = -2$ and $y = 21$.

- 6. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.
	- Solution 1: First suppose that $gcd(a, b) = a$. Then since the gcd of two numbers is a divisor of both, that means $a|a$ and $a|b$, so in particular $a|b$.
	- Conversely, suppose $a|b$. Then a is a common divisor of a and b, and also any other common divisor d must divide a hence $d \leq a$: therefore, a is the greatest common divisor of a and b.
	- Solution 2: If $gcd(a, b) = a$ then as in Solution 1 that means a|b. Conversely, if a|b then $b = ka$ for some integer k, and then $gcd(a, b) = gcd(a, ka) = a \cdot gcd(1, k) = a$ by gcd properties.
	- Solution 3: Suppose a and b have prime factorizations $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$. Then $gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_k^{\min(a_k, b_k)}$ which equals a if and only if $a_i = \min(a_i, b_i)$ for each i. But that is true if and only if $a_i \leq b_i$, which is in turn true if and only if $a|b$.
- 7. Parts (a)-(c) were each worth 3 points, while each item in (d) was worth 1 point.
	- (a) Symbolically, the given statement is $\forall x \in A \exists y \in B$, $(x + y) \in C$. Negating flips each quantifier to the other type (but preserves their order), so the negation is $(iv) \exists x \in A \forall y \in B$, $(x + y) \notin C$.
	- (b) The mistake is that (iii) The proof only establishes one implication of the biconditional. The statement of the proposition is an if-and-only-if statement, but only the implication "if m is odd then m^2 is odd" is shown (the converse is not). The other three choices do not apply: it is valid to start showing the conditional by assuming m is even, there is no justification needed for why $m = 2k$ (it is the definition of an even number), and the proof does not need to start by assuming m^2 is even (that would be for a proof of the converse).
	- (c) The mistake is that (i) The argument starts with the wrong base case. The proposition claims the result for all positive integers n, but the base case starts with $n = 2$ instead of $n = 1$. The other three choices do not apply: the argument does not need two base cases, the result in the inductive step is correctly shown as $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$, and the inductive step should not start by assuming that statement.
	- (d) In order, the responses are
		- i. True, since $(F \wedge \neg T) \Rightarrow (\neg F)$ resolves to $F \Rightarrow T$ which is true.
		- ii. False because the set $\{1\}$ is not an element of A (the number 1 is, but $1 \neq \{1\}$).
		- iii. True because the empty set is a subset of every set, including A .
		- iv. True by the formula for the gcd in terms of a prime factorization, the exponent of each prime in $\overline{\text{the gcd}}$ is the minimum of the corresponding exponents in the given integers.
		- v. | False | because having $2^a = 3^b$ for positive integers a, b would contradict the uniqueness of prime factorizations.
		- vi. False, as proven by Euclid and shown in class, there are infinitely many prime numbers.