
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Midterm 1 Solutions (Form A)

1. We construct a truth table for each statement that shows they are equivalent:

P Q P ↓ P Q ↓ Q (P ↓ P ) ↓ (Q ↓ Q) P ∧Q

T T F F T T

T F F T F F

F T T F F F

F F T T F F

This result can also be shown using equivalences:

(P ↓ P ) ↓ (Q ↓ Q) = [¬(P ∨ P )] ↓ [¬(Q ∨Q)] (de�nition of ↓)
= (¬P ) ↓ (¬Q) (absorption)

= ¬[(¬P ) ∨ (¬Q)] (de�nition of ↓)
= [¬¬P ] ∧ [¬¬Q] (de Morgan)

= P ∧Q (double negative)

2. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.

• Solution 1: First, suppose A ⊆ B: we must show that Bc ⊆ Ac. Notice that A ⊆ B means that if x ∈ A
then x ∈ B. Taking the contrapositive of this statement shows that if x 6∈ B then x 6∈ A. Equivalently,
this says x ∈ Bc implies x ∈ Ac which means precisely that Bc ⊆ Ac, as desired.

• Now suppose Bc ⊆ Ac: we must show that A ⊆ B. The hypothesis says that x ∈ Bc implies x ∈ Ac,
which equivalently says if x 6∈ B then x 6∈ A. Taking the contrapositive yields the statement that if
x ∈ A then x ∈ B, which implies A ⊆ B as desired.

• Solution 2: We use a chain of equivalences: A ⊆ B ⇐⇒ x ∈ A implies x ∈ B ⇐⇒ x 6∈ B implies
x 6∈ A ⇐⇒ x ∈ Bc implies x ∈ Ac ⇐⇒ Bc ⊆ Ac.

3. Each part was worth 3 points.

(a) We want a prime number n such that n+ 4 is not prime. Some examples of such n are n = 2, 5, 11, 23.

(b) We want a set A such that A ⊆ {1, 2, 3, 4, 5} and A ∩ {2, 3, 4} is empty. There are several choices:
A = {1, 5}, A = {1}, A = {5}, or A = ∅.

(c) We want a positive integer n that is not prime but doesn't have two di�erent prime factors. Some
examples of such n are n = 1 (no prime factors) or n equal to a prime power such as 4, 8, 9, 16, or 25.

(d) In words this statement says �for all real x there exists a real y such that xy = 1�. For most values of x
there is such a value of y, namely, y = 1/x. But for x = 0, there exists no y with xy = 1 because xy is
always 0 no matter what y is. Thus, x = 0 is a counterexample (in fact, the only one).

4. We use (strong) induction on n.

• For the base cases we take n = 0 and n = 1: we have a0 = 4 = 20 + 3 and a1 = 5 = 21 + 3 as required.

• For the inductive step, suppose that an−1 = 2n−1 + 3 and an−2 = 2n−2 + 3. Then by de�nition we see
an = 3an−1 − 2an−2 = 3(2n−1 + 3)− 2(2n−2 + 3) = 3 · 2n−1 + 9− 2 · 2n−2 − 6 = 2 · 2n−1 + 3 = 2n + 3, as
required.

• Therefore, the result holds for all n ≥ 0 by induction.

• Remark: Common errors included starting with the wrong base case, failing to do 2 base cases, and
writing the steps in the proof of the inductive step in the wrong order.
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5. Part (a) was worth 5 points while (b) and (c) were worth 4 points.

(a) We use the Euclidean algorithm:

230 = 10 · 22 + 10

22 = 2 · 10 + 2

10 = 5 · 2

The last nonzero remainder is 2, so the greatest common divisor is 2 .

(b) We have lcm(a, b) = ab/ gcd(a, b) = 460 · 44/4 = 5060 .

(c) We use the extended Euclidean algorithm to solve for the remainders one at a time. This yields

10 = 230− 10 · 22
2 = 22− 2 · 10 = 22− 2 · (230− 10 · 22) = −2 · 230 + 21 · 22

Therefore, we can take x = −2 and y = 21 .

6. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.

• Solution 1: First suppose that gcd(a, b) = a. Then since the gcd of two numbers is a divisor of both,
that means a|a and a|b, so in particular a|b.
• Conversely, suppose a|b. Then a is a common divisor of a and b, and also any other common divisor d
must divide a hence d ≤ a: therefore, a is the greatest common divisor of a and b.

• Solution 2: If gcd(a, b) = a then as in Solution 1 that means a|b. Conversely, if a|b then b = ka for some
integer k, and then gcd(a, b) = gcd(a, ka) = a · gcd(1, k) = a by gcd properties.

• Solution 3: Suppose a and b have prime factorizations a = pa1
1 pa2

2 · · · p
ak

k and b = pb11 pb22 · · · p
bk
k . Then

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(ak,bk)

k which equals a if and only if ai = min(ai, bi) for each i.
But that is true if and only if ai ≤ bi, which is in turn true if and only if a|b.

7. Parts (a)-(c) were each worth 3 points, while each item in (d) was worth 1 point.

(a) Symbolically, the given statement is ∀x ∈ A∃y ∈ B, (x + y) ∈ C. Negating �ips each quanti�er to the

other type (but preserves their order), so the negation is (i) ∃x ∈ A∀y ∈ B, (x+ y) 6∈ C .

(b) The mistake is that (ii) The proof only establishes one implication of the biconditional. The statement

of the proposition is an if-and-only-if statement, but only the implication �if m is odd then m2 is odd�
is shown (the converse is not). The other three choices do not apply: it is valid to start showing the
conditional by assuming m is odd, there is no justi�cation needed for why m = 2k+1 (it is the de�nition
of an odd number), and the proof does not need to start by assuming m2 is odd (that would be for a
proof of the converse).

(c) The mistake is that (i) The argument starts with the wrong base case. The proposition claims the re-

sult for all positive integers n, but the base case starts with n = 2 instead of n = 1. The other three
choices do not apply: the argument does not need two base cases, the result in the inductive step is
correctly shown as 1 + 3 + 5 + · · · + (2n − 1) + (2n + 1) = (n + 1)2, and the inductive step should not
start by assuming that statement.

(d) In order, the responses are

i. True , since (¬F ∧ T )⇒ (¬F ) resolves to F ⇒ T which is true.

ii. False because the set {2} is not an element of A (the number 2 is, but 2 6= {2}).
iii. True because the empty set is a subset of every set, including A.

iv. True by the formula for the gcd in terms of a prime factorization, the exponent of each prime in
the gcd is the minimum of the corresponding exponents in the given integers.

v. False because having 2a = 5b for positive integers a, b would contradict the uniqueness of prime
factorizations.

vi. True , as proven by Euclid and shown in class, there are in�nitely many prime numbers.
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