P	Q	$P \downarrow P$	$Q \downarrow Q$	$(P\downarrow P)\downarrow (Q\downarrow Q)$	$P \wedge Q$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	F	F

1. We construct a truth table for each statement that shows they are equivalent:

This result can also be shown using equivalences:

(definition of \downarrow)	$[\neg (P \lor P)] \downarrow [\neg (Q \lor Q)]$	$(P\downarrow P)\downarrow (Q\downarrow Q) =$
(absorption)	$(\neg P) \downarrow (\neg Q)$	=
$(\text{definition of } \downarrow)$	$\neg[(\neg P) \lor (\neg Q)]$	=
(de Morgan)	$[\neg\neg P] \land [\neg\neg Q]$	=
(double negative)	$P \wedge Q$	=

- 2. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.
 - <u>Solution 1</u>: First, suppose $A \subseteq B$: we must show that $B^c \subseteq A^c$. Notice that $A \subseteq B$ means that if $x \in A$ then $x \in B$. Taking the contrapositive of this statement shows that if $x \notin B$ then $x \notin A$. Equivalently, this says $x \in B^c$ implies $x \in A^c$ which means precisely that $B^c \subseteq A^c$, as desired.
 - Now suppose $B^c \subseteq A^c$: we must show that $A \subseteq B$. The hypothesis says that $x \in B^c$ implies $x \in A^c$, which equivalently says if $x \notin B$ then $x \notin A$. Taking the contrapositive yields the statement that if $x \in A$ then $x \in B$, which implies $A \subseteq B$ as desired.
 - <u>Solution 2</u>: We use a chain of equivalences: $A \subseteq B \iff x \in A$ implies $x \in B \iff x \notin B$ implies $x \notin A \iff x \in B^c$ implies $x \in A^c \iff B^c \subseteq A^c$.

3. Each part was worth 3 points.

- (a) We want a prime number n such that n + 4 is not prime. Some examples of such n are n = 2, 5, 11, 23.
- (b) We want a set A such that $A \subseteq \{1, 2, 3, 4, 5\}$ and $A \cap \{2, 3, 4\}$ is empty. There are several choices: $A = \{1, 5\}, A = \{1\}, A = \{5\}, \text{ or } A = \emptyset$.
- (c) We want a positive integer n that is not prime but doesn't have two different prime factors. Some examples of such n are n = 1 (no prime factors) or n equal to a prime power such as 4, 8, 9, 16, or 25.
- (d) In words this statement says "for all real x there exists a real y such that xy = 1". For most values of x there is such a value of y, namely, y = 1/x. But for x = 0, there exists no y with xy = 1 because xy is always 0 no matter what y is. Thus, x = 0 is a counterexample (in fact, the only one).

4. We use (strong) induction on n.

- For the base cases we take n = 0 and n = 1: we have $a_0 = 4 = 2^0 + 3$ and $a_1 = 5 = 2^1 + 3$ as required.
- For the inductive step, suppose that $a_{n-1} = 2^{n-1} + 3$ and $a_{n-2} = 2^{n-2} + 3$. Then by definition we see $a_n = 3a_{n-1} 2a_{n-2} = 3(2^{n-1} + 3) 2(2^{n-2} + 3) = 3 \cdot 2^{n-1} + 9 2 \cdot 2^{n-2} 6 = 2 \cdot 2^{n-1} + 3 = 2^n + 3$, as required.
- Therefore, the result holds for all $n \ge 0$ by induction.
- <u>Remark</u>: Common errors included starting with the wrong base case, failing to do 2 base cases, and writing the steps in the proof of the inductive step in the wrong order.

- 5. Part (a) was worth 5 points while (b) and (c) were worth 4 points.
 - (a) We use the Euclidean algorithm:

$$230 = 10 \cdot 22 + 10 22 = 2 \cdot 10 + 2 10 = 5 \cdot 2$$

The last nonzero remainder is 2, so the greatest common divisor is 2.

- (b) We have $\operatorname{lcm}(a, b) = ab/\operatorname{gcd}(a, b) = 460 \cdot 44/4 = 5060$
- (c) We use the extended Euclidean algorithm to solve for the remainders one at a time. This yields

$$10 = 230 - 10 \cdot 22$$

2 = 22 - 2 \cdot 10 = 22 - 2 \cdot (230 - 10 \cdot 22) = -2 \cdot 230 + 21 \cdot 22

Therefore, we can take $x = \boxed{-2}$ and $y = \boxed{21}$.

- 6. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.
 - <u>Solution 1</u>: First suppose that gcd(a, b) = a. Then since the gcd of two numbers is a divisor of both, that means a|a and a|b, so in particular a|b.
 - Conversely, suppose a|b. Then a is a common divisor of a and b, and also any other common divisor d must divide a hence $d \le a$: therefore, a is the greatest common divisor of a and b.
 - Solution 2: If gcd(a,b) = a then as in Solution 1 that means a|b. Conversely, if a|b then b = ka for some integer k, and then $gcd(a,b) = gcd(a,ka) = a \cdot gcd(1,k) = a$ by gcd properties.
 - Solution 3: Suppose a and b have prime factorizations $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$. Then $gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_k^{\min(a_k,b_k)}$ which equals a if and only if $a_i = \min(a_i,b_i)$ for each i. But that is true if and only if $a_i \leq b_i$, which is in turn true if and only if a|b.
- 7. Parts (a)-(c) were each worth 3 points, while each item in (d) was worth 1 point.
 - (a) Symbolically, the given statement is ∀x ∈ A∃y ∈ B, (x + y) ∈ C. Negating flips each quantifier to the other type (but preserves their order), so the negation is (i) ∃x ∈ A∀y ∈ B, (x + y) ∉ C.
 - (b) The mistake is that (ii) The proof only establishes one implication of the biconditional. The statement of the proposition is an if-and-only-if statement, but only the implication "if m is odd then m^2 is odd" is shown (the converse is not). The other three choices do not apply: it is valid to start showing the conditional by assuming m is odd, there is no justification needed for why m = 2k + 1 (it is the definition of an odd number), and the proof does not need to start by assuming m^2 is odd (that would be for a proof of the converse).
 - (c) The mistake is that (i) The argument starts with the wrong base case. The proposition claims the result for all positive integers n, but the base case starts with n = 2 instead of n = 1. The other three choices do not apply: the argument does not need two base cases, the result in the inductive step is correctly shown as $1 + 3 + 5 + \cdots + (2n - 1) + (2n + 1) = (n + 1)^2$, and the inductive step should not start by assuming that statement.
 - (d) In order, the responses are
 - i. | True |, since $(\neg F \land T) \Rightarrow (\neg F)$ resolves to $F \Rightarrow T$ which is true.
 - ii. |False | because the set $\{2\}$ is not an element of A (the number 2 is, but $2 \neq \{2\}$).
 - iii. | True | because the empty set is a subset of every set, including A.
 - iv. <u>True</u> by the formula for the gcd in terms of a prime factorization, the exponent of each prime in the gcd is the minimum of the corresponding exponents in the given integers.
 - v. False because having $2^a = 5^b$ for positive integers a, b would contradict the uniqueness of prime factorizations.
 - vi. | True |, as proven by Euclid and shown in class, there are infinitely many prime numbers.