E. Dummit’s Math 1465 ~ Intensive Mathematical Reasoning, Fall 2024 ~ Midterm 1 Solutions (Form A)

1. We construct a truth table for each statement that shows they are equivalent:
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This result can also be shown using equivalences:

(PLP)L(QLQ)= [~(PVP)]L[~(QVQ) (definition of |)
= (-P) 1 (-Q) (absorption)
= =[(=P)V (=Q)]  (definition of |)
= [P A [-=Q) (de Morgan)
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2. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.

e Solution 1: First, suppose A C B: we must show that B¢ C A°. Notice that A C B means that if z € A
then z € B. Taking the contrapositive of this statement shows that if x ¢ B then x ¢ A. Equivalently,
this says z € B¢ implies « € A¢ which means precisely that B¢ C A€, as desired.

e Now suppose B¢ C A° we must show that A C B. The hypothesis says that x € B¢ implies x € A€,
which equivalently says if + ¢ B then = ¢ A. Taking the contrapositive yields the statement that if
x € A then x € B, which implies A C B as desired.

e Solution 2: We use a chain of equivalences: A C B <= 1z € A implies xt € B <= x ¢ B implies
x ¢ A <= x € B°implies v € A° <= B¢ C A°.

3. Each part was worth 3 points.
(a) We want a prime number n such that n + 4 is not prime. Some examples of such n are n = 2, 5, 11, 23.
(b) We want a set A such that A C {1,2,3,4,5} and AN {2,3,4} is empty. There are several choices:
A={1,5}, A={1}, A={5},or A=0.
(¢) We want a positive integer n that is not prime but doesn’t have two different prime factors. Some
examples of such n are n = 1 (no prime factors) or n equal to a prime power such as 4, 8, 9, 16, or 25.

(d) In words this statement says “for all real x there exists a real y such that zy = 1”. For most values of z
there is such a value of y, namely, y = 1/x. But for z = 0, there exists no y with zy = 1 because zy is
always 0 no matter what y is. Thus, z = 0 is a counterexample (in fact, the only one).

4. We use (strong) induction on n.

e For the base cases we take n = 0 and n = 1: we have ag =4 = 2° + 3 and a; = 5 = 2! + 3 as required.

e For the inductive step, suppose that a,_1 = 2"~' + 3 and a,_» = 2"~ 2 + 3. Then by definition we see
U =3an_1 —2ap_p =3(2""1 +3)—2(2"243)=3.2""1 4 9-2.272 _6=2.2""1 4 3 =27 43 as
required.

e Therefore, the result holds for all n > 0 by induction.

e Remark: Common errors included starting with the wrong base case, failing to do 2 base cases, and
writing the steps in the proof of the inductive step in the wrong order.




5. Part (a) was worth 5 points while (b) and (c) were worth 4 points.

(a) We use the Euclidean algorithm:

230 = 10-22410
22 = 2-10+2
10 = 5-2

The last nonzero remainder is 2, so the greatest common divisor is .
(b) We have lem(a, b) = ab/ ged(a, b) = 460 - 44/4 = 5060 |
(c) We use the extended Euclidean algorithm to solve for the remainders one at a time. This yields
10 = 230-10-22
2 = 22-2-10=22-2-(230—-10-22) = —2-230+ 21 -22

Therefore, we can take z = and y = .

6. This is an if-and-only-if statement so we must prove both directions or use a chain of equivalences.

e Solution 1: First suppose that ged(a,b) = a. Then since the ged of two numbers is a divisor of both,
that means ala and ald, so in particular a|b.

e Conversely, suppose alb. Then a is a common divisor of ¢ and b, and also any other common divisor d
must divide a hence d < a: therefore, a is the greatest common divisor of a and b.

e Solution 2: If ged(a, b) = a then as in Solution 1 that means a|b. Conversely, if a|b then b = ka for some
integer k, and then ged(a, b) = ged(a, ka) = a - ged(1, k) = a by ged properties.

e Solution 3: Suppose a apd b have prime factorizations a = p{'p3?---pp* and b = p?lp? ---pl,i“'. Then
ged(a, b) = p’lnln(al’bl)p;nln(GQ’bQ) . -prknm(a’“b’“) which equals a if and only if a; = min(a;,b;) for each i.

But that is true if and only if a; < b;, which is in turn true if and only if alb.

7. Parts (a)-(c) were each worth 3 points, while each item in (d) was worth 1 point.

(a) Symbolically, the given statement is Vo € A3y € B, (z + y) € C. Negating flips each quantifier to the
other type (but preserves their order), so the negation is ’ (i) Iz e AVye B, (z+y)¢C ‘

(b) The mistake is that ’ (ii) The proof only establishes one implication of the biconditional. ‘ The statement

of the proposition is an if-and-only-if statement, but only the implication “if m is odd then m? is odd”
is shown (the converse is not). The other three choices do not apply: it is valid to start showing the
conditional by assuming m is odd, there is no justification needed for why m = 2k +1 (it is the definition
of an odd number), and the proof does not need to start by assuming m? is odd (that would be for a
proof of the converse).

(¢) The mistake is that ’ (i) The argument starts with the wrong base case. ‘ The proposition claims the re-

sult for all positive integers n, but the base case starts with n = 2 instead of n = 1. The other three
choices do not apply: the argument does not need two base cases, the result in the inductive step is
correctly shown as 1 +3+5+---+ (2n — 1) + (2n + 1) = (n + 1)?, and the inductive step should not
start by assuming that statement.

(d) In order, the responses are
i. , since (=F AT) = (=F) resolves to F' = T which is true.
ii. because the set {2} is not an element of A (the number 2 is, but 2 # {2}).
iii. because the empty set is a subset of every set, including A.
iv. by the formula for the gcd in terms of a prime factorization, the exponent of each prime in
the ged is the minimum of the corresponding exponents in the given integers.

. because having 2% = 5° for positive integers a,b would contradict the uniqueness of prime
factorizations.
vi. , as proven by Euclid and shown in class, there are infinitely many prime numbers.
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