Math 1465: Intensive Mathematical Reasoning

Midterm 1 (Instructor: Dummit) – Form A October 16th, 2024

NAME (please print legibly):	
(prease print legisty /.	

- Show all work and justify all answers. A correct answer without sufficient work may not receive full credit!
- You may appeal to results covered at any point in the course, but please make clear what results you are using. Box all final numerical answers.
- In problems with multiple parts, you may use the results of previous parts in later parts, even if you did not solve the earlier parts correctly.
- You are responsible for checking that this exam has all 8 pages.
- You are allowed a 1-page note sheet and a calculator. Time limit: 65 minutes.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

QUESTION	VALUE	SCORE
1	10	
2	10	
3	12	
4	10	
5	13	
6	10	
7	15	
TOTAL	80	

1. (10 points) Suppose the logical operator \downarrow is defined so that $P \downarrow Q = \neg (P \lor Q)$. Show that $(P \downarrow P) \downarrow (Q \downarrow Q)$ is logically equivalent to $P \land Q$.

Note: All mathematically valid solution methods are acceptable.

2. (10 points) Suppose that A and B are arbitrary subsets of a universal set U, and recall that the complement $A^c = \{x \in U : x \notin A\}$ consists of the elements not in A.

Prove that $A \subseteq B$ if and only if $B^c \subseteq A^c$.

<u>Note</u>: You may use a Venn diagram or an example to illustrate your proof, but simply appealing to a Venn diagram or an example will NOT receive credit.

- **3.** (12 points) Find a counterexample to each of the following statements (make sure to include brief justification for why your counterexample is valid):
- (a) For all prime numbers n, the number n+4 is also prime.

(b) There exists no set A such that $A \subseteq \{1, 2, 3, 4, 5\}$ and $A \cap \{2, 3, 4\} = \emptyset$.

(c) If n is a positive integer that is not prime, then n has at least two different prime factors.

(d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1.$

4. (10 points) The sequence $a_0, a_1, a_2, a_3, \ldots$ is defined by setting $a_0 = 4$, $a_1 = 5$, $a_2 = 7$, and for $n \ge 2$, $a_n = 3a_{n-1} - 2a_{n-2}$. Prove that $a_n = 2^n + 3$ for all integers $n \ge 0$.

- **5.** (13 points) Let a = 230 and b = 22.
- (a) Find the greatest common divisor gcd(a, b).

(b) Find the least common multiple lcm(a, b). (You do not need to simplify your answer.)

(c) Find integers x and y such that $xa + yb = \gcd(a, b)$.

6. (10 points) Suppose a, b are positive integers. Prove that gcd(a, b) = a if and only if a|b.

 $\underline{\text{Note}}$: You may use an example to illustrate your proof, but simply appealing to an example will NOT receive credit.

- 7. (15 points) Circle the correct response for each of the following (no work is required, and there is no partial credit or penalty for incorrect answers):
- (a) Which of the following is the negation of the statement "For all $x \in A$, there exists a $y \in B$ such that $x + y \in C$ "?
 - (i) $\exists x \in A \, \forall y \in B, (x+y) \notin C.$
- (iii) $\forall x \notin A \exists y \notin B, (x+y) \notin C$.
- (ii) $\forall y \in B \exists x \in A, (x+y) \notin C.$
- (iv) $\exists x \notin B \exists y \notin A, (x+y) \in C$.
- (b) What is the mistake in the following claimed proof?

Proposition: An integer m is odd if and only if m^2 is odd.

<u>Proof</u>: Suppose m is odd, so that m = 2k + 1 for an integer k. Then we can see that $m^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is also odd.

- (i) The proof assumes m is odd without justification.
- (ii) The proof only establishes one implication of the biconditional.
- (iii) The proof should start by assuming m^2 is odd instead of getting it as the conclusion.
- (iv) The proof does not justify why m = 2k + 1.
- (c) What is the mistake in the following claimed proof?

<u>Proposition</u>: For all positive integers n, we have $1+3+5+\cdots+(2n-1)=n^2$.

Proof: Induct on n. The base case n=2 holds since $1+3=2^2$.

To show the inductive step, suppose that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$: then we have $1 + 3 + 5 + \cdots + (2n - 1) + (2n + 1) = n^2 + 2n + 1 = (n + 1)^2$, as required.

- (i) The argument starts with the wrong base case.
- (ii) The inductive step should show $1+3+5+\cdots+(2n-1)+2n=(n+1)^2$ instead.
- (iii) The inductive step should start by assuming that $1+3+5+\cdots+(2n+1)=(n+1)^2$.
- (iv) The argument should use two base cases.
- (d) Identify each statement as true or false (each answer is worth independent points):

True False If P and Q are both false, then $(\neg P \land Q) \Rightarrow (\neg Q)$ is true.

True False If $A = \{1, \{\emptyset\}, 2\}$ then $\{2\} \in A$.

True False If $A = \{1, \{\emptyset\}, 2\}$ then $\emptyset \subseteq A$.

True False The greatest common divisor of $2^3 \cdot 3^5 \cdot 5^4$ and $2^4 \cdot 3^3 \cdot 7$ is $2^3 \cdot 3^3$.

True False There exist positive integers a and b with $2^a = 5^b$.

True False There are infinitely many prime numbers.