(a) $P * (P * P)$	and $\neg P$.	(c) $P * Q$ and $\neg(Q \Rightarrow P)$	P). (e)	(P * Q) * R and $P * (Q * R)$.	
(b) $(P \Rightarrow Q) \Rightarrow (P * Q)$ and True.		(d) $(Q * Q) * P$ and $P / $	$\setminus Q.$ (f)	(f) $(P*Q) \lor R$ and $(R*\neg Q)*(P*R)$	
2. Suppose that $A =$	$= \{1, 2, \{1\}, \{2\}, \{1, 3\}\}$	} and $B = \{1, \{1, 2\}, \{1, 3\}$	$, \{2\}\}$. Find the trut	n value of each statement:	
(a) $1 \in A$.	(c) $\{1\} \in B$.	(e) $\{1\} \in A \cap E$	B. (g) $\{1,2\} \in$	$A \cup B. \qquad (i) \ \{1,3\} \in A \cap B.$	
(b) $1 \subseteq A$.	(d) $\{1\} \subseteq B$.	(f) $\{1\} \subseteq A \cap B$	B. (h) $\{1,2\} \subseteq$	$A \cup B.$ (j) $\{1,3\} \subseteq A \cap B.$	
B. Suppose that $A =$	$= \{1, 3, 5, 7, 9\}, B = \{1, 3, 5, 7, 9\}$	$1, 2, 4, 8$, and $C = \{2, 3, 5,\}$	7} with universal set	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ Find	
(a) $A \cap B$.	(c) A^c ($\cap C^c$. (e)	$(B \cap C) \cap (A \cup B^c).$	(g) $(A \cap B) \times (B \cap C)$.	
(b) $A \cup C$.	$\mathbf{A} \cup C. \tag{d} B^c \cup (A \cap C).$		$A \times (B \cap C).$	(h) $(A \times C) \cap (C \times A)$.	
Write a porstion	for each of the follow:	ng statements			
_	for each of the following $u + z > 5$	-	The integer n is a pr	ime number and $n < 10$	
 (a) ∀x∀y∃z, x + y + z > 5. (b) Every integer is a rational number. 			(e) The integer n is a prime number and $n < 10$. (f) $\forall \epsilon > 0 \exists \delta > 0$, $(x - a < \delta) \Rightarrow (x^2 - a^2 < \epsilon)$.		
(b) Every integer is a rational number. (c) $\forall x \in A \forall y \in B, x \cdot y \in A \cap B.$			(i) $v \in v = 0 \le 0$, $(x - u < 0) \Rightarrow (x - u < 0)$. (g) For any $x \in \mathbb{R}$ there exists an $n \in \mathbb{Z}$ such that $x < r$		
(d) There is a perfect square that is not even.		(0)	(b) There exist positive integers a and b with $\sqrt[3]{2} = a/b$.		
	L		1	. ,	
5. Find the truth va	alues of the following s	tatements, where the univ	ersal set is \mathbb{R} :		
(a) $\forall x \forall y, y \neq x$. (c) $\exists x \forall$	$y, y \neq x.$ (e)	$\forall x \forall y, \ y^2 \ge x.$	(g) $\exists x \forall y, y^2 \ge x.$	
(b) $\forall x \exists y, y \neq x$. (d) $\exists x \exists$	$y, y \neq x.$ (f)	$\forall x \exists y, y^2 \ge x.$	(h) $\exists x \exists y, y^2 \ge x.$	
	owing things:				
6. Calculate the foll	(a) The gcd and lcm of 256 and 520 .		(c) The gcd and lcm of 2019 and 5678 .		
	1 lcm of 256 and 520.		(d) The gcd and lcm of $2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.		
(a) The gcd and	l lcm of 256 and 520. l lcm of 921 and 177.		The gcd and lcm of \sharp	$2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.	
(a) The gcd and			The gcd and lcm of 2	$2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.	
 (a) The gcd and (b) The gcd and 7. Suppose A, B, a 	l lcm of 921 and 177. nd C are arbitrary set	(d)	set U . Identify whic	h statements are true and whic	
 (a) The gcd and (b) The gcd and 7. Suppose A, B, a 	l lcm of 921 and 177. nd C are arbitrary set rove the true statemen	(d) s contained in a universal nts and give a counterexan	set U . Identify whic	h statements are true and whic	

8. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

- (a) If a and b are integers, then $3a 9b \neq 2$.
- (b) Suppose $a, b \in \mathbb{Z}$. If ab = 1 then $a \leq 1$ or $b \leq 1$.
- (c) If 5n + 1 is even, then n is odd.
- (d) If n^3 is odd, then n is odd.
- (e) If n is not a multiple of 3, then n cannot be written as the sum of 3 consecutive integers.
- (f) Suppose $a, b \in \mathbb{Z}$. If n does not divide ab, then n does not divide a and n does not divide b.

- 9. Find a counterexample to each of the following statements:
 - (a) For any integers a, b, and c, if a|b and a|c, then b|c.
 - (b) If p and q are prime, then p + q is never prime.
 - (c) If n is an integer, then $n^2 + n + 11$ is always prime.
 - (d) There do not exist integers a and b with $a^2 b^2 = 7$.
 - (e) The sum of two irrational numbers is always irrational.
- (f) If n > 1 is an integer, then \sqrt{n} is always irrational.
- (g) If $n \neq 3$ then $n^2 \neq 9$.
- (h) There are no positive integers m, n with $m^2 2n^2 = 1$.
- (i) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^4 = x.$
- (j) The sum of two perfect squares is never a perfect cube.

10. Prove the following (recall the Fibonacci numbers F_i are defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 2$):

- (a) If F_n is the *n*th Fibonacci number, prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer *n*.
- (b) Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.
- (c) Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
- (d) For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- (e) Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.
- (f) Prove there do not exist integers a and b such that $a^2 = 33 + 9b$. [Hint: Use (e).]
- (g) Prove that any two consecutive perfect squares (i.e., k^2 and $(k+1)^2$) are relatively prime. [Hint: Use (e).]
- (h) Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ for every positive integer n.
- (i) If $A = \{4a + 6b : a, b \in \mathbb{Z}\}$ and $B = \{2c : c \in \mathbb{Z}\}$, prove that A = B.
- (j) Show that the propositions $\neg [Q \land \neg (P \land Q)] \land \neg P$ and $\neg Q \land \neg P$ are logically equivalent.
- (k) If p is a prime, prove that gcd(n, n + p) > 1 if and only if p|n.
- (l) Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
- (m) If $C = \{6c : c \in \mathbb{Z}\}$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}$, prove that $C \subseteq D$.
- (n) Suppose $b_1 = 3$ and $b_{n+1} = 2b_n n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
- (o) Suppose $c_1 = c_2 = 2$, and for all $n \ge 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n.
- (p) Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \ge 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.
- (q) For any sets A, B inside a universal set U, prove $A \cup B^c = U$ if and only if $A^c \cap B = \emptyset$.
- (r) Show that $7^n 1$ is a multiple of 6 for every positive integer n.
- (s) Prove that a and b are relatively prime if and only if a^2 and b^2 are relatively prime. [Hint: Use (e).]
- (t) For any sets A, B, C, prove $A \subseteq B \cup C$ if and only if $A \setminus B \subseteq C$.