E. Dummit's Math 1465, Fall 2024 \sim Midterm 1 Review Answers

1.	(a) Not equivalent (b) Not equivalent (c) Equivalent	(d) Not equivalent (e) Not equivalent (f) Equivalent
2.	(a) True (b) False (c) False (d) True (e) False	(f) True (g) True (h) True (i) True (j) False
3. (a) {1} (b) {1,2,3,5,7,9} (c) {4,6,8} (d) {3,5,6,7,9} (e) $\emptyset = \{\}$ (f) {(1,2), (3,2), (5,2), (7,2), (9,2)} (g) {(1,2)} (h) {(3,3), (3,5), (3,7), (5,3), (5,5), (5,7), (7,3), (7,5), (7,7)} (f) {(1,2), (3,2), (5,2), (7,2), (9,2)}		
4.	 (a) ∃x∃y∀z, x + y + z ≤ 5 (c) ∃x ∈ A∃y ∈ B, x ⋅ y ∉ A ∩ B. (e) The integer n is either not prime or n ≥ 10. (g) There exists an x ∈ ℝ such that for all n ∈ ℤ, x ≥ n. 	 (b) There exists an integer that is not a rational number. (d) Every perfect square is even. (f) ∃ε > 0 ∀δ > 0, (x - a < δ) ∧ (x² - a² ≥ ε). (h) For all positive integers a and b, ³√2 ≠ a/b.
5.	(a) False (b) True (c) False (d) True	(e) False (f) True (g) True (h) True
6.	(a) gcd 8, lcm $256 \cdot 520/8$. (b) gcd 3, lcm $921 \cdot 177/3$. (c	c) gcd 1, lcm 2019 · 5678. (d) gcd $2^3 3^2 5^4$, lcm $2^4 3^3 5^4 7 \cdot 11$.
7.	(a) True. Note $x \in (A \cup B) \setminus A$ iff $x \in (A \cup B) \cap A^c$ iff $x \in B$	$B \cap A^c$ iff $x \in B \setminus A$.

(b) False. Counterexample: $A = \{1, 2\}, B = \{1\}, C = \{2\}$. Then $A \setminus (B \cap C) = \{1, 2\}$ while $(A \setminus B) \cap (A \setminus C) = \emptyset$. (d) False. Counterexample: $A = \{1\}, B = \{1, 2\}$ with $U = \{1, 2\}$. Then $(A \cap B)^c \cup B = \{1, 2\}$ while $(A^c \cap B)^c = \{1\}$. (e) True. Note $(A \setminus B)^c = (A \cap B^c)^c = A^c \cup B$, and similarly $(B \setminus A)^c = A \cup B^c$. If $x \in A^c \cap B^c$ then $x \in A^c \cup B$ and also $x \in A \cup B^c$.

8. (a) If 3a - 9b = 2, then a and b cannot both be integers. Proof: By contradiction, if a and b are integers, then 3 divides 3a - 9b but 3 does not divide 2 (impossible).

(b) If a > 1 and b > 1, then $ab \neq 1$. Proof: If a > 1 and b > 1 then multiplying a > b by b yields ab > b > 1 so ab > 1. In particular $ab \neq 1$.

(c) If n is even, then 5n + 1 is odd. Proof: If n = 2k then 5n + 1 = 10k + 1 = 2(5k) + 1 is odd by definition.

(d) If n is even then n^3 is even. Proof: If n = 2k then $n^3 = 8k^3 = 2(4k^3)$ is even by definition.

(e) If n is the sum of 3 consecutive integers, then n is a multiple of 3. Proof: If n = a + (a + 1) + (a + 2) then n = 3a + 3 = 3(a + 1) is a multiple of 3.

(f) If n divides a or n divides b then n divides ab. Proof: If n|a then a = kn so ab = (kb)n, and if n|b then b = ln so ab = (al)n. In either case, n|ab.

9. There are many examples for each part. Here is one for each:

(a) Example: a = 2, b = 4, c = 6.

(b) Example: p = 2, q = 3, then p + q = 5 is prime.

- (c) Example: n = 11, then $n^2 + n + 11 = 11 \cdot 13$ is not prime.
- (d) Example: a = 4, b = 3, then $a^2 b^2 = 16 9 = 7$.
- (e) Example: $\sqrt{2} + (-\sqrt{2}) = 0$ is rational, but $\sqrt{2}$ and $-\sqrt{2}$ are irrational.
- (f) Example: $\sqrt{4} = 2$ is rational.
- (g) Example: n = -3, then $n \neq 3$ but $n^2 = 9$.

(h) Example: m = 3, n = 2, then $m^2 - 2n^2 = 9 - 8 = 1$.

- (i) Example: x = -1, then there is no possible y with $y^4 = x$.
- (j) Examples: $2^2 + 2^2 = 2^3$, or $5^2 + 10^2 = 5^3$.

- 10. Here are brief outlines of each proof:
 - (a) Induct on *n*. Base case n = 1 has $F_1 + F_3 = 3 = F_4$. Inductive step: if $F_1 + \dots + F_{2n+1} = F_{2n+2}$ then $F_1 + \dots + F_{2n+1} + F_{2n+3} = [F_1 + \dots + F_{2n+1}] + F_{2n+3} = F_{2n+2} + F_{2n+3} = F_{2n+4}$ as required.
 - (b) Clearly, if 6|n then 2|n and 3|n. For the other direction, if 2|n then n = 2k. Then if 3|2k we must have 3|k since $3 \nmid 2$ and 3 is prime. So k = 3a, and thus n = 6a, meaning 6|n.
 - (c) Induct on *n*. Base case n = 1 has $1 = 2 1/2^0$. Inductive step: If $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$, then $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 \frac{1}{2^n} + \frac{1}{2^{n+1}} = 2 \frac{1}{2^{n+1}}$ as required.
 - (d) Note $x \in A \setminus (B \cap C) \iff x \in A$ and $x \notin (B \cap C) \iff x \in A$ and $(x \notin B \text{ or } x \notin C) \iff (x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \notin C) \iff x \in A \setminus B$ or $x \in A \setminus C \iff x \in (A \setminus B) \cup (A \setminus C)$.
 - (e) If $p|a \cdot a$ then p|a or p|a by the prime divisibility property. Since the two conclusion statements are the same, we have p|a.
 - (f) Note that 33 + 9b is divisible by 3 but not 9. But then a^2 is divisible by 3 by (d), which would mean 3|a and thus $9|a^2$, but this is impossible.
 - (g) If p is a prime with $p|k^2$ and $p|(k+1)^2$, then by (d) we have p|k and p|(k+1) so that p|(k+1) k = 1, impossible.
 - (h) Induct on *n*. Base case n = 1 has $\frac{1}{1 \cdot 2} = \frac{1}{2}$. Inductive step: if $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ then $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$ as required.
 - (i) First, $A \subseteq B$ because if n = 4a + 6b then $n = 2(2a + 3c) \in B$. Also, $B \subseteq A$ because if n = 2c then we would have $n = 4(2c) + 6(-c) \in A$ via Euclidean algorithm calculation.
 - (j) $\neg [Q \land \neg (P \land Q)] \land \neg P = [\neg Q \lor (P \land Q)] \land \neg P = (\neg Q \land \neg P) \lor (P \land Q \land \neg P) = (\neg Q \land \neg P) \lor False = \neg Q \land \neg P.$ Alternatively, draw a truth table.
 - (k) Note gcd(n, n + p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal to p if and only if p|n (by definition of gcd).
 - (l) Induct on *n*. Base case n = 1 has $a_1 = 3^1 2$. Inductive step: if $a_n = 3^n 2$ then $a_{n+1} = 3(3^n 2) + 4 = 3^{n+1} 2$ as claimed.
 - (m) If $n \in C$, then n = 6c for some c. Then $n = 10(2c) + 14(-c) \in D$ as required.
 - (n) Induct on *n*. Base case n = 1 has $b_1 = 2^1 + 1$. Inductive step: if $b_n = 2^n + n$ then $b_{n+1} = 2(2^n + n) n + 1 = 2^{n+1} + (n+1)$ as claimed.
 - (o) Induct on *n*. Base cases n = 1 and n = 2 have $c_1 = 2^{F_1}$ and $c_2 = 2^{F_2}$. Inductive step: if $c_n = 2^{F_n}$ and $c_{n-1} = 2^{F_{n-1}}$ then $c_{n+1} = c_n c_{n-1} = 2^{F_n} 2^{F_{n-1}} = 2^{F_n + F_{n-1}} = 2^{F_{n+1}}$ as required.
 - (p) Induct on n. Base cases n = 1 and n = 2 have $d_1 = 2^1$ and $d_2 = 2^2$. Inductive step: if $d_n = 2^n$ and $d_{n-1} = 2^{n-1}$ then $d_{n+1} = 2^n + 2(2^{n-1}) = 2^n + 2^n = 2^{n+1}$ as required.
 - (q) Observe $(A \cup B^c)^c = A^c \cap (B^c)^c = A^c \cap B$ by de Morgan's laws, so $A \cup B^c$ and $A^c \cap B$ are complements. Thus, if $A \cup B^c = U$ then $A^c \cap B = U^c = \emptyset$ and conversely if $A^c \cap B = \emptyset$ then $A \cup B^c = \emptyset^c = U$.
 - (r) Induct on n. Base case n = 1 has $7^1 1 = 6$ a multiple of 6. Inductive step: if 6 divides $7^n 1$ then 6 divides $7(7^n 1) + 6 = 7^{n+1} 1$.
 - (s) Show the contrapositive. If a, b are not relatively prime so that d|a and d|b for some d > 1, then $d^2|a^2$ and $d^2|b^2$ so a^2, b^2 are not relatively prime. Conversely by (e) if p is prime and $p|a^2$ and $p|b^2$ then p|a and p|b so a, b are not relatively prime.
 - (t) First suppose $A \subseteq B \cup C$. If $x \in A \setminus B$ then $x \in A$ and $x \notin B$. Since $A \subseteq B \cup C$, $x \in B \cup C$ so $x \in B$ or $x \in C$ but since $x \notin B$ we must have $x \in C$: thus $A \setminus B \subseteq C$. Conversely suppose $A \setminus B \subseteq C$ and let $x \in A$. If $x \in B$ then clearly $x \in B \cup C$ and otherwise if $x \notin B$ then $x \in A \setminus B$ hence $x \in C$ and once again $x \in B \cup C$: thus $A \subseteq B \cup C$.