
E. Dummit's Math 1465, Fall 2024 ∼ Midterm 1 Review Answers

1. (a) Not equivalent (b) Not equivalent (c) Equivalent (d) Not equivalent (e) Not equivalent (f) Equivalent

2. (a) True (b) False (c) False (d) True (e) False (f) True (g) True (h) True (i) True (j) False

3. (a) {1} (b) {1, 2, 3, 5, 7, 9} (c) {4, 6, 8} (d) {3, 5, 6, 7, 9} (e) ∅ = {} (f) {(1, 2), (3, 2), (5, 2), (7, 2), (9, 2)}
(g) {(1, 2)} (h) {(3, 3), (3, 5), (3, 7), (5, 3), (5, 5), (5, 7), (7, 3), (7, 5), (7, 7)}

4. (a) ∃x∃y∀z, x+ y + z ≤ 5 (b) There exists an integer that is not a rational number.
(c) ∃x ∈ A ∃y ∈ B, x · y 6∈ A ∩B. (d) Every perfect square is even.
(e) The integer n is either not prime or n ≥ 10. (f) ∃ε > 0 ∀δ > 0, (|x− a| < δ) ∧ (|x2 − a2| ≥ ε).
(g) There exists an x ∈ R such that for all n ∈ Z, x ≥ n. (h) For all positive integers a and b, 3

√
2 6= a/b.

5. (a) False (b) True (c) False (d) True (e) False (f) True (g) True (h) True

6. (a) gcd 8, lcm 256 · 520/8. (b) gcd 3, lcm 921 · 177/3. (c) gcd 1, lcm 2019 · 5678. (d) gcd 233254, lcm 2433547 · 11.

7. (a) True. Note x ∈ (A ∪B)\A i� x ∈ (A ∪B) ∩Ac i� x ∈ B ∩Ac i� x ∈ B\A.
(b) False. Counterexample: A = {1, 2}, B = {1}, C = {2}. Then A\(B ∩ C) = {1, 2} while (A\B) ∩ (A\C) = ∅.
(d) False. Counterexample: A = {1}, B = {1, 2} with U = {1, 2}. Then (A ∩B)c ∪B = {1, 2} while (Ac ∩B)c = {1}.
(e) True. Note (A\B)c = (A∩Bc)c = Ac ∪B, and similarly (B\A)c = A∪Bc. If x ∈ Ac ∩Bc then x ∈ Ac ∪B and also
x ∈ A ∪Bc.

8. (a) If 3a− 9b = 2, then a and b cannot both be integers. Proof: By contradiction, if a and b are integers, then 3 divides
3a− 9b but 3 does not divide 2 (impossible).
(b) If a > 1 and b > 1, then ab 6= 1. Proof: If a > 1 and b > 1 then multiplying a > b by b yields ab > b > 1 so ab > 1.
In particular ab 6= 1.
(c) If n is even, then 5n+ 1 is odd. Proof: If n = 2k then 5n+ 1 = 10k + 1 = 2(5k) + 1 is odd by de�nition.
(d) If n is even then n3 is even. Proof: If n = 2k then n3 = 8k3 = 2(4k3) is even by de�nition.
(e) If n is the sum of 3 consecutive integers, then n is a multiple of 3. Proof: If n = a + (a + 1) + (a + 2) then
n = 3a+ 3 = 3(a+ 1) is a multiple of 3.
(f) If n divides a or n divides b then n divides ab. Proof: If n|a then a = kn so ab = (kb)n, and if n|b then b = ln so
ab = (al)n. In either case, n|ab.

9. There are many examples for each part. Here is one for each:
(a) Example: a = 2, b = 4, c = 6.
(b) Example: p = 2, q = 3, then p+ q = 5 is prime.
(c) Example: n = 11, then n2 + n+ 11 = 11 · 13 is not prime.
(d) Example: a = 4, b = 3, then a2 − b2 = 16− 9 = 7.
(e) Example:

√
2 + (−

√
2) = 0 is rational, but

√
2 and −

√
2 are irrational.

(f) Example:
√
4 = 2 is rational.

(g) Example: n = −3, then n 6= 3 but n2 = 9.
(h) Example: m = 3, n = 2, then m2 − 2n2 = 9− 8 = 1.
(i) Example: x = −1, then there is no possible y with y4 = x.
(j) Examples: 22 + 22 = 23, or 52 + 102 = 53.



10. Here are brief outlines of each proof:

(a) Induct on n. Base case n = 1 has F1 + F3 = 3 = F4. Inductive step: if F1 + · · · + F2n+1 = F2n+2 then
F1 + · · ·+ F2n+1 + F2n+3 = [F1 + · · ·+ F2n+1] + F2n+3 = F2n+2 + F2n+3 = F2n+4 as required.

(b) Clearly, if 6|n then 2|n and 3|n. For the other direction, if 2|n then n = 2k. Then if 3|2k we must have 3|k since
3 - 2 and 3 is prime. So k = 3a, and thus n = 6a, meaning 6|n.

(c) Induct on n. Base case n = 1 has 1 = 2 − 1/20. Inductive step: If 1 +
1

2
+

1

4
+ · · · + 1

2n
= 2 − 1

2n
, then

1 +
1

2
+

1

4
+ · · ·+ 1

2n
+

1

2n+1
= 2− 1

2n
+

1

2n+1
= 2− 1

2n+1
as required.

(d) Note x ∈ A\(B ∩ C) ⇐⇒ x ∈ A and x 6∈ (B ∩ C) ⇐⇒ x ∈ A and (x 6∈ B or x 6∈ C) ⇐⇒ (x ∈ A and x 6∈ B) or
(x ∈ A and x 6∈ C) ⇐⇒ x ∈ A\B or x ∈ A\C ⇐⇒ x ∈ (A\B) ∪ (A\C).

(e) If p|a · a then p|a or p|a by the prime divisibility property. Since the two conclusion statements are the same, we
have p|a.

(f) Note that 33 + 9b is divisible by 3 but not 9. But then a2 is divisible by 3 by (d), which would mean 3|a and thus
9|a2, but this is impossible.

(g) If p is a prime with p|k2 and p|(k+1)2, then by (d) we have p|k and p|(k+1) so that p|(k+1)− k = 1, impossible.

(h) Induct on n. Base case n = 1 has
1

1 · 2
=

1

2
. Inductive step: if

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
then

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=
n+ 1

n+ 2
as required.

(i) First, A ⊆ B because if n = 4a+ 6b then n = 2(2a+ 3c) ∈ B. Also, B ⊆ A because if n = 2c then we would have
n = 4(2c) + 6(−c) ∈ A via Euclidean algorithm calculation.

(j) ¬[Q ∧ ¬(P ∧ Q)] ∧ ¬P = [¬Q ∨ (P ∧ Q)] ∧ ¬P = (¬Q ∧ ¬P ) ∨ (P ∧ Q ∧ ¬P ) = (¬Q ∧ ¬P ) ∨ False = ¬Q ∧ ¬P .
Alternatively, draw a truth table.

(k) Note gcd(n, n+ p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal to p if
and only if p|n (by de�nition of gcd).

(l) Induct on n. Base case n = 1 has a1 = 31− 2. Inductive step: if an = 3n− 2 then an+1 = 3(3n− 2)+ 4 = 3n+1− 2
as claimed.

(m) If n ∈ C, then n = 6c for some c. Then n = 10(2c) + 14(−c) ∈ D as required.

(n) Induct on n. Base case n = 1 has b1 = 21 + 1. Inductive step: if bn = 2n + n then bn+1 = 2(2n + n) − n + 1 =
2n+1 + (n+ 1) as claimed.

(o) Induct on n. Base cases n = 1 and n = 2 have c1 = 2F1 and c2 = 2F2 . Inductive step: if cn = 2Fn and cn−1 = 2Fn−1

then cn+1 = cncn−1 = 2Fn2Fn−1 = 2Fn+Fn−1 = 2Fn+1 as required.

(p) Induct on n . Base cases n = 1 and n = 2 have d1 = 21 and d2 = 22. Inductive step: if dn = 2n and dn−1 = 2n−1

then dn+1 = 2n + 2(2n−1) = 2n + 2n = 2n+1 as required.

(q) Observe (A ∪Bc)c = Ac ∩ (Bc)c = Ac ∩B by de Morgan's laws, so A ∪Bc and Ac ∩B are complements. Thus, if
A ∪Bc = U then Ac ∩B = U c = ∅ and conversely if Ac ∩B = ∅ then A ∪Bc = ∅c = U .

(r) Induct on n. Base case n = 1 has 71 − 1 = 6 a multiple of 6. Inductive step: if 6 divides 7n − 1 then 6 divides
7(7n − 1) + 6 = 7n+1 − 1.

(s) Show the contrapositive. If a, b are not relatively prime so that d|a and d|b for some d > 1, then d2|a2 and d2|b2
so a2, b2 are not relatively prime. Conversely by (e) if p is prime and p|a2 and p|b2 then p|a and p|b so a, b are not
relatively prime.

(t) First suppose A ⊆ B ∪ C. If x ∈ A\B then x ∈ A and x 6∈ B. Since A ⊆ B ∪ C, x ∈ B ∪ C so x ∈ B or x ∈ C
but since x 6∈ B we must have x ∈ C: thus A\B ⊆ C. Conversely suppose A\B ⊆ C and let x ∈ A. If x ∈ B then
clearly x ∈ B ∪ C and otherwise if x 6∈ B then x ∈ A\B hence x ∈ C and once again x ∈ B ∪ C: thus A ⊆ B ∪ C.


