
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 9, due Tue Nov 12th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. For each function f : A→ B, decide if f is a bijection, and if so, give a formula or otherwise describe f−1.

(a) f1 = {(1, 3), (2, 4), (3, 2)} from A = {1, 2, 3} to B = {2, 3, 4}.

• We can see from the list of pairs that f1 is one-to-one and onto so it is a bijection , and f−1
1 =

{(3, 1), (4, 2), (2, 3)} is simply the inverse relation of f1.

(b) f2 = {(1, 3), (2, 4), (3, 3)} from A = {1, 2, 3} to B = {2, 3, 4}.
• From the list of pairs we see f2 is neither one-to-one (since f(1) = f(3)) nor onto (since 2 6∈ im(f))

so it is not a bijection .

(c) f3(x) = 2x+ 3 from A = Q to B = Q.
• First, f3 is one-to-one since f3(a) = f3(b) yields 2a+ 3 = 2b+ 3 hence a = b. Also, f3 is onto since

f3(
y−3
2 ) = y for any y ∈ Q: thus f3 is a bijection .

• Alternatively, we could just try to compute the inverse function directly: solving y = 2x + 3 for x

yields x = y−3
2 which is a function from B to A. So we see f−1

3 exists and is given by f−1
3 (y) = y−3

2 .

(d) f4(x) = 2x+ 3 from A = Z to B = Z.
• Here we can see that f3 is one-to-one but not onto as a function from Z to Z (as its image is only

the odd integers) so f4 is not a bijection .

(e) f5(x) =
2x− 1

x+ 3
from A = Q\{−3} to B = Q\{2}.

• Solving y = 2x−1
x+3 for x yields x = 3y+1

2−y . Since this is a well-de�ned function from B to A, we see

that f5 is a bijection and that f−1
5 (y) = 3y+1

2−y .

2. In class, we showed that if A is a �nite set and f : A → A is a function, then f is one-to-one if and only if
f is onto. The goal of this problem is for you to show via example that both implications are FALSE in the
situation where A is an in�nite set.

(a) Find an example of a function f : Z+ → Z+ that is one-to-one but not onto.

• There are many possibilities, but a very simple one is f(n) = n+ 1. This function is clearly one-to-
one, but it is not onto since 1 is missing from the image of f .

(b) Find an example of a function f : Z+ → Z+ that is onto but not one-to-one.

• There are many possibilities, but a simple one is f(n) =

{
1 if n = 1, 2

n− 1 if n > 2
. This function is clearly

onto, since f(n+ 1) = n for every positive integer n, but it is not one-to-one since f(1) = f(2).

• Another option is g(n) = the value of n/2 rounded up to the nearest integer. This function is clearly
onto since g(2n) = n but it is not one-to-one since for example f(1) = f(2).

(c) Find an example of a function f : R→ R that is one-to-one but not onto.

• There are many possibilities, but a fairly simple one is f(x) = ex. This function is one-to-one, but
it is not onto because ex is always positive for any real number x.
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(d) Find an example of a function f : R→ R that is onto but not one-to-one.

• There are many possibilities, but a fairly simple one is f(x) = x3 − x. This function is onto (as can
be seen from its graph) but it is not one-to-one since for example f(0) = 0 = f(1).

• Another fairly simple possibility is f(x) = x sinx whose graph also indicates it is onto, but it is not
one-to-one since f(0) = 0 = f(π).

3. Identify whether each of the following sets is (i) �nite, (ii) countably in�nite, or (iii) uncountably in�nite:

(a) The set Q+ of positive rational numbers.

• This set is in�nite and a subset of the countable set Q, so it is countably in�nite .

(b) The set R of real numbers.

• This set is uncountably in�nite by Cantor's diagonal argument.

(c) The Cartesian product {0, 1} × {0, 1, 2, 3, 4, 5, 6, 7}

• Both sets are �nite, so their Cartesian product is also �nite .

(d) The Cartesian product {0, 1} × Z.

• The set is in�nite since Z is in�nite, and it is countable since both sets are countable. So it is

countably in�nite .

(e) The set of subsets of Z.

• This set is certainly in�nite, and by Cantor's theorem, this set is not countable. So it is uncountably in�nite .

(f) The Cartesian product ∅ × Z.

• The set is �nite since it is the empty set.

(g) The Cartesian product ∅ × R.

• The set is �nite since it is (also) the empty set.

(h) The set of functions f : R→ R.

• Since this set contains the functions of the form f(x) = c for each c ∈ R, and this set is uncountable,

the set of all functions is uncountable .

(i) The Cartesian product Z×Q.

• The set is in�nite since Z is in�nite, and it is countable since both sets are countable. So it is

countably in�nite .

(j) The Cartesian product Z×Q× R.

• The set is uncountably in�nite since R is uncountable and the other sets are nonempty.

(k) The power set of the power set of the power set of {1, 2, 3, 4, 5}.

• The power set of {1, 2, 3, 4, 5} is �nite (it has 25 elements) and so its power set is also �nite (it has

22
5

elements).

(l) The set R\Q of irrational numbers.

• The set is uncountably in�nite since otherwise R would be the union of two countable sets R\Q
and Q hence would also be countable.
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4. Suppose f : A→ B and g : B → A are functions.

(a) Show that if f is one-to-one and f ◦ g = iB is the identity on B, then g = f−1.

• As shown in class, if f ◦g = iB then f is onto: for any b ∈ B taking a = g(b) yields f(a) = f(g(b)) = b.

• Thus f is one-to-one and onto hence a bijection, so it has an inverse f−1. Then g = iA ◦ g =
(f−1 ◦ f) ◦ g = f−1 ◦ (f ◦ g) = f−1 ◦ iB = f−1.

(b) Show that if f is onto and g ◦ f = iA is the identity on A, then g = f−1.

• As shown in class, if g ◦ f = iB then f is one-to-one: if f(a1) = f(a2) then a1 = g(f(a1)) =
g(f(a2)) = a2.

• Thus f is one-to-one and onto hence a bijection, so it has an inverse f−1. Then a similar calculation
as in (a) yields g = f−1.

(c) Suppose that f ◦ g = iB but g ◦ f 6= iA. Show that f is onto but not one-to-one and g is one-to-one but
not onto.

• As noted in (a), if f ◦ g = iB then f is onto, and as noted in (b), this relation also implies g is
one-to-one.

• If f were also one-to-one then by (a) that would imply g = f−1 but this is not true because g◦f 6= iA,
so f cannot be one-to-one.

• Likewise, if g were also onto then by (b) that would imply g = f−1 but this is not true because
g ◦ f 6= iA, so g cannot be onto.

5. Let p be a prime and a be an integer relatively prime to p. The goal of this problem is to give another proof
that ap ≡ a (mod p).

(a) If S is the set of residue classes modulo p, prove that the function f : S → S given by f(b) = a · b is a
bijection. [Hint: a has a multiplicative inverse a−1 modulo p.]

• As noted in the hint, since a is relatively prime to p, a has a multiplicative inverse a−1 modulo p
such that a−1 · a = 1.

• Now observe that the map g : S → S given by g(b) = a−1 · b is a two-sided inverse function for f :
we see f(g(b)) = a · a−1 · b = 1 · b = b and also g(f(b)) = a−1 · a · b = 1 · b = b.

• Hence f is invertible so it is a bijection as claimed.

(b) Show that a · 2a · 3a · · · · · (p− 1)a = 1 · 2 · 3 · · · · · p− 1 modulo p. [Hint: Use (a) to show that the two
products consist of the same terms, merely rearranged.]

• With f(b) = ab as in (a), since f(0) = 0 and f is a bijection, f maps the nonzero residue classes to
themselves.

• In particular, this means that the products 1 · 2 · 3 · · · · · p− 1 and a · 2a · 3a · · · · · (p− 1)a consist of
the same terms, merely rearranged, and are therefore equal.

(c) Prove that ap−1 = 1 modulo p, and deduce that ap ≡ a (mod p).

• From the result of (b) we see that a · 2a · 3a · · · · · (p− 1)a = 1 · 2 · 3 · · · · · p− 1 modulo p.

• Factoring out the a from each term on the left-hand side yields ap−1(1·2·3·· · ··p− 1) = 1·2·3·· · ··p− 1.

• Now we can simply cancel each of the terms in the product 1 ·2 ·3 · · · · ·p− 1 from both sides, because
they are all invertible modulo p.

• Cancelling yields the claimed ap−1 = 1. Finally, since this equivalently says ap−1 ≡ 1 (mod p),
multiplying by a yields ap ≡ a (mod p).

6. Suppose f : Z→ Z is a function such that f(f(f(n)) = n for all n ∈ Z.

(a) Show that f is a bijection.

• Observe that f is one-to-one, since if f(a) = f(b) then applying f twice yields f(f(f(a))) =
f(f(f(b))) so that a = b.

• Also, f is onto, since for any n ∈ Z, if we take a = f(f(n)), we have f(a) = f(f(f(n))) = n.
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(b) Give an example of such a function f that is NOT equal to the identity function. (You don't need to
give an explicit formula, but at least describe how to �nd the values of f .)

• The idea is to arrange the values of f in cycles of three, so that applying the function three times
returns each value back to its start.

• One option is to send 0→ 1→ 2→ 0, 3→ 4→ 5→ 3, 6→ 7→ 8→ 6, and so forth. Explicitly, we
have f(3n) = 3n+ 1, f(3n+ 1) = 3n+ 2, and f(3n+ 2) = 3n for each integer n.

7. The goal of this problem is to give another proof that Q is countable. Consider the function f : Q+ → Z+

de�ned as follows: for positive a/b ∈ Q in lowest terms with prime factorizations a = pa1
1 p

a2
2 · · · p

ak

k and

b = qb11 q
b2
2 · · · q

bl
l , set f(a/b) = p2a1

1 p2a2
2 · · · p2ak

k q2b1−1
1 q2b2−1

2 · · · q2bl−1
l .

Example: Since 9 = 32 and 14 = 21 · 71, we have f(9/14) = 32·2 · 22·1−1 · 72·1−1 = 342171.

Example: Since 1 is the empty product and 16 = 24, we have f(1/16) = 1 · 22·4−1 = 27. Since 2/32 = 1/16
we also have f(2/32) = 27.

(a) Find f(7/3), f(3/7), f(40/3), f(80/6), f(3), f(1/3), and f(1).

• We have f(7/3) = 72 ·32−1 = 7231, f(3/7) = 3272−1 = 3271, f(40/3) = 265231, f(80/6) = f(40/3) =
265231, f(3) = 32, f(1/3) = 31, and f(1) = 1.

(b) Explain why f(a/b) is a positive integer for every positive rational number a/b.

• All of the exponents p2ai
i are nonnegative, as are all of the exponents q2bi−1

i , so the product

p2a1
1 p2a2

2 · · · p2ak

k q2b1−1
1 q2b2−1

2 · · · q2bl−1
l is an integer.

(c) Show that f is one-to-one. [Hint: You will need to use the fact that the primes p1, . . . , pk and q1, . . . , ql
are all distinct.]

• Suppose a = pa1
1 p

a2
2 · · · p

ak

k and b = qb11 q
b2
2 · · · q

bl
l with a/b in lowest terms, so that the primes pi and

qj are all distinct.

• Now suppose c = rc11 r
c2
2 · · · rcmm and d = sd1

1 s
d2
2 · · · sdn

n has c/d in lowest terms, so that the primes ri
and sj are also all distinct, and suppose f(a/b) = f(c/d).

• Comparing factorizations p2a1
1 p2a2

2 · · · p2ak

k q2b1−1
1 q2b2−1

2 · · · q2bl−1
l = r2c11 r2c22 · · · r2cmm s2d1−1

1 s2d2−1
2 · · · s2dn−1

n .
Since integers have unique prime factorizations, the primes on the right-hand side must be the same
as the primes on the left-hand side, and the exponents must also agree correspondingly.

• Since each pi and ri has an even exponent, and each qj and sj has an odd exponent, and even
numbers cannot equal odd numbers, the pi must be the same as the ri and the qj must be the same
as the sj .

• Matching up the primes with their corresponding exponents yields a = p2a1
1 p2a2

2 · · · p2ak

k = r2c11 r2c22 · · · r2cmm =

c and b = q2b1−1
1 q2b2−1

2 · · · q2bl−1
l = s2d1−1

1 s2d2−1
2 · · · s2dn−1

n = d and thus a/b = c/d. Thus, f is one-
to-one.

(d) Find f−1(27), f−1(9), f−1(12), and f−1(24325373111).

• As noted in the second example, we have f(1/16) = 27, so taking the inverse yields 1/16 = f−1(27).

• Likewise, from (a) we have f(3) = 32, so by taking the inverse we see 3 = f−1(9).

• Similarly, since 12 = 2231 we have f(2/3) = 2231 = 12 so f−1(12) = 2/3.

• Finally, since f(22 · 3/(52 · 72 · 11)) = 24325373111 we have f−1(24325373111) = 22 · 3/(52 · 72 · 11).
(e) Show that f is onto.

• As motivated by (d) we can see that if we separate the primes in the factorization of n into those

with even exponents p2ai
i and odd exponents q

2bj−1
j , with n = p2a1

1 p2a2
2 · · · p2ak

k q2b1−1
1 q2b2−1

2 · · · q2bl−1
l ,

then for a = pa1
1 p

a2
2 · · · p

ak

k and b = qb11 q
b2
2 · · · q

bl
l we have f(a/b) = n and so f is onto.

(f) Deduce that f is a bijection and conclude that Q+ is countable.

• By (c) and (e) we see that f is one-to-one and onto, hence a bijection fromQ+ to Z+, thus establishing
that Q+ is countable.
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8. The goal of this problem is to give another proof that the power set of the positive integers Z+ is uncountable.
Let S be the set of in�nite base-2 sequences d1d2d3d4 . . . , where each digit di ∈ {0, 1} for all i ≥ 1.

(a) Prove that S is uncountable. [Hint: Use Cantor's diagonal argument.]

• Suppose by way of contradiction that S is countable, and arrange the elements of S as follows:

s1 = 0.d1,1d2,1d3,1d4,1 . . .

s2 = 0.d1,2d2,2d3,2d4,2 . . .

s3 = 0.d1,3d2,3d3,3d4,3 . . .

s4 = 0.d1,4d2,4d3,3d4,4 . . .

...
...

...

• Now construct a new sequence t using the diagonal elements di,i: if di,i = 1, set ei = 0, and if
di,i = 1, set ei = 0.

• Then t 6= si since t and si di�er in the ith digit. This means t is an element not on the list, which
is a contradiction, so S is uncountable.

(b) Show that the function f : S → P(Z+) given by f(d1d2d3d4 . . . ) = {n : dn = 1} is a bijection. Deduce
that P(Z+) is uncountable.

• First observe that f is one-to-one since f(d1d2d3d4 . . . ) = f(e1e2e3e4 . . . ) only when {n : dn = 1} =
{n : en = 1} only when dn = 1 if and only if en = 1 if and only if dn = en for all n (since the only
possible values of dn and en are 0 and 1).

• Additionally, f is onto, since for any subset T ⊆ Z+, the digit string d1d2d3d4 . . . where dn = 1
when n ∈ T and dn = 0 when n 6∈ T , has f(d1d2d3d4 . . . ) = T by de�nition. Thus f is a bijection.

• Hence P(Z+) has the same cardinality as S, so by (a), P(Z+) is uncountable.
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