E. Dummit’s Math 1465 ~ Intensive Mathematical Reasoning, Fall 2024 ~ Homework 8 Solutions

1. For each partial ordering on each set, decide whether or not the relation is a total ordering, and briefly explain
your reasoning.

(a) The alphabetical-order relation {(a, a), (a,b), (a,c), (b,), (b,c), (¢,c)} on the set {a,b,c}.

e This ’is a total ordering ‘: any two elements a, b, ¢ are comparable.
(b) The identity relation {(1,1),(2,2),(3,3),(4,4)} on the set {1,2,3,4}.

e This ’is not a total ordering ‘: for example 1 and 2 are not comparable (indeed any element is only

comparable to itself).

(c) The divisibility relation on the set {1,2,3,4,5,...} of positive integers.

e This ’is not a total ordering ‘: for example 2 and 3 are not comparable since neither divides the

other.

(d) The divisibility relation on the set {1, 10,100, 1000, ...} of powers of 10.

e This ’is a total ordering ‘: for any two powers of 10, the smaller will divide the larger.

2. For each f, A, and B, identify whether or not f is a function from A to B.

(a) A={1,2,3}, B = {4}, where f = {(1,4),(2,4), (3,4)}.

e This ’is a function from A to B ‘: each element of A is the first coordinate of exactly one pair, and
all second coordinates are in B.

(b) A= {1}, B ={2,3,4}, where f = {(1,2),(1,3),(1,4)}.

e This ’is not a function from A to B ‘, because it is not well-defined on 1 (it attempts to map 1 to
three different values).

(¢) A={1,2,3}, B={4}, where f ={(1,2),(2,3),(3,4)}.
e This
(d) A={1,2,3}, B=1{2,3,4}, where f = {(1,2),(2,3),(3,4)}.

e This ’is a function from A to B ‘: each element of A is the first coordinate of exactly one pair, and
all second coordinates are in B.

(e) A={1,2,3}, B={2,3,4,5,6}, where f = {(1,2),(2,3),(3,4)}.

e This ’is a function from A to B ‘: each element of A is the first coordinate of exactly one pair, and
all second coordinates are in B.

is not a function from A to B ‘, because it maps 1 and 2 to values that are not in B.

3. For each f, A, and B, identify whether or not f is a well-defined function from A to B. (Hint: Exactly three
of them are well defined.)

(a) A=Q, B=Q, where f(a/b) = a/b>.
e This ’is not a function from A to B | because the definition is ambiguous.
e For example, the definition says f(1/2) = 1/4 while f(2/4) =2/16 = 1/8, but 1/2 = 2/4 as rational
numbers. So it does not give a clear value for f on the input value 1/2.
(b) A=Q, B=Q, where f(a/b) = a?/b%.
2

e This ] is a function from A to B ‘, because it is another name for the squaring function f(z) = z=.

e Here, if we use different representations of a rational number, the output is the same. For example,
the definition says f(1/2) = 1/4 while f(2/4) = 4/16 = 1/4, which is the same.




(¢) A=1Z, B=7/mZ, where f(a) =a, with m > 1 a fixed modulus.

e This ’is a function from A to B ‘, because for each integer a € Z there is a unique residue class @
modulo m that it lies in, so the function is well-defined.

(d) A=Z/mZ, B =Z, where f(a) = a, with m > 1 a fixed modulus.

e This ’is not a function from A to B |, because it is not well-defined. Explicitly, note that 0 = m
as residue classes, but the definition would say f(0) = 0 while f(m) = m, so f does not assign a

well-defined value to the residue class 0.

() A=7/mZ, B=17/mZ, where f(@) = a2, with m > 1 a fixed modulus.

, because it is another name for the squaring function f(z) = 22.
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e This ’is a function from A to B

e Explicitly, for each residue class @, the residue class a2 = a@? is well defined, because multiplication

of residue classes is well defined.

(f) A=7Z/mZ, B=17/mZ, where f(a) =a ', with m > 1 a fixed modulus.

e This ’is not a function from A to B |, because it is only defined when the residue class @ has a mul-
tiplicative inverse, and this is only true when a is relatively prime to m. For instance, f(0) is not

defined, because 07" does not exist.

4. For each function f: A — B, determine whether f is (i) one-to-one, (ii) onto, and (iii) a bijection.

(a) fi= {(1>4)7 (Qa 5)a (37 6)} from A = {17 2, 3} to B = {4a 576}
e No element of B is the second coordinate of more than one ordered pair, so f is .
e Each element of B is the second coordinate of at least one ordered pair, so f is .

e Then since f is both one-to-one and onto, it is a .
(b) fo=1{(1,4),(2,5),(3,6)} from A ={1,2,3} to B ={4,5,6,7}.
e No element of B is the second coordinate of more than one ordered pair, so f is .
e However, the element 7 € B is not the second coordinate of any ordered pair, so f is
hence .
(¢) f3={(1,5),(2,6),(3,6),(4,6)} from A ={1,2,3,4} to B = {5,6}.

e Here we can see that the element 2 € B is the second coordinate of multiple pairs, so f is

not one-to-one | hence | not a bijection |.

e But each element of B is the second coordinate of at least one ordered pair, so f is .
(d) fi(z) =22+ 1from A=R to B=R.

e This function is ’one—to—one\ and ’onto \ hence a .

e One may verify both properties separately, or observe that f; has an inverse function given by
[ (z) = $(x — 1), which shows directly that is a bijection.

(e) fs(n)=2n+1from A=7Zto B=2.

e This function is because 2n + 1 = 2m + 1 implies m = n for integers m, n.
e However, it is | not onto | hence | not a bijection | because its image consists only of the odd integers.

For a specific example, there is no integer solution to 2n + 1 = 0.

(f) fe(n) = 712#4—1 from A=7Zto B=0Q.

e This function is hence | not a bijection |: for example we have f(1) =1/2 = f(-1).

e It is also is , since for example there is no integer n for which f(n) = 2 (for example):
solving f(n) = 2 yields n? = —1/2, which does not even have any real solutions.



(g) fr(a) =afrom A =7Z to B =7Z/mZ, with m > 1 a fixed modulus.

e This function is hence | not a bijection | for example we have f(0) =0 =m = f(m).

e However, it is : for any residue class @ € Z/mZ, we clearly have f(a) = a.

5. Show the following:

(a) Suppose R is a partial ordering on a set A. Show that R~! is also a partial ordering on A.

I and so

e Reflexive: Since R is a relation on A, for any a € A we have (a,a) € R. Thus (a,a) € R~
R~ is reflexive.
e Antisymmetric: Suppose that (a,b) € R~! and (b,a) € R~!. By definition (b,a) € R and (a,b) € R
so since R is antisymmetric we have a = b. Thus R~! is also antisymmetric.
e Transitive: Suppose that (a,b) € R™! and (b,c) € R™!. By definition (b,a) € R and (c,b) € R so
since R is transitive we have (c,a) € R and thus (a,c) € R™!. So R™! is transitive.
(b) Suppose R is a total ordering on a set A. Show that R~! is also a total ordering on A.

e By (a) R! is a partial ordering so we just need to show any two elements are comparable.

e For any a,b € A since R is a total ordering either (a,b) € R or (b,a) € R. But this implies
(b,a) € R~ or (a,b) € R7!, and so a is comparable to b under R~ as well.

6. Suppose f : A — B is a function and S is an equivalence relation on B. Prove that the relation R: A — A
given by R = {(a,b) € Ax A : (f(a), f(b)) € S} is an equivalence relation on A.

o R is reflexive: for any a € A, we have (f(a), f(a)) € S because S is reflexive. So by definition, (a,a) € R.

e R is symmetric: suppose (a,b) € R, meaning that (f(a), f(b)) € S. Then because S is symmetric,
(f(b), f(a)) € S, and so (b,a) € R as required.

R is transitive: suppose (a,b) € R and (b,¢) € R. Then (f(a), f(b)) € S and also (f(b), f(¢)) € S. Then
because S is transitive, (f(a), f(c)) € S, and so (a,¢) € R as required.

e Hence R is reflexive, symmetric, and transitive, so it is an equivalence relation.

7. Suppose A, B, and C are sets.

(a) If f: B— C and g : A — B are both one-to-one, prove that f o g is also one-to-one.

e Suppose that (f og)(a1) = (f o g)(az) for some ay,ay € A.
e By the definition of composition, this means f(g(a1)) = f(g(az)).
e Since f is one-to-one, f(g(a1)) = f(g(az)) implies g(a1) = g(az), and then since g is one-to-one, we
have a; = ay as required.
(b) If f: B— C and g : A — B are both onto, prove that f o g is also onto.

e Let ¢ € C be arbitrary. Since f is onto, there exists b € B such that f(b) = c.
e Then since g is onto, there exists a € A such that g(a) = b.

e Then we have f(g(a)) = f(b) = c: this means there exists a € A such that (f og)(a) = f(g9(a)) = ¢,
as required.




8. Suppose f: A — B is a function.

o If S C A, we write f(S) = {f(s):s€ S} and call f(S) the image of S.
o If T C B, we write f~}(T) ={a € A: f(a) € T} and call f~!(T) the inverse image of T
e When T = {b} is a single element, we write f~1(T) as f~1(b) rather than f~'({b}), with the under-

standing that f~1(b) is a set that could be empty or contain more than one element.

Example: For the function h : R — R with h(z) = 2%, with A = {1,4} we have h(A) = {1,64} and
h=Y(A) = {—v2,-1,1,v/2}. We also have h({—1}) = h({1}) = {1} while h~}(1) = {1,-1} and
h1(~1) =0

(a) Suppose g : R — R is the function with g(z) = 22 and recall the notation [a,b] = {r € R: a < z < b}
for a closed interval. Match the following ten image or inverse image sets with their values.

Sets: g({1,2}), g([—1,2]), g([0,1]), g(0), g=*(0), g~ (1), g~ *({1,4}), g (-1), g~ ([4,9]), g1 ([0, 1]).
Values: 0, 0, {—1,1}, [0,4], {0}, [=1,1], {=2,—1,1,2}, [0, 1], [=3, 2] U [2,3], {1, 4}.

o 9({1,2}) = {1,4}, g([-1,2)) = [0,4], g([0,1]) = [0,1], g(0) = 0, g*(0) = {0}, g~ ' (1) = {-
g ({14} ={-2,-1,1,2}, g7 (=1) = 0, g7 ([4.9]) = [-3,—2] U [2,3], and g ([0, 1]) = [-1,

(b) Suppose f : A — B is a function. If S is any subset of A, show that S C f~1(f(9)).
e Suppose a € S. Then f(a) € f(9), so by definition we have a € f~1(f(S)).
(c) Find an example of a subset S of R such that S # g~1(g(5)) for the function g : R — R with g(z) = 2%
e Various options. One is to take S = {1}, then g(S) = {1} so that g=1(g(9)) = {-1,1} # S.
(d) Suppose f: A — B is a function. If T is any subset of B, show that f(f~*(T)) C T.
e Suppose a € f~1(T). Then f(a) € T by definition. This holds for all a € f~1(T'), so f(f~*(T)) C T.
(e) Find an example of a subset 7" of R such that T' # g(g~*(7T')) for the function g : R — R with g(z) = 2%
e Various options. One is to take T = {—1}, then ¢ 1(T) = 0 so g(g~1(T)) = 0.
(f) Suppose f : A — B is a function. If By and By are subsets of B, show f~1(B1NBy) = f~1(B1)Nf~(By).

e Observe that a € f~1(B; N By) if and only if f(a) € By N By if and only if f(a) € By and f(a) € B
if and only if a € f~1(By) and a € f~1(By) if and only if a € f~1(B1) N f~1(Ba).

e Hence the conditions a € f~}(B1NBy) and a € f~1(B1)N f~1(By) are equivalent, so f~1(B;NBy) =
FHB) N fH(B).

(g) Find an example of subsets A; and Ay of R such that g(A; N As) # g(A41) N g(Az) for the function
g:R — R with g(z) = z2.

e Various options. One is to take A; = {—1} and Ay = {1}, then g(A; N As) = f(0) = 0, whereas

9(A1) = {1} = g(Az) so g(A1) N g(A2) = {1}.
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