
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 8 Solutions

1. For each partial ordering on each set, decide whether or not the relation is a total ordering, and brie�y explain
your reasoning.

(a) The alphabetical-order relation {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)} on the set {a, b, c}.

• This is a total ordering : any two elements a, b, c are comparable.

(b) The identity relation {(1, 1), (2, 2), (3, 3), (4, 4)} on the set {1, 2, 3, 4}.

• This is not a total ordering : for example 1 and 2 are not comparable (indeed any element is only

comparable to itself).

(c) The divisibility relation on the set {1, 2, 3, 4, 5, . . . } of positive integers.

• This is not a total ordering : for example 2 and 3 are not comparable since neither divides the

other.

(d) The divisibility relation on the set {1, 10, 100, 1000, . . . } of powers of 10.

• This is a total ordering : for any two powers of 10, the smaller will divide the larger.

2. For each f , A, and B, identify whether or not f is a function from A to B.

(a) A = {1, 2, 3}, B = {4}, where f = {(1, 4), (2, 4), (3, 4)}.

• This is a function from A to B : each element of A is the �rst coordinate of exactly one pair, and
all second coordinates are in B.

(b) A = {1}, B = {2, 3, 4}, where f = {(1, 2), (1, 3), (1, 4)}.

• This is not a function from A to B , because it is not well-de�ned on 1 (it attempts to map 1 to
three di�erent values).

(c) A = {1, 2, 3}, B = {4}, where f = {(1, 2), (2, 3), (3, 4)}.

• This is not a function from A to B , because it maps 1 and 2 to values that are not in B.

(d) A = {1, 2, 3}, B = {2, 3, 4}, where f = {(1, 2), (2, 3), (3, 4)}.

• This is a function from A to B : each element of A is the �rst coordinate of exactly one pair, and
all second coordinates are in B.

(e) A = {1, 2, 3}, B = {2, 3, 4, 5, 6}, where f = {(1, 2), (2, 3), (3, 4)}.

• This is a function from A to B : each element of A is the �rst coordinate of exactly one pair, and
all second coordinates are in B.

3. For each f , A, and B, identify whether or not f is a well-de�ned function from A to B. (Hint: Exactly three
of them are well de�ned.)

(a) A = Q, B = Q, where f(a/b) = a/b2.

• This is not a function from A to B , because the de�nition is ambiguous.

• For example, the de�nition says f(1/2) = 1/4 while f(2/4) = 2/16 = 1/8, but 1/2 = 2/4 as rational
numbers. So it does not give a clear value for f on the input value 1/2.

(b) A = Q, B = Q, where f(a/b) = a2/b2.

• This is a function from A to B , because it is another name for the squaring function f(x) = x2.

• Here, if we use di�erent representations of a rational number, the output is the same. For example,
the de�nition says f(1/2) = 1/4 while f(2/4) = 4/16 = 1/4, which is the same.
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(c) A = Z, B = Z/mZ, where f(a) = a, with m > 1 a �xed modulus.

• This is a function from A to B , because for each integer a ∈ Z there is a unique residue class a
modulo m that it lies in, so the function is well-de�ned.

(d) A = Z/mZ, B = Z, where f(a) = a, with m > 1 a �xed modulus.

• This is not a function from A to B , because it is not well-de�ned. Explicitly, note that 0 = m
as residue classes, but the de�nition would say f(0) = 0 while f(m) = m, so f does not assign a
well-de�ned value to the residue class 0.

(e) A = Z/mZ, B = Z/mZ, where f(a) = a2, with m > 1 a �xed modulus.

• This is a function from A to B , because it is another name for the squaring function f(x) = x2.

• Explicitly, for each residue class a, the residue class a2 = a2 is well de�ned, because multiplication
of residue classes is well de�ned.

(f) A = Z/mZ, B = Z/mZ, where f(a) = a−1, with m > 1 a �xed modulus.

• This is not a function from A to B , because it is only de�ned when the residue class a has a mul-
tiplicative inverse, and this is only true when a is relatively prime to m. For instance, f(0) is not

de�ned, because 0
−1

does not exist.

4. For each function f : A→ B, determine whether f is (i) one-to-one, (ii) onto, and (iii) a bijection.

(a) f1 = {(1, 4), (2, 5), (3, 6)} from A = {1, 2, 3} to B = {4, 5, 6}.

• No element of B is the second coordinate of more than one ordered pair, so f is one-to-one .

• Each element of B is the second coordinate of at least one ordered pair, so f is onto .

• Then since f is both one-to-one and onto, it is a bijection .

(b) f2 = {(1, 4), (2, 5), (3, 6)} from A = {1, 2, 3} to B = {4, 5, 6, 7}.

• No element of B is the second coordinate of more than one ordered pair, so f is one-to-one .

• However, the element 7 ∈ B is not the second coordinate of any ordered pair, so f is not onto

hence not a bijection .

(c) f3 = {(1, 5), (2, 6), (3, 6), (4, 6)} from A = {1, 2, 3, 4} to B = {5, 6}.
• Here we can see that the element 2 ∈ B is the second coordinate of multiple pairs, so f is

not one-to-one hence not a bijection .

• But each element of B is the second coordinate of at least one ordered pair, so f is onto .

(d) f4(x) = 2x+ 1 from A = R to B = R.

• This function is one-to-one and onto hence a bijection .

• One may verify both properties separately, or observe that f4 has an inverse function given by
f−1(x) = 1

2 (x− 1), which shows directly that is a bijection.

(e) f5(n) = 2n+ 1 from A = Z to B = Z.

• This function is one-to-one because 2n+ 1 = 2m+ 1 implies m = n for integers m,n.

• However, it is not onto hence not a bijection because its image consists only of the odd integers.

For a speci�c example, there is no integer solution to 2n+ 1 = 0.

(f) f6(n) =
1

n2 + 1
from A = Z to B = Q.

• This function is not one-to-one hence not a bijection : for example we have f(1) = 1/2 = f(−1).

• It is also is not onto , since for example there is no integer n for which f(n) = 2 (for example):
solving f(n) = 2 yields n2 = −1/2, which does not even have any real solutions.
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(g) f7(a) = a from A = Z to B = Z/mZ, with m > 1 a �xed modulus.

• This function is not one-to-one hence not a bijection : for example we have f(0) = 0 = m = f(m).

• However, it is onto : for any residue class a ∈ Z/mZ, we clearly have f(a) = a.

5. Show the following:

(a) Suppose R is a partial ordering on a set A. Show that R−1 is also a partial ordering on A.

• Re�exive: Since R is a relation on A, for any a ∈ A we have (a, a) ∈ R. Thus (a, a) ∈ R−1 and so
R−1 is re�exive.

• Antisymmetric: Suppose that (a, b) ∈ R−1 and (b, a) ∈ R−1. By de�nition (b, a) ∈ R and (a, b) ∈ R
so since R is antisymmetric we have a = b. Thus R−1 is also antisymmetric.

• Transitive: Suppose that (a, b) ∈ R−1 and (b, c) ∈ R−1. By de�nition (b, a) ∈ R and (c, b) ∈ R so
since R is transitive we have (c, a) ∈ R and thus (a, c) ∈ R−1. So R−1 is transitive.

(b) Suppose R is a total ordering on a set A. Show that R−1 is also a total ordering on A.

• By (a) R−1 is a partial ordering so we just need to show any two elements are comparable.

• For any a, b ∈ A since R is a total ordering either (a, b) ∈ R or (b, a) ∈ R. But this implies
(b, a) ∈ R−1 or (a, b) ∈ R−1, and so a is comparable to b under R−1 as well.

6. Suppose f : A → B is a function and S is an equivalence relation on B. Prove that the relation R : A → A
given by R = {(a, b) ∈ A×A : (f(a), f(b)) ∈ S} is an equivalence relation on A.

• R is re�exive: for any a ∈ A, we have (f(a), f(a)) ∈ S because S is re�exive. So by de�nition, (a, a) ∈ R.

• R is symmetric: suppose (a, b) ∈ R, meaning that (f(a), f(b)) ∈ S. Then because S is symmetric,
(f(b), f(a)) ∈ S, and so (b, a) ∈ R as required.

• R is transitive: suppose (a, b) ∈ R and (b, c) ∈ R. Then (f(a), f(b)) ∈ S and also (f(b), f(c)) ∈ S. Then
because S is transitive, (f(a), f(c)) ∈ S, and so (a, c) ∈ R as required.

• Hence R is re�exive, symmetric, and transitive, so it is an equivalence relation.

7. Suppose A, B, and C are sets.

(a) If f : B → C and g : A→ B are both one-to-one, prove that f ◦ g is also one-to-one.

• Suppose that (f ◦ g)(a1) = (f ◦ g)(a2) for some a1, a2 ∈ A.

• By the de�nition of composition, this means f(g(a1)) = f(g(a2)).

• Since f is one-to-one, f(g(a1)) = f(g(a2)) implies g(a1) = g(a2), and then since g is one-to-one, we
have a1 = a2 as required.

(b) If f : B → C and g : A→ B are both onto, prove that f ◦ g is also onto.

• Let c ∈ C be arbitrary. Since f is onto, there exists b ∈ B such that f(b) = c.

• Then since g is onto, there exists a ∈ A such that g(a) = b.

• Then we have f(g(a)) = f(b) = c: this means there exists a ∈ A such that (f ◦ g)(a) = f(g(a)) = c,
as required.
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8. Suppose f : A→ B is a function.

• If S ⊆ A, we write f(S) = {f(s) : s ∈ S} and call f(S) the image of S.

• If T ⊆ B, we write f−1(T ) = {a ∈ A : f(a) ∈ T} and call f−1(T ) the inverse image of T .

• When T = {b} is a single element, we write f−1(T ) as f−1(b) rather than f−1({b}), with the under-
standing that f−1(b) is a set that could be empty or contain more than one element.

Example: For the function h : R → R with h(x) = x4, with A = {1, 4} we have h(A) = {1, 64} and
h−1(A) = {−

√
2,−1, 1,

√
2}. We also have h({−1}) = h({1}) = {1} while h−1(1) = {1,−1} and

h−1(−1) = ∅.

(a) Suppose g : R → R is the function with g(x) = x2 and recall the notation [a, b] = {x ∈ R : a ≤ x ≤ b}
for a closed interval. Match the following ten image or inverse image sets with their values.

Sets: g({1, 2}), g([−1, 2]), g([0, 1]), g(∅), g−1(0), g−1(1), g−1({1, 4}), g−1(−1), g−1([4, 9]), g−1([0, 1]).

Values: ∅, ∅, {−1, 1}, [0, 4], {0}, [−1, 1], {−2,−1, 1, 2}, [0, 1], [−3,−2] ∪ [2, 3], {1, 4}.
• g({1, 2}) = {1, 4}, g([−1, 2]) = [0, 4], g([0, 1]) = [0, 1], g(∅) = ∅, g−1(0) = {0}, g−1(1) = {−1, 1},
g−1({1, 4}) = {−2,−1, 1, 2}, g−1(−1) = ∅, g−1([4, 9]) = [−3,−2] ∪ [2, 3], and g−1([0, 1]) = [−1, 1].

(b) Suppose f : A→ B is a function. If S is any subset of A, show that S ⊆ f−1(f(S)).

• Suppose a ∈ S. Then f(a) ∈ f(S), so by de�nition we have a ∈ f−1(f(S)).

(c) Find an example of a subset S of R such that S 6= g−1(g(S)) for the function g : R→ R with g(x) = x2.

• Various options. One is to take S = {1}, then g(S) = {1} so that g−1(g(S)) = {−1, 1} 6= S.

(d) Suppose f : A→ B is a function. If T is any subset of B, show that f(f−1(T )) ⊆ T .

• Suppose a ∈ f−1(T ). Then f(a) ∈ T by de�nition. This holds for all a ∈ f−1(T ), so f(f−1(T )) ⊆ T .

(e) Find an example of a subset T of R such that T 6= g(g−1(T )) for the function g : R→ R with g(x) = x2.

• Various options. One is to take T = {−1}, then g−1(T ) = ∅ so g(g−1(T )) = ∅.
(f) Suppose f : A→ B is a function. If B1 and B2 are subsets of B, show f−1(B1∩B2) = f−1(B1)∩f−1(B2).

• Observe that a ∈ f−1(B1 ∩B2) if and only if f(a) ∈ B1 ∩B2 if and only if f(a) ∈ B1 and f(a) ∈ B2

if and only if a ∈ f−1(B1) and a ∈ f−1(B2) if and only if a ∈ f−1(B1) ∩ f−1(B2).

• Hence the conditions a ∈ f−1(B1∩B2) and a ∈ f−1(B1)∩f−1(B2) are equivalent, so f−1(B1∩B2) =
f−1(B1) ∩ f−1(B2).

(g) Find an example of subsets A1 and A2 of R such that g(A1 ∩ A2) 6= g(A1) ∩ g(A2) for the function
g : R→ R with g(x) = x2.

• Various options. One is to take A1 = {−1} and A2 = {1}, then g(A1 ∩ A2) = f(∅) = ∅, whereas
g(A1) = {1} = g(A2) so g(A1) ∩ g(A2) = {1}.
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