- 1. For each partial ordering on each set, decide whether or not the relation is a total ordering, and briefly explain your reasoning.
 - (a) The alphabetical-order relation $\{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ on the set $\{a, b, c\}$.
 - This is a total ordering : any two elements a, b, c are comparable.
 - (b) The identity relation $\{(1,1), (2,2), (3,3), (4,4)\}$ on the set $\{1,2,3,4\}$.
 - This is not a total ordering is for example 1 and 2 are not comparable (indeed any element is only comparable to itself).
 - (c) The divisibility relation on the set $\{1, 2, 3, 4, 5, ...\}$ of positive integers.
 - This is not a total ordering for example 2 and 3 are not comparable since neither divides the other.
 - (d) The divisibility relation on the set $\{1, 10, 100, 1000, ...\}$ of powers of 10.
 - This is a total ordering: for any two powers of 10, the smaller will divide the larger.
- 2. For each f, A, and B, identify whether or not f is a function from A to B.
 - (a) $A = \{1, 2, 3\}, B = \{4\}, \text{ where } f = \{(1, 4), (2, 4), (3, 4)\}.$
 - This is a function from A to B: each element of A is the first coordinate of exactly one pair, and all second coordinates are in B.
 - (b) $A = \{1\}, B = \{2, 3, 4\}, \text{ where } f = \{(1, 2), (1, 3), (1, 4)\}.$
 - This is not a function from A to B, because it is not well-defined on 1 (it attempts to map 1 to three different values).
 - (c) $A = \{1, 2, 3\}, B = \{4\}, \text{ where } f = \{(1, 2), (2, 3), (3, 4)\}.$
 - This is not a function from A to B, because it maps 1 and 2 to values that are not in B.
 - (d) $A = \{1, 2, 3\}, B = \{2, 3, 4\}, \text{ where } f = \{(1, 2), (2, 3), (3, 4)\}.$
 - This is a function from A to B: each element of A is the first coordinate of exactly one pair, and all second coordinates are in B.
 - (e) $A = \{1, 2, 3\}, B = \{2, 3, 4, 5, 6\}, \text{ where } f = \{(1, 2), (2, 3), (3, 4)\}.$
 - This is a function from A to B: each element of A is the first coordinate of exactly one pair, and all second coordinates are in B.
- 3. For each f, A, and B, identify whether or not f is a well-defined function from A to B. (Hint: Exactly three of them are well defined.)
 - (a) $A = \mathbb{Q}, B = \mathbb{Q}$, where $f(a/b) = a/b^2$.
 - This is not a function from A to B, because the definition is ambiguous.
 - For example, the definition says f(1/2) = 1/4 while f(2/4) = 2/16 = 1/8, but 1/2 = 2/4 as rational numbers. So it does not give a clear value for f on the input value 1/2.
 - (b) $A = \mathbb{Q}, B = \mathbb{Q}$, where $f(a/b) = a^2/b^2$.
 - This is a function from A to B, because it is another name for the squaring function $f(x) = x^2$.
 - Here, if we use different representations of a rational number, the output is the same. For example, the definition says f(1/2) = 1/4 while f(2/4) = 4/16 = 1/4, which is the same.

- (c) $A = \mathbb{Z}, B = \mathbb{Z}/m\mathbb{Z}$, where $f(a) = \overline{a}$, with m > 1 a fixed modulus.
 - This is a function from A to B, because for each integer $a \in \mathbb{Z}$ there is a unique residue class \overline{a} modulo m that it lies in, so the function is well-defined.
- (d) $A = \mathbb{Z}/m\mathbb{Z}, B = \mathbb{Z}$, where $f(\overline{a}) = a$, with m > 1 a fixed modulus.
 - This is not a function from A to \overline{B} , because it is not well-defined. Explicitly, note that $\overline{0} = \overline{m}$ as residue classes, but the definition would say $f(\overline{0}) = 0$ while $f(\overline{m}) = m$, so f does not assign a well-defined value to the residue class $\overline{0}$.
- (e) $A = \mathbb{Z}/m\mathbb{Z}$, $B = \mathbb{Z}/m\mathbb{Z}$, where $f(\overline{a}) = \overline{a^2}$, with m > 1 a fixed modulus.
 - This is a function from A to B, because it is another name for the squaring function $f(x) = x^2$.
 - Explicitly, for each residue class \overline{a} , the residue class $\overline{a^2} = \overline{a}^2$ is well defined, because multiplication of residue classes is well defined.
- (f) $A = \mathbb{Z}/m\mathbb{Z}$, $B = \mathbb{Z}/m\mathbb{Z}$, where $f(\overline{a}) = \overline{a}^{-1}$, with m > 1 a fixed modulus.
 - This is not a function from A to B, because it is only defined when the residue class \overline{a} has a multiplicative inverse, and this is only true when a is relatively prime to m. For instance, $f(\overline{0})$ is not defined, because $\overline{0}^{-1}$ does not exist.
- 4. For each function $f: A \to B$, determine whether f is (i) one-to-one, (ii) onto, and (iii) a bijection.
 - (a) $f_1 = \{(1,4), (2,5), (3,6)\}$ from $A = \{1,2,3\}$ to $B = \{4,5,6\}$.
 - No element of B is the second coordinate of more than one ordered pair, so f is one-to-one
 - Each element of B is the second coordinate of at least one ordered pair, so f is onto |.
 - Then since f is both one-to-one and onto, it is a bijection .
 - (b) $f_2 = \{(1,4), (2,5), (3,6)\}$ from $A = \{1,2,3\}$ to $B = \{4,5,6,7\}$.
 - No element of B is the second coordinate of more than one ordered pair, so f is one-to-one
 - However, the element $7 \in B$ is not the second coordinate of any ordered pair, so f is not onto hence not a bijection.
 - (c) $f_3 = \{(1,5), (2,6), (3,6), (4,6)\}$ from $A = \{1,2,3,4\}$ to $B = \{5,6\}$.
 - Here we can see that the element $2 \in B$ is the second coordinate of multiple pairs, so f is not one-to-one hence not a bijection.
 - But each element of B is the second coordinate of at least one ordered pair, so f is onto
 - (d) $f_4(x) = 2x + 1$ from $A = \mathbb{R}$ to $B = \mathbb{R}$.
 - This function is one-to-one and onto hence a bijection
 - One may verify both properties separately, or observe that f_4 has an inverse function given by $f^{-1}(x) = \frac{1}{2}(x-1)$, which shows directly that is a bijection.
 - (e) $f_5(n) = 2n + 1$ from $A = \mathbb{Z}$ to $B = \mathbb{Z}$.
 - This function is one-to-one because 2n + 1 = 2m + 1 implies m = n for integers m, n.
 - However, it is <u>not onto</u> hence <u>not a bijection</u> because its image consists only of the odd integers. For a specific example, there is no integer solution to 2n + 1 = 0.

(f)
$$f_6(n) = \frac{1}{n^2 + 1}$$
 from $A = \mathbb{Z}$ to $B = \mathbb{Q}$.

- This function is not one-to-one hence not a bijection is for example we have f(1) = 1/2 = f(-1).
- It is also is <u>not onto</u>, since for example there is no integer n for which f(n) = 2 (for example): solving f(n) = 2 yields $n^2 = -1/2$, which does not even have any real solutions.

- (g) $f_7(a) = \overline{a}$ from $A = \mathbb{Z}$ to $B = \mathbb{Z}/m\mathbb{Z}$, with m > 1 a fixed modulus.
 - This function is not one-to-one hence not a bijection if for example we have $f(0) = \overline{0} = \overline{m} = f(m)$.
 - However, it is onto: for any residue class $\overline{a} \in \mathbb{Z}/m\mathbb{Z}$, we clearly have $f(a) = \overline{a}$.
- 5. Show the following:
 - (a) Suppose R is a partial ordering on a set A. Show that R^{-1} is also a partial ordering on A.
 - Reflexive: Since R is a relation on A, for any $a \in A$ we have $(a, a) \in R$. Thus $(a, a) \in R^{-1}$ and so R^{-1} is reflexive.
 - Antisymmetric: Suppose that $(a, b) \in \mathbb{R}^{-1}$ and $(b, a) \in \mathbb{R}^{-1}$. By definition $(b, a) \in \mathbb{R}$ and $(a, b) \in \mathbb{R}$ so since \mathbb{R} is antisymmetric we have a = b. Thus \mathbb{R}^{-1} is also antisymmetric.
 - Transitive: Suppose that $(a, b) \in \mathbb{R}^{-1}$ and $(b, c) \in \mathbb{R}^{-1}$. By definition $(b, a) \in \mathbb{R}$ and $(c, b) \in \mathbb{R}$ so since \mathbb{R} is transitive we have $(c, a) \in \mathbb{R}$ and thus $(a, c) \in \mathbb{R}^{-1}$. So \mathbb{R}^{-1} is transitive.
 - (b) Suppose R is a total ordering on a set A. Show that R^{-1} is also a total ordering on A.
 - By (a) R^{-1} is a partial ordering so we just need to show any two elements are comparable.
 - For any $a, b \in A$ since R is a total ordering either $(a, b) \in R$ or $(b, a) \in R$. But this implies $(b, a) \in R^{-1}$ or $(a, b) \in R^{-1}$, and so a is comparable to b under R^{-1} as well.
- 6. Suppose $f : A \to B$ is a function and S is an equivalence relation on B. Prove that the relation $R : A \to A$ given by $R = \{(a, b) \in A \times A : (f(a), f(b)) \in S\}$ is an equivalence relation on A.
 - R is reflexive: for any $a \in A$, we have $(f(a), f(a)) \in S$ because S is reflexive. So by definition, $(a, a) \in R$.
 - R is symmetric: suppose $(a,b) \in R$, meaning that $(f(a), f(b)) \in S$. Then because S is symmetric, $(f(b), f(a)) \in S$, and so $(b,a) \in R$ as required.
 - R is transitive: suppose $(a, b) \in R$ and $(b, c) \in R$. Then $(f(a), f(b)) \in S$ and also $(f(b), f(c)) \in S$. Then because S is transitive, $(f(a), f(c)) \in S$, and so $(a, c) \in R$ as required.
 - Hence R is reflexive, symmetric, and transitive, so it is an equivalence relation.
- 7. Suppose A, B, and C are sets.
 - (a) If $f: B \to C$ and $g: A \to B$ are both one-to-one, prove that $f \circ g$ is also one-to-one.
 - Suppose that $(f \circ g)(a_1) = (f \circ g)(a_2)$ for some $a_1, a_2 \in A$.
 - By the definition of composition, this means $f(g(a_1)) = f(g(a_2))$.
 - Since f is one-to-one, $f(g(a_1)) = f(g(a_2))$ implies $g(a_1) = g(a_2)$, and then since g is one-to-one, we have $a_1 = a_2$ as required.
 - (b) If $f: B \to C$ and $g: A \to B$ are both onto, prove that $f \circ g$ is also onto.
 - Let $c \in C$ be arbitrary. Since f is onto, there exists $b \in B$ such that f(b) = c.
 - Then since g is onto, there exists $a \in A$ such that g(a) = b.
 - Then we have f(g(a)) = f(b) = c: this means there exists $a \in A$ such that $(f \circ g)(a) = f(g(a)) = c$, as required.

- 8. Suppose $f: A \to B$ is a function.
 - If $S \subseteq A$, we write $f(S) = \{f(s) : s \in S\}$ and call f(S) the <u>image</u> of S.
 - If $T \subseteq B$, we write $f^{-1}(T) = \{a \in A : f(a) \in T\}$ and call $f^{-1}(T)$ the <u>inverse image</u> of T.
 - When $T = \{b\}$ is a single element, we write $f^{-1}(T)$ as $f^{-1}(b)$ rather than $f^{-1}(\{b\})$, with the understanding that $f^{-1}(b)$ is a set that could be empty or contain more than one element.
 - **Example:** For the function $h : \mathbb{R} \to \mathbb{R}$ with $h(x) = x^4$, with $A = \{1,4\}$ we have $h(A) = \{1,64\}$ and $h^{-1}(A) = \{-\sqrt{2}, -1, 1, \sqrt{2}\}$. We also have $h(\{-1\}) = h(\{1\}) = \{1\}$ while $h^{-1}(1) = \{1, -1\}$ and $h^{-1}(-1) = \emptyset$.
 - (a) Suppose g: R→ R is the function with g(x) = x² and recall the notation [a, b] = {x ∈ R : a ≤ x ≤ b} for a closed interval. Match the following ten image or inverse image sets with their values.
 <u>Sets</u>: g({1,2}), g([-1,2]), g([0,1]), g(Ø), g⁻¹(0), g⁻¹(1), g⁻¹({1,4}), g⁻¹(-1), g⁻¹([4,9]), g⁻¹([0,1]).
 <u>Values</u>: Ø, Ø, {-1,1}, [0,4], {0}, [-1,1], {-2, -1, 1, 2}, [0,1], [-3, -2] ∪ [2,3], {1,4}.
 - $g(\{1,2\}) = \{1,4\}, \ g([-1,2]) = [0,4], \ g([0,1]) = [0,1], \ g(\emptyset) = \emptyset, \ g^{-1}(0) = \{0\}, \ g^{-1}(1) = \{-1,1\}, \ g^{-1}(\{1,4\}) = \{-2,-1,1,2\}, \ g^{-1}(-1) = \emptyset, \ g^{-1}([4,9]) = [-3,-2] \cup [2,3], \ \text{and} \ g^{-1}([0,1]) = [-1,1].$
 - (b) Suppose $f: A \to B$ is a function. If S is any subset of A, show that $S \subseteq f^{-1}(f(S))$.

• Suppose $a \in S$. Then $f(a) \in f(S)$, so by definition we have $a \in f^{-1}(f(S))$.

- (c) Find an example of a subset S of \mathbb{R} such that $S \neq g^{-1}(g(S))$ for the function $g: \mathbb{R} \to \mathbb{R}$ with $g(x) = x^2$.
 - Various options. One is to take $S = \{1\}$, then $g(S) = \{1\}$ so that $g^{-1}(g(S)) = \{-1, 1\} \neq S$.
- (d) Suppose $f: A \to B$ is a function. If T is any subset of B, show that $f(f^{-1}(T)) \subseteq T$.
 - Suppose $a \in f^{-1}(T)$. Then $f(a) \in T$ by definition. This holds for all $a \in f^{-1}(T)$, so $f(f^{-1}(T)) \subseteq T$.
- (e) Find an example of a subset T of \mathbb{R} such that $T \neq g(g^{-1}(T))$ for the function $g: \mathbb{R} \to \mathbb{R}$ with $g(x) = x^2$.
 - Various options. One is to take $T = \{-1\}$, then $g^{-1}(T) = \emptyset$ so $g(g^{-1}(T)) = \emptyset$.
- (f) Suppose $f: A \to B$ is a function. If B_1 and B_2 are subsets of B, show $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
 - Observe that $a \in f^{-1}(B_1 \cap B_2)$ if and only if $f(a) \in B_1 \cap B_2$ if and only if $f(a) \in B_1$ and $f(a) \in B_2$ if and only if $a \in f^{-1}(B_1)$ and $a \in f^{-1}(B_2)$ if and only if $a \in f^{-1}(B_1) \cap f^{-1}(B_2)$.
 - Hence the conditions $a \in f^{-1}(B_1 \cap B_2)$ and $a \in f^{-1}(B_1) \cap f^{-1}(B_2)$ are equivalent, so $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- (g) Find an example of subsets A_1 and A_2 of \mathbb{R} such that $g(A_1 \cap A_2) \neq g(A_1) \cap g(A_2)$ for the function $g: \mathbb{R} \to \mathbb{R}$ with $g(x) = x^2$.
 - Various options. One is to take $A_1 = \{-1\}$ and $A_2 = \{1\}$, then $g(A_1 \cap A_2) = f(\emptyset) = \emptyset$, whereas $g(A_1) = \{1\} = g(A_2)$ so $g(A_1) \cap g(A_2) = \{1\}$.