
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 7 Solutions

1. For each relation R on the given set, identify whether or not R is (i) re�exive, (ii) symmetric, (iii) transitive,
and (iv) an equivalence relation.

(a) R1 = {(1, 1), (2, 1), (2, 2)} on the set {1, 2}.

• This relation is re�exive because it contains (1, 1) and (2, 2).

• This relation is not symmetric because (2, 1) ∈ R but its reverse (1, 2) 6∈ R.

• This relation is transitive by a direct calculation.

• This relation is not an equivalence relation because it is not symmetric.

(b) R2 = {(1, 1), (2, 1), (2, 2)} on the set {1, 2, 3}.

• This relation is not re�exive because it does not contain (3, 3).

• This relation is not symmetric because (2, 1) ∈ R but its reverse (1, 2) 6∈ R.

• This relation is transitive by a direct calculation.

• This relation is not an equivalence relation because it is not re�exive and not symmetric.

(c) R3 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)} on the set {1, 2, 3}.

• This relation is re�exive because it contains (1, 1), (2, 2), and (3, 3).

• This relation is symmetric because the reverse of each pair is also in the set.

• This relation is transitive by a direct calculation.

• This relation is an equivalence relation because it is re�exive, symmetric, and transitive.

(d) R4, the relation on human beings where a R4 b means �a has the same last name as b�.

• This relation is re�exive because all people have the same last name as themselves.

• This relation is symmetric because if a and b have the same last name, so do b and a.

• This relation is transitive because if a, b and b, c have the same last name, all three do.

• This relation is an equivalence relation because it is re�exive, symmetric, and transitive.

(e) R5, the relation on human beings where a R5 b means �a is a parent of b�.

• This relation is not re�exive because nobody can be their own parent.

• This relation is not symmetric because if a is a parent of b, then b cannot be a parent of a (this

would mean that a is their own grandparent, which in the absence of time travel, is not possible!).

• This relation is not transitive because if a is a parent of b and b is a parent of c, then a is not
necessarily a parent of c (this would in fact mean a is a grandparent of c).

• This relation is not an equivalence relation because it satis�es none of the three requirements.

(f) R6 = {(x, y) ∈ R× R : x2 = y2} on the set of real numbers R.

• This relation is re�exive because a2 = a2 for any a.

• This relation is symmetric because if x2 = y2 then y2 = x2.

• This relation is transitive because if x2 = y2 and y2 = z2 then x2 = z2.

• This relation is an equivalence relation because it satis�es all three requirements.

(g) R7, the empty relation on the empty set. (Be very careful with the quanti�ers in the de�nitions!)

• This relation is re�exive because for all a ∈ ∅, it is (vacuously) true that a R7 a. (We can view
this as a conditional statement: �if a ∈ ∅, then a R7 a�: then the hypothesis is always false, so the
conditional is true.)
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• This relation is symmetric because for all a, b ∈ ∅, it is (vacuously) true that a R7 b implies b R7 a.

• This relation is transitive because for all a, b, c ∈ ∅, it is (vacuously) true that a R7 b and b R7 c
together imply that a R7 c.

• This relation is an equivalence relation because it is re�exive, symmetric, and transitive.

2. For each relation R on the given set, identify whether or not R is (i) re�exive, (ii) antisymmetric, (iii) transitive,
(iv) a partial ordering.

(a) R8 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}, on the set {a, b, c}.

• The relation is re�exive since it contains (a, a), (b, b), (c, c).

• The relation is antisymmetric because it contains (a, b) but not (b, a), and (b, c) but not (c, b).

• The relation is transitive as can be checked directly.

• Hence it is a partial ordering .

(b) R9 = {(x, y) ∈ R× R : x2 ≤ y2} on the set of real numbers R.

• The relation is re�exive because x2 ≤ x2 for every x.

• The relation is not antisymmetric , because for example (−1)2 ≤ 12 and 12 ≤ (−1)2, but −1 6= 1.

• The relation is transitive since if x2 ≤ y2 and y2 ≤ z2 then x2 ≤ z2.

• Since it is not antisymmetric, it is not a partial ordering .

(c) R10 = {(x, y) ∈ R× R : y < x} on the set of real numbers R.

• The relation is not re�exive because (x, x) 6∈ R for any x.

• The relation is antisymmetric because y < x and x < y cannot occur at the same time, so the

condition is vacuously true.

• The relation is transitive because if y < x and z < y then z < x.

• Since it is not re�exive, it is not a partial ordering .

(d) R11 = {(4, 4), (4, 8), (4, 12), (6, 6), (6, 12), (8, 8), (10, 10), (12, 12)}, the divisibility relation on {4, 6, 8, 10, 12}.

• The relation is re�exive , antisymmetric , transitive , and a partial ordering because it is a re-

striction of a partial ordering from a larger set. (Alternatively, one could check it directly.)

(e) R12 = {(a, b) ∈ Z× Z : b = a or b = a+ 1} on the set of integers Z.

• The relation is re�exive because all pairs (a, a) are in R.

• The relation is antisymmetric because if (a, b) and (b, a) are in R, then a = b.

• The relation is not transitive since for example (1, 2) and (2, 3) are in R, but (1, 3) is not.

• Since it is not transitive, it is not a partial ordering .

3. Find all partitions of the set {1, 2, 3} and write down all ordered pairs in the corresponding equivalence relation
for each.

• We simply list all of the possible partitions; there are 5 in total.

• P1 = {{1}, {2}, {3}} with relation R1 = {(1, 1), (2, 2), (3, 3)}.
• P2 = {{1}, {2, 3}} with relation R2 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.
• P3 = {{1, 2}, {3}} with relation R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}.
• P4 = {{1, 3}, {2}} with relation R4 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}.
• P5 = {{1, 2, 3}} with relation R5 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.
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4. Another property of relations that arises on occasion is as follows: we say a relation R on a set A is irre�exive
when a 6R a for all a ∈ A. This property is essentially the opposite of being re�exive.

Example: The order relation < on real numbers is irre�exive, because a < a is false for all real numbers a.
(In fact this particular relation is one main motivation for considering irre�exive relations, since it is a
property held by strict inequalities.)

(a) For each relation R1 through R12 in problems 1 and 2, identify whether the relation is irre�exive.

• The only irre�exive relations are R5 (no person can be their own parent), R7 (vacuously since a ∈ A
it is true that (a, a) 6∈ ∅), and R10 (since x < x is false for every x).

(b) Give an example of a relation that is not re�exive and also not irre�exive. (Thus, being irre�exive is not
the same as being not re�exive.)

• As observed in (a), R2 is not re�exive, but is also not irre�exive. In general, any relation where some
but not all pairs (a, a) (for a ∈ A) are in R, will be neither re�exive nor irre�exive.

(c) Does there exist a relation on A = {1, 2, 3} that is both re�exive and irre�exive? Does there exist any
relation on any set that is both re�exive and irre�exive? Explain why or why not.

• There is no such relation on A = {1, 2, 3}. If there were, then it would have to contain (1, 1) since
it is re�exive, but then it would not be irre�exive.

• By this same argument, if A is nonempty, then for any a ∈ A, a re�exive irre�exive relation would
have to contain (a, a), but then it would not be irre�exive. So the only possibility would be for A to
be empty, in which case R would have to be the empty relation.

• But in fact, the empty relation R7 on the empty set is re�exive and also irre�exive � this means it
is in fact the only example!

5. Suppose that R is a relation on the set A.

Proposition: If R is symmetric and transitive, then R is re�exive.
Proof: Let a ∈ A be arbitrary. Because R is symmetric, if a R b then b R a. Therefore, applying transitivity
to a R b and b R a yields a R a. Because a was arbitrary, we conclude a R a for every a ∈ A, so R is re�exive.

(a) The proof given above is erroneous. (If it were correct, we would not bother to include re�exivity in the
de�nition of an equivalence relation!) Explain, brie�y, what the error in the proof is. [Hint: See problem
8 of homework 3 for inspiration.]

• The problem is similar to the error described in problem 8 of homework 3: the proof assumes that
there exists an element b ∈ A for which a R b is true, and this is not necessarily a valid assumption.

• If such an element b exists, then the argument is valid, but if no such b exists, then there is no
relation statement a R b to which we could apply symmetry, and thus there is no way to deduce
that a R a.

(b) Construct a counterexample to the proposition using the set A = {1, 2}.
• Per the observation above, we want to �nd an example in which an element of A is not contained in
any ordered pair in the relation.

• One way to do this is to take R = {(1, 1)}: then the relation is trivially symmetric and transitive,
but it is not re�exive. (Similarly, R = {(2, 2)} also works.)

• The other option is to take R to be the empty relation, which is always symmetric and transitive,
but is again not re�exive here.

• Note that R = {(1, 2), (2, 1)} is not transitive, since (1, 2), (2, 1) ∈ R but (1, 1) 6∈ R.
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6. Prove that the relation ⇔ on logical propositions is an equivalence relation. (This justi�es our terminology
of saying that ⇔ indicates �logical equivalence�.)

• Each of the three properties can be shown formally with a truth table. Alternatively, we can give
explanations directly as follows.

• Re�exive: We have P ⇔ P for any proposition P since the statement P ⇔ P is true both when P is
true and when P is false.

• Symmetric: If P ⇔ Q is true, then P,Q have the same truth value, and then Q⇔ P is also true.

• Transitive: If P ⇔ Q and Q⇔ R are both true, then P,Q and Q,R have the same truth value, and then
P,R also have the same truth value, so P ⇔ R is also true.

7. Suppose R : A→ B and S : A→ B are relations (i.e., subsets of A×B). For each statement below, identify
whether it is true or false. If it is true then prove it, and if it is false then give a counterexample. [Hint: There
are two true statements in total.]

(a) If R ⊆ S then R−1 ⊆ S−1.

• This statement is true : suppose (b, a) ∈ R−1, so that (a, b) ∈ R by de�nition.

• Then (a, b) ∈ S since R ⊆ S, and hence (b, a) ∈ S−1 by de�nition of S−1.

• This means R−1 ⊆ S−1 as claimed.

(b) (R ∪ S)−1 = R−1 ∩ S−1.

• This statement is false .

• Here is a counterexample: take R = {(1, 1)} and S = {(1, 2)} with A = B = {1, 2}. Then R ∪ S =
{(1, 1), (1, 2)} so (R ∪ S)−1 = {(1, 1), (2, 1)}, while R−1 = {(1, 1)} and S−1 = {(2, 1)} so that
R−1 ∩ S−1 = ∅.
• Remark: In fact, the correct statement is (R ∪ S)−1 = R−1 ∪ S−1.

(c) R = R−1 if and only if R is symmetric.

• This statement is true .

• First suppose R = R−1. If (a, b) ∈ R, then since (b, a) ∈ R−1 this means (b, a) ∈ R. In other words,
(a, b) ∈ R implies (b, a) ∈ R, meaning R is symmetric.

• Conversely, suppose R is symmetric. If (a, b) ∈ R, then since R is symmetric, this means (b, a) ∈ R
and so (a, b) ∈ R−1. Hence R ⊆ R−1. On the other hand, if (a, b) ∈ R−1 then (b, a) ∈ R, so by
symmetry this means (a, b) ∈ R. Hence R−1 ⊆ R, and thus R = R−1 as claimed.

(d) The only relation on a set A that is both symmetric and antisymmetric is the identity relation.

• This statement is false .

• Here is a counterexample: take A = {1, 2} and R = {(1, 1)}. Then R is both symmetric and
antisymmetric, but is not the identity relation.

• More generally, any proper subset of the identity relation on A is symmetric and antisymmetric.
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8. The goal of this problem is to show that taking intersections of relations preserves most of their standard
properties we have de�ned. Suppose I is a nonempty indexing set and Ri is a relation on the set A for each
i ∈ I.

(a) If each Ri is re�exive, show that
⋂

i∈I Ri is also re�exive.

• If each Ri is re�exive, then for any a ∈ A we have (a, a) ∈ Ri. By de�nition of the intersection we
therefore have (a, a) ∈

⋂
i∈I Ri which means

⋂
i∈I Ri is re�exive.

(b) If each Ri is symmetric, show that
⋂

i∈I Ri is also symmetric.

• Suppose (a, b) ∈
⋂

i∈I Ri. By de�nition of the intersection we have (a, b) ∈ Ri for each i, and so since
each Ri is symmetric this means (b, a) ∈ Ri for each i hence (b, a) ∈

⋂
i∈I Ri. Therefore

⋂
i∈I Ri is

also symmetric.

(c) If each Ri is antisymmetric, show that
⋂

i∈I Ri is also antisymmetric.

• Suppose (a, b), (b, a) ∈
⋂

i∈I Ri. By de�nition of the intersection we have (a, b), (b, a) ∈ Ri for each
i, and so since each Ri is antisymmetric this means a = b. In fact, here we just need (a, b), (b, a) to
be in one of the Ri.

(d) If each Ri is transitive, show that
⋂

i∈I Ri is also transitive.

• Suppose (a, b), (b, c) ∈
⋂

i∈I Ri. By de�nition of the intersection we have (a, b), (b, c) ∈ Ri for each i,
and so since each Ri is transitive this means (a, c) ∈ Ri for each i hence (a, c) ∈

⋂
i∈I Ri. Therefore⋂

i∈I Ri is also transitive.

(e) Deduce that the intersection of an arbitrary collection of equivalence relations is an equivalence relation,
and that the intersection of an arbitrary collection of partial orderings is a partial ordering.

• The result for equivalence relations follows immediately from (a) + (b) + (d), while the result for
partial orderings follows immediately from (a) + (c) + (d).

(f) If R is any relation on A, show that R has a well-de�ned �equivalence closure�: namely, a relation R̃ on
A such that R ⊆ R̃ where R̃ is an equivalence relation such that R̃ is a subset of any other equivalence
relation containing R. [Hint: Take the intersection of all equivalence relations containing R. Make sure
to show that this intersection is not empty.]

• Per the hint, let F = {Ri : R ⊆ Ri and Ri is an equivalence relation on A} be the collection of all
equivalence relations containing R. Then F is nonempty since A×A is an equivalence relation and
contains R.

• By (e), the intersection R̃ =
⋂

i∈I Ri is an equivalence relation containing R. Furthermore, by the

de�nition of the intersection we have R̃ ⊆ Ri for all Ri ∈ F , so since R̃ ∈ F as it is an equivalence
relation containing R, in fact R̃ is the smallest element of F as claimed.

(g) Illustrate (f) by �nding the equivalence closures of the relations R1 = {(1, 2), (1, 3), (2, 4)} and R2 =
{(1, 2), (3, 3)} on A = {1, 2, 3, 4}. [Hint: Identify which elements must go together in each equivalence
class.]

• For R1 if ∼ denotes the equivalence closure, note that we must have 1 ∼ 2, 1 ∼ 3, and 2 ∼ 4, and so
all of 1, 2, 3, 4 are in the same equivalence class. So the equivalence closure is just A×A.

• For R2 in the same way we must have 1 ∼ 2 and 3 ∼ 3 but no other things are required, so
the minimal choice of equivalence classes is {1, 2}, {3}, and {4}. The equivalence closure is then
{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}.
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