E. Dummit’s Math 1465 ~ Intensive Mathematical Reasoning, Fall 2024 ~ Homework 6 Solutions

1. Find the following;:

(a) Find the values of 6 + 13, 6 — 13, and 6 - 13 in Z/11Z. Write your answers as @ where 0 < a < 10.

o Wehave 6+ 13=10=|8,6-13="7=|1], and 6- 13 =78 =[ 1|

(b) Give the addition and multiplication tables modulo 7. (For ease of writing, you may omit the bars in
the residue class notation.)
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(¢) Find all of the invertible residue classes modulo 7 and their multiplicative inverses.

1 _ Z, g—l -1 -1

e Every nonzero residue class is invertible: explicitly, ' = 1,2 =54 =25 =3,
and 6 =G.
(d) Give the multiplication table modulo 8. (Again, you may omit the bars.)
O[T [Z[314[5[3]

EN

| O Tt | ol o] =
Ol ol o o o o 2 ©
| o ot | ol B = ©
O =l Do O O =] Dol ©
G | | =] = o ol ©
=] Dl = O =~ DI = ©
Wl o =l = [ > o) ©
NO| x| S Dl o) | | ©
= ol ol | o1l o 3 ©

(e) Find all of the invertible residue classes modulo 8 and their multiplicative inverses.

e Modulo 8, only the odd residue classes are invertible, and in fact each one is its own inverse: 1= 1,

37'=3,5 "'=57 ' =7. The other residue classes 0, 2, 4, 6 are not invertible.

(f) Give the multiplication table modulo 9. (Again, you may omit the bars.)
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(g) Find all of the invertible residue classes modulo 9 and their multiplicative inverses.

****** 12t 1t =75 =2

7 = 4, § ' = 8. The other residue classes 0, 3, 6 are not invertible.




2. Find the multiplicative inverse of each residue class @ modulo m, or explain why it does not exist.

(a) The residue class 7 modulo 10.

e Via the Euclidean algorithm we can compute 3-7 — 210 = 1 so 7 and 10 are relatively prime. So
the inverse exists.
e Reducing the Euclidean algorithm calculation modulo 10 yields 3-7 = 1 (mod 10), s0 3-7 = 1

modulo 10. Hence 7' =|3 | mod 10.
(b) The residue class 14 modulo 49.
e We can see that 14 and 49 are not relatively prime since their ged is 7, so 14 a
multiplicative inverse modulo 49.
(c) The residue class 16 modulo 49.

e Via the Euclidean algorithm we can compute 1-49 —3-16 = 1 so 16 and 49 are relatively prime. So
the inverse exists.
e Reducing the Euclidean algorithm calculation modulo 49 yields —3 - 16 = 1 so the multiplicative

inverse of 16 is mod 49.
(d) The residue class 5 modulo 2024.

e Via the Euclidean algorithm we can compute 405 -5 — 2024 = 1 so 5 and 2024 are relatively prime.
So the inverse exists.
e Reducing the Euclidean algorithm calculation modulo 49 yields 405 - 5 = 1 so the multiplicative

inverse of 5 is mod 2024.

3. Suppose a, b, ¢, d, m are integers and m > 0. Prove the following properties of modular arithmetic:

(a) If a = b (mod m), then ac = be (mod me) for any ¢ > 0.
e Suppose a = b (mod m). Then by definition, m|(b — a). So by properties of divisibility, we see that
mec divides (b — a)c = bc — ac.
e So by definition, this means ac = bc (mod mc) as claimed. (Note that ¢ > 0 is needed only because
the modulus mec is required to be positive.)
(b) If djm and d > 0, then ¢ = b (mod m) implies a = b (mod d).
e Suppose a = b (mod m). Then by definition, m|(b — a). But now because d|m, by properties of
divisibility we see that d|(b — a).
e So by definition, this means a = b (mod d) as claimed.
(¢) If a =b (mod m) then a™ = b" (mod m) for every positive integer n.
e Induction on n. The base case n =1 is simply a = b (mod m), which is given.
e For the inductive step suppose a™ = "™ (mod m). Multiplying this congruence by a = b (mod m)
yields a”*! = b"*! (mod m), which establishes the inductive step.
(d) Prove that the operation + is commutative modulo m: namely, that @+ b = b + @ for any @ and b.
e By definition of residue class addition we have @ +b=a + b, and also b+a@ = b+ a.
e But by the commutative property [I2] in Z, we know that a + b = b + a, so the associated residue
classes a + b and b+ a are also equal. Hence a+b=a+b=b+a = b+ @ as claimed.

= (a-b)-¢for any @, b, and ¢.
=a-(b-c)andalso (@-b)-¢=

(e) Prove that the operation - is associative modulo m: namely, that @- (b-¢
e By definition of residue class multiplication we have @- (b-¢) =a@-b- c

a-b-c=(a-b)-c
e But by the associative property [I5] in Z, we know that a- (b-c) = (a-b) - ¢, so the associated residue
classes a- (b-c) and (a-b)-c are also equal. Hence @-(b-¢) =a-b-c=a-(b-c) = (a-b)-c=
a-b-c=(a-b)-c as claimed.

(f) Prove that the residue class 1 is a multiplicative identity modulo m, namely, that 1-a = @ for any @.
1

e By definition of residue class multiplication and the identity property [I7] we see
claimed, since 1-a = a as integers.




4. The goal of this problem is to discuss modular exponentiation, which is frequently used in cryptography. If n
is a positive integer, we define @ (mod m) to be the n-term product @-a@-----@ (mod m). By problem 3c,

n terms
one has @a” = a” (i.e., the nth power of the residue class @ is the residue class of the nth power ™).

(a) Find the residue classes 52, 53, 54, 55, 56, 32, §3, §4, 35, and 3° (mod 10). (Write your answers as residue
classes 7 where 0 < r <9.)

e We simply calculate 52:, 2’ :, 2t :E:, 2° :@:, 56:@2.
o Likewise, 3° =[0] 3° =27 =[7| 3* =81 =[1] 3° =243 =[3] 3° =720 = 9],

(b) It is natural to think that if ny = ng (mod m), then a™ = ¢ (mod m); i.e., that exponents “can also
be reduced mod m”. Show that this is incorrect by verifying that 22 is not congruent to 27 modulo 5.

e We calculate 22 = 4 modulo 5, while 27 = 128 = 3 modulo 5. They are not congruent.

(¢) Show in fact that if a # 0 modulo 5, then a* = 1 (mod 5). Deduce that a™ = a™ (mod 5) whenever
n1 = ne (mod 4), so that the exponents actually behave “modulo 4”. [Hint: For the first part, test the 4
possible residue classes for a. For the second part, explain why a** = 1 (mod 5) for any k.|

e Since there are only 4 nonzero residue classes modulo 5, we simply check them all.

e We have 1* = 1 (mod 5), 2 = 16 = 1 (mod 5), 3* = 81 =1 (mod 5), and 4* = 256 = 1 (mod 5). So
the result holds in all cases.

e For the second part, we just showed that a* = 1 (mod 5) for any nonzero a. Taking the kth power
then yields a** = 1¥ =1 (mod 5).

e Now, if n; = ng (mod 4), then ny — ny = 4k for some integer k which (by interchanging nq, ng if
needed) we may assume is nonnegative. We then have a"2 = g™+ = g1 . (¢})F = g™ - 1F = g™
(mod 5), as claimed.

Now suppose we want to find the remainder when we divide 2516 by 61. Here is an efficient approach:
compute the values 2! = 2, 22 = 4, 2¢ = 16, 28 = 162 = 12, 216 = 122 = 22, 232 = 222 = —4, 264 = 16,
2128 = 12,9256 = 22 2512 = 57 modulo 61 by squaring each previous term and reducing. Then simply evaluate
2516 — 251294 = 57. 16 = 58 (modulo 61), so the remainder is 58.

(e) Use the method described above to find the remainder when 32! is divided by 43.

o We compute 3' = 3,32 =9, 3* = 81 = -5, 3% = 25, 36 = 625 = 23, 332 = 529 = 13, 34 = 169 =
-3, 3128 = (=3)2 =9, 3?56 = —».
e Then 3261 = 3256.34.3! = (-5).(—5) -3 = 75 = 32. Therefore, the remainder when 326! is divided

by 43 is [32]

e Remark: Efficient calculations with modular exponentiation are a fundamental part of the RSA cryp-
tosystem, which is still in wide use today.




5. Let p be a prime. The goal of this problem is to prove that a? = a (mod p) for every integer a, which is a
result known as Fermat’s Little Theorem.

(a) Show that the binomial coefficient (i) = #‘_k), is divisible by p for each integer k with 0 < k < p.

e If 0 <k <pthen (}) = #‘_k), has a factor of p in the numerator (from the p!) but neither k! nor
(p — k)! has a factor of p because p is prime and the only terms in k! and (p — k)! are integers less
than p.

e Hence the numerator is divisible by p but the denominator is not, so the quotient divisible by p.

(b) Prove that a? = a (mod p) for every positive integer a.

e Fix p and use induction on a. The base case a = 1 is trivial since clearly 1?» = 1 (mod p).

e For the inductive step, suppose a? = a (mod p).

e Then (a+1)? =a? + (D)aP~ + (§)aP~2 4 - + (pfl)a + (2)1 by the binomial theorem.

e By part (a), each of the middle terms is divisible by p, and so we have (a + 1)? = a? + 1 =a+1

(mod p) by the inductive hypothesis. This establishes the inductive step so by induction the result
holds for all positive integers a.

(c) Show in fact that a? = a (mod p) for all integers a. [Hint: The value of a? — a mod p only depends on
what residue class a lies in mod p.]

e For a fixed p, the value of a”? — a mod p only depends on the value of a mod p, since if a = b (mod
p) then a? —a = b” — b (mod p).

e So since (b) establishes that a? — a is 0 modulo p for @ = 0,1,2,...,p — 1 (which represent all p
possible residue classes for a), in fact a? — a is 0 modulo p for all integers a.

6. The goal of this problem is to establish a simple way to show large integers are composite without finding an
explicit factorization.

(a) Show that if there exists an integer a such that a™ # a (mod m), then m is composite. [Hint: The result
of problem 5 states that if p is prime, then a? = a (mod p) for all integers a.]
e Fermat’s little theorem, in problem 5, states “If p is prime, then a? = a (mod p) for all integers a”.
e Taking the contrapositive yields “If there exists an integer a with a? Z a (mod p), then p is not
prime”.
e Changing the variable from p to m yields the desired result immediately.
(b) Given that 223381 = 9352 (mod 23381), what can be concluded about whether 23381 is prime or com-
posite?
e With a = 2 and m = 23381, since a™ # a (mod m), part (a) implies that 23381 is composite.
(c) Given that 223377 = 2 (mod 23377), what can be concluded about whether 23377 is prime or composite?

e The result of part (a) is not an if-and-only-if statement. Since 223377 = 2 (mod 23377), the hypothesis
of part (a) does not apply, and therefore we cannot make any conclusion about whether 23377 is
prime or composite. (In fact, 23377 = 97 - 241 is composite!)

e Remark: The powers in parts (b) and (c) can be calculated quickly using the method discussed in problem
4(e).




