1. Find the following:

•

•

•

- (a) Find the values of $\overline{6} + \overline{13}$, $\overline{6} \overline{13}$, and $\overline{6} \cdot \overline{13}$ in $\mathbb{Z}/11\mathbb{Z}$. Write your answers as \overline{a} where $0 \le a \le 10$.
	- We have $\overline{6} + \overline{13} = \overline{19} = |\overline{8}|, \overline{6} \overline{13} = |\overline{7}|, \text{ and } \overline{6} \cdot \overline{13} = |\overline{78}|, |\overline{1}|.$
- (b) Give the addition and multiplication tables modulo 7. (For ease of writing, you may omit the bars in the residue class notation.)

- (c) Find all of the invertible residue classes modulo 7 and their multiplicative inverses.
	- Every nonzero residue class is invertible: explicitly, $\overline{1}^{-1} = \overline{1}$, $\overline{2}^{-1} = \overline{4}$, $\overline{3}^{-1} = \overline{5}$, $\overline{4}^{-1} = \overline{2}$, $\overline{5}^{-1} = \overline{3}$, and $\overline{6}^{-1} = \overline{6}$.
- (d) Give the multiplication table modulo 8. (Again, you may omit the bars.)

- (e) Find all of the invertible residue classes modulo 8 and their multiplicative inverses.
	- Modulo 8, only the odd residue classes are invertible, and in fact each one is its own inverse: $\overline{1}^{-1} = \overline{1}$, $\overline{3}^{-1} = \overline{3}, \overline{5}^{-1} = \overline{5}, \overline{7}^{-1} = \overline{7}$. The other residue classes $\overline{0}, \overline{2}, \overline{4}, \overline{6}$ are not invertible.
- (f) Give the multiplication table modulo 9. (Again, you may omit the bars.)

- (g) Find all of the invertible residue classes modulo 9 and their multiplicative inverses.
	- Modulo 9, the invertible residue classes are $\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}$: $\overline{1}^{-1} = \overline{1}, \overline{2}^{-1} = \overline{5}, \overline{4}^{-1} = \overline{7}, \overline{5}^{-1} = \overline{2},$ $\overline{7}^{-1} = \overline{4}, \overline{8}^{-1} = \overline{8}$. The other residue classes $\overline{0}, \overline{3}, \overline{6}$ are not invertible.
- 2. Find the multiplicative inverse of each residue class \bar{a} modulo m, or explain why it does not exist.
	- (a) The residue class $\overline{7}$ modulo 10.
		- Via the Euclidean algorithm we can compute $3 \cdot 7 2 \cdot 10 = 1$ so 7 and 10 are relatively prime. So the inverse exists.
		- Reducing the Euclidean algorithm calculation modulo 10 yields $3 \cdot 7 \equiv 1 \pmod{10}$, so $\overline{3} \cdot \overline{7} = \overline{1}$ modulo 10. Hence $\overline{7}^{-1} = \boxed{3}$ mod 10.
	- (b) The residue class $\overline{14}$ modulo 49.
		- We can see that 14 and 49 are not relatively prime since their gcd is 7, so $\overline{14}$ does not have a multiplicative inverse modulo 49.
	- (c) The residue class $\overline{16}$ modulo 49.
		- Via the Euclidean algorithm we can compute $1 \cdot 49 3 \cdot 16 = 1$ so 16 and 49 are relatively prime. So the inverse exists.
		- Reducing the Euclidean algorithm calculation modulo 49 yields $\overline{-3} \cdot \overline{16} = \overline{1}$ so the multiplicative inverse of $\overline{16}$ is $\overline{\smash{)}\,3} = \overline{46} \, \text{mod } 49.$
	- (d) The residue class $\overline{5}$ modulo 2024.
		- Via the Euclidean algorithm we can compute $405 \cdot 5 2024 = 1$ so 5 and 2024 are relatively prime. So the inverse exists.
		- Reducing the Euclidean algorithm calculation modulo 49 yields $\overline{405} \cdot \overline{5} = \overline{1}$ so the multiplicative inverse of $\frac{1}{5}$ is $\sqrt{405}$ mod 2024.
- 3. Suppose a, b, c, d, m are integers and $m > 0$. Prove the following properties of modular arithmetic:
	- (a) If $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{mc}$ for any $c > 0$.
		- Suppose $a \equiv b \pmod{m}$. Then by definition, $m(b-a)$. So by properties of divisibility, we see that mc divides $(b - a)c = bc - ac$.
		- So by definition, this means $ac \equiv bc \pmod{mc}$ as claimed. (Note that $c > 0$ is needed only because the modulus mc is required to be positive.)
	- (b) If $d|m$ and $d>0$, then $a \equiv b \pmod{m}$ implies $a \equiv b \pmod{d}$.
		- Suppose $a \equiv b \pmod{m}$. Then by definition, $m|(b-a)$. But now because $d|m$, by properties of divisibility we see that $d|(b-a)$.
		- So by definition, this means $a \equiv b \pmod{d}$ as claimed.
	- (c) If $a \equiv b \pmod{m}$ then $a^n \equiv b^n \pmod{m}$ for every positive integer n.
		- Induction on n. The base case $n = 1$ is simply $a \equiv b \pmod{m}$, which is given.
		- For the inductive step suppose $a^n \equiv b^n \pmod{m}$. Multiplying this congruence by $a \equiv b \pmod{m}$ yields $a^{n+1} \equiv b^{n+1} \pmod{m}$, which establishes the inductive step.
	- (d) Prove that the operation + is commutative modulo m: namely, that $\bar{a} + \bar{b} = \bar{b} + \bar{a}$ for any \bar{a} and \bar{b} .
		- By definition of residue class addition we have $\overline{a} + \overline{b} = \overline{a+b}$, and also $\overline{b} + \overline{a} = \overline{b+a}$.
		- But by the commutative property [12] in \mathbb{Z} , we know that $a + b = b + a$, so the associated residue classes $\overline{a+b}$ and $\overline{b+a}$ are also equal. Hence $\overline{a}+\overline{b}=\overline{a+b}=\overline{b+a}=\overline{b}+\overline{a}$ as claimed.
	- (e) Prove that the operation \cdot is associative modulo m: namely, that $\bar{a} \cdot (\bar{b} \cdot \bar{c}) = (\bar{a} \cdot \bar{b}) \cdot \bar{c}$ for any \bar{a} , \bar{b} , and \bar{c} .
		- By definition of residue class multiplication we have $\overline{a} \cdot (\overline{b} \cdot \overline{c}) = \overline{a} \cdot \overline{b \cdot c} = \overline{a \cdot (b \cdot c)}$ and also $(\overline{a} \cdot \overline{b}) \cdot \overline{c} =$ $\overline{a \cdot b} \cdot \overline{c} = \overline{(a \cdot b) \cdot c}.$
		- But by the associative property [I5] in Z, we know that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, so the associated residue classes $\overline{a\cdot (b\cdot c)}$ and $\overline{(a\cdot b)\cdot c}$ are also equal. Hence $\overline{a}\cdot (\overline{b}\cdot \overline{c}) = \overline{a}\cdot \overline{b\cdot c} = \overline{a\cdot (b\cdot c)} = \overline{(a\cdot b)\cdot c}$ $\overline{a \cdot b} \cdot \overline{c} = (\overline{a} \cdot \overline{b}) \cdot \overline{c}$ as claimed.
	- (f) Prove that the residue class $\overline{1}$ is a multiplicative identity modulo m, namely, that $\overline{1} \cdot \overline{a} = \overline{a}$ for any \overline{a} .
		- By definition of residue class multiplication and the identity property [17] we see $\overline{1} \cdot \overline{a} = \overline{1 \cdot a} = \overline{a}$, as claimed, since $1 \cdot a = a$ as integers.

4. The goal of this problem is to discuss modular exponentiation, which is frequently used in cryptography. If n is a positive integer, we define \overline{a}^n (mod m) to be the n-term product $\overline{a} \cdot \overline{a} \cdot \cdots \cdot \overline{a}$ (mod m). By problem 3c, \overline{n} terms

one has $\overline{a}^n = \overline{a^n}$ (i.e., the *n*th power of the residue class \overline{a} is the residue class of the *n*th power a^n).

- (a) Find the residue classes $\bar{2}^2$, $\bar{2}^3$, $\bar{2}^4$, $\bar{2}^5$, $\bar{2}^6$, $\bar{3}^2$, $\bar{3}^3$, $\bar{3}^4$, $\bar{3}^5$, and $\bar{3}^6$ (mod 10). (Write your answers as residue classes \bar{r} where $0 \leq r \leq 9$.)
	- We simply calculate $\overline{2}^2 = |\overline{4}|, \overline{2}^3 = |\overline{8}|, \overline{2}^4 = \overline{16} = |\overline{6}|, \overline{2}^5 = \overline{32} = |\overline{2}|, \overline{2}^6 = \overline{64} = |\overline{4}|.$
	- Likewise, $\overline{3}^2 = \overline{\boxed{9}}$, $\overline{3}^3 = \overline{27} = \overline{\boxed{7}}$, $\overline{3}^4 = \overline{81} = \overline{\boxed{1}}$, $\overline{3}^5 = \overline{243} = \overline{\boxed{3}}$, $\overline{3}^6 = \overline{729} = \overline{\boxed{9}}$.
- (b) It is natural to think that if $n_1 \equiv n_2 \pmod{m}$, then $a^{n_1} \equiv a^{n_2} \pmod{m}$; i.e., that exponents "can also be reduced mod m". Show that this is incorrect by verifying that 2^2 is not congruent to 2^7 modulo 5.
	- We calculate $2^2 \equiv 4$ modulo 5, while $2^7 = 128 \equiv 3$ modulo 5. They are not congruent.
- (c) Show in fact that if $a \neq 0$ modulo 5, then $a^4 \equiv 1 \pmod{5}$. Deduce that $a^{n_1} \equiv a^{n_2} \pmod{5}$ whenever $n_1 \equiv n_2 \pmod{4}$, so that the exponents actually behave "modulo 4". [Hint: For the first part, test the 4 possible residue classes for a. For the second part, explain why $a^{4k} \equiv 1 \pmod{5}$ for any k.
	- Since there are only 4 nonzero residue classes modulo 5, we simply check them all.
	- We have $1^4 \equiv 1 \pmod{5}$, $2^4 = 16 \equiv 1 \pmod{5}$, $3^4 = 81 \equiv 1 \pmod{5}$, and $4^4 = 256 \equiv 1 \pmod{5}$. So the result holds in all cases.
	- For the second part, we just showed that $a^4 \equiv 1 \pmod{5}$ for any nonzero a. Taking the kth power then yields $a^{4k} \equiv 1^k \equiv 1 \pmod{5}$.
	- Now, if $n_1 \equiv n_2 \pmod{4}$, then $n_2 n_1 = 4k$ for some integer k which (by interchanging n_1, n_2 if needed) we may assume is nonnegative. We then have $a^{n_2} = a^{n_1+4k} = a^{n_1} \cdot (a^4)^k \equiv a^{n_1} \cdot 1^k = a^{n_1}$ (mod 5), as claimed.

Now suppose we want to find the remainder when we divide 2^{516} by 61. Here is an efficient approach: compute the values $2^1 \equiv 2$, $2^2 \equiv 4$, $2^4 \equiv 16$, $2^8 \equiv 16^2 \equiv 12$, $2^{16} \equiv 12^2 \equiv 22$, $2^{32} \equiv 22^2 \equiv -4$, $2^{64} \equiv 16$, $2^{128} \equiv 12, 2^{256} \equiv 22, 2^{512} \equiv 57$ modulo 61 by squaring each previous term and reducing. Then simply evaluate $2^{516} = 2^{512} \cdot 2^4 \equiv 57 \cdot 16 \equiv 58 \pmod{61}$, so the remainder is 58.

- (e) Use the method described above to find the remainder when 3^{261} is divided by 43.
	- We compute $3^1 \equiv 3$, $3^2 \equiv 9$, $3^4 \equiv 81 \equiv -5$, $3^8 \equiv 25$, $3^{16} \equiv 625 \equiv 23$, $3^{32} \equiv 529 \equiv 13$, $3^{64} \equiv 169 \equiv$ $-3, 3^{128} \equiv (-3)^2 \equiv 9, 3^{256} \equiv -5.$
	- Then $3^{261} = 3^{256} \cdot 3^4 \cdot 3^1 \equiv (-5) \cdot (-5) \cdot 3 \equiv 75 \equiv 32$. Therefore, the remainder when 3^{261} is divided by 43 is $|32|$.
	- Remark: Efficient calculations with modular exponentiation are a fundamental part of the RSA cryptosystem, which is still in wide use today.
- 5. Let p be a prime. The goal of this problem is to prove that $a^p \equiv a \pmod{p}$ for every integer a, which is a result known as Fermat's Little Theorem.
	- (a) Show that the binomial coefficient $\binom{p}{k} = \frac{p!}{k! \cdot (p-k)!}$ is divisible by p for each integer k with $0 < k < p$.
		- If $0 < k < p$ then $\binom{p}{k} = \frac{p!}{k! \cdot (p-k)!}$ has a factor of p in the numerator (from the p!) but neither k! nor $(p - k)!$ has a factor of p because p is prime and the only terms in k! and $(p - k)!$ are integers less than p.
		- Hence the numerator is divisible by p but the denominator is not, so the quotient divisible by p .
	- (b) Prove that $a^p \equiv a \pmod{p}$ for every positive integer a.
		- Fix p and use induction on a. The base case $a = 1$ is trivial since clearly $1^p \equiv 1 \pmod{p}$.
		- For the inductive step, suppose $a^p \equiv a \pmod{p}$.
		- Then $(a+1)^p = a^p + {p \choose 1} a^{p-1} + {p \choose 2} a^{p-2} + \cdots + {p \choose p-1} a + {p \choose p} 1$ by the binomial theorem.
		- By part (a), each of the middle terms is divisible by p, and so we have $(a + 1)^p \equiv a^p + 1 \equiv a + 1$ $(mod p)$ by the inductive hypothesis. This establishes the inductive step so by induction the result holds for all positive integers a.
	- (c) Show in fact that $a^p \equiv a \pmod{p}$ for all integers a. [Hint: The value of $a^p a$ mod p only depends on what residue class a lies in mod p .
		- For a fixed p, the value of $a^p a$ mod p only depends on the value of a mod p, since if $a \equiv b$ (mod p) then $a^p - a \equiv b^p - b \pmod{p}$.
		- So since (b) establishes that $a^p a$ is 0 modulo p for $a = 0, 1, 2, \ldots, p 1$ (which represent all p possible residue classes for a), in fact $a^p - a$ is 0 modulo p for all integers a.
- 6. The goal of this problem is to establish a simple way to show large integers are composite without finding an explicit factorization.
	- (a) Show that if there exists an integer a such that $a^m \neq a \pmod{m}$, then m is composite. [Hint: The result of problem 5 states that if p is prime, then $a^p \equiv a \pmod{p}$ for all integers a.
		- Fermat's little theorem, in problem 5, states "If p is prime, then $a^p \equiv a \pmod{p}$ for all integers a".
		- Taking the contrapositive yields "If there exists an integer a with $a^p \neq a \pmod{p}$, then p is not prime".
		- Changing the variable from p to m yields the desired result immediately.
	- (b) Given that $2^{23381} \equiv 9352 \pmod{23381}$, what can be concluded about whether 23381 is prime or composite?
		- With $a = 2$ and $m = 23381$, since $a^m \not\equiv a \pmod{m}$, part (a) implies that 23381 is composite.
	- (c) Given that $2^{23377} \equiv 2 \pmod{23377}$, what can be concluded about whether 23377 is prime or composite?
		- The result of part (a) is not an if-and-only-if statement. Since $2^{23377} \equiv 2 \pmod{23377}$, the hypothesis of part (a) does not apply, and therefore we cannot make any conclusion about whether 23377 is prime or composite. (In fact, $23377 = 97 \cdot 241$ is composite!)
		- Remark: The powers in parts (b) and (c) can be calculated quickly using the method discussed in problem $4(e)$.