
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 6 Solutions

1. Find the following:

(a) Find the values of 6 + 13, 6− 13, and 6 · 13 in Z/11Z. Write your answers as a where 0 ≤ a ≤ 10.

• We have 6 + 13 = 19 = 8 , 6− 13 = −7 = 4 , and 6 · 13 = 78 = 1 .

(b) Give the addition and multiplication tables modulo 7. (For ease of writing, you may omit the bars in
the residue class notation.)

•

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

(c) Find all of the invertible residue classes modulo 7 and their multiplicative inverses.

• Every nonzero residue class is invertible: explicitly, 1
−1

= 1, 2
−1

= 4, 3
−1

= 5, 4
−1

= 2, 5
−1

= 3,

and 6
−1

= 6.

(d) Give the multiplication table modulo 8. (Again, you may omit the bars.)

•

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

(e) Find all of the invertible residue classes modulo 8 and their multiplicative inverses.

• Modulo 8, only the odd residue classes are invertible, and in fact each one is its own inverse: 1
−1

= 1,

3
−1

= 3, 5
−1

= 5, 7
−1

= 7. The other residue classes 0, 2, 4, 6 are not invertible.

(f) Give the multiplication table modulo 9. (Again, you may omit the bars.)

•

· 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

(g) Find all of the invertible residue classes modulo 9 and their multiplicative inverses.

• Modulo 9, the invertible residue classes are 1, 2, 4, 5, 7, 8: 1
−1

= 1, 2
−1

= 5, 4
−1

= 7, 5
−1

= 2,

7
−1

= 4, 8
−1

= 8. The other residue classes 0, 3, 6 are not invertible.
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2. Find the multiplicative inverse of each residue class a modulo m, or explain why it does not exist.

(a) The residue class 7 modulo 10.

• Via the Euclidean algorithm we can compute 3 · 7− 2 · 10 = 1 so 7 and 10 are relatively prime. So
the inverse exists.

• Reducing the Euclidean algorithm calculation modulo 10 yields 3 · 7 ≡ 1 (mod 10), so 3 · 7 = 1

modulo 10. Hence 7
−1

= 3 mod 10.

(b) The residue class 14 modulo 49.

• We can see that 14 and 49 are not relatively prime since their gcd is 7, so 14 does not have a
multiplicative inverse modulo 49.

(c) The residue class 16 modulo 49.

• Via the Euclidean algorithm we can compute 1 · 49− 3 · 16 = 1 so 16 and 49 are relatively prime. So
the inverse exists.

• Reducing the Euclidean algorithm calculation modulo 49 yields −3 · 16 = 1 so the multiplicative

inverse of 16 is −3 = 46 mod 49.

(d) The residue class 5 modulo 2024.

• Via the Euclidean algorithm we can compute 405 · 5− 2024 = 1 so 5 and 2024 are relatively prime.
So the inverse exists.

• Reducing the Euclidean algorithm calculation modulo 49 yields 405 · 5 = 1 so the multiplicative

inverse of 5 is 405 mod 2024.

3. Suppose a, b, c, d,m are integers and m > 0. Prove the following properties of modular arithmetic:

(a) If a ≡ b (mod m), then ac ≡ bc (mod mc) for any c > 0.

• Suppose a ≡ b (mod m). Then by de�nition, m|(b− a). So by properties of divisibility, we see that
mc divides (b− a)c = bc− ac.

• So by de�nition, this means ac ≡ bc (mod mc) as claimed. (Note that c > 0 is needed only because
the modulus mc is required to be positive.)

(b) If d|m and d > 0, then a ≡ b (mod m) implies a ≡ b (mod d).

• Suppose a ≡ b (mod m). Then by de�nition, m|(b − a). But now because d|m, by properties of
divisibility we see that d|(b− a).

• So by de�nition, this means a ≡ b (mod d) as claimed.

(c) If a ≡ b (mod m) then an ≡ bn (mod m) for every positive integer n.

• Induction on n. The base case n = 1 is simply a ≡ b (mod m), which is given.

• For the inductive step suppose an ≡ bn (mod m). Multiplying this congruence by a ≡ b (mod m)
yields an+1 ≡ bn+1 (mod m), which establishes the inductive step.

(d) Prove that the operation + is commutative modulo m: namely, that a+ b = b+ a for any a and b.

• By de�nition of residue class addition we have a+ b = a+ b, and also b+ a = b+ a.

• But by the commutative property [I2] in Z, we know that a + b = b + a, so the associated residue
classes a+ b and b+ a are also equal. Hence a+ b = a+ b = b+ a = b+ a as claimed.

(e) Prove that the operation · is associative modulo m: namely, that a · (b · c) = (a · b) · c for any a, b, and c.

• By de�nition of residue class multiplication we have a · (b · c) = a · b · c = a · (b · c) and also (a · b) · c =
a · b · c = (a · b) · c.
• But by the associative property [I5] in Z, we know that a · (b · c) = (a · b) · c, so the associated residue
classes a · (b · c) and (a · b) · c are also equal. Hence a · (b · c) = a · b · c = a · (b · c) = (a · b) · c =
a · b · c = (a · b) · c as claimed.

(f) Prove that the residue class 1 is a multiplicative identity modulo m, namely, that 1 · a = a for any a.

• By de�nition of residue class multiplication and the identity property [I7] we see 1 · a = 1 · a = a, as
claimed, since 1 · a = a as integers.
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4. The goal of this problem is to discuss modular exponentiation, which is frequently used in cryptography. If n
is a positive integer, we de�ne an (mod m) to be the n-term product a · a · · · · · a︸ ︷︷ ︸

n terms

(mod m). By problem 3c,

one has an = an (i.e., the nth power of the residue class a is the residue class of the nth power an).

(a) Find the residue classes 2
2
, 2

3
, 2

4
, 2

5
, 2

6
, 3

2
, 3

3
, 3

4
, 3

5
, and 3

6
(mod 10). (Write your answers as residue

classes r where 0 ≤ r ≤ 9.)

• We simply calculate 2
2
= 4 , 2

3
= 8 , 2

4
= 16 = 6 , 2

5
= 32 = 2 , 2

6
= 64 = 4 .

• Likewise, 3
2
= 9 , 3

3
= 27 = 7 , 3

4
= 81 = 1 , 3

5
= 243 = 3 , 3

6
= 729 = 9 .

(b) It is natural to think that if n1 ≡ n2 (mod m), then an1 ≡ an2 (mod m); i.e., that exponents �can also
be reduced mod m�. Show that this is incorrect by verifying that 22 is not congruent to 27 modulo 5.

• We calculate 22 ≡ 4 modulo 5, while 27 = 128 ≡ 3 modulo 5. They are not congruent.

(c) Show in fact that if a 6≡ 0 modulo 5, then a4 ≡ 1 (mod 5). Deduce that an1 ≡ an2 (mod 5) whenever
n1 ≡ n2 (mod 4), so that the exponents actually behave �modulo 4�. [Hint: For the �rst part, test the 4
possible residue classes for a. For the second part, explain why a4k ≡ 1 (mod 5) for any k.]

• Since there are only 4 nonzero residue classes modulo 5, we simply check them all.

• We have 14 ≡ 1 (mod 5), 24 = 16 ≡ 1 (mod 5), 34 = 81 ≡ 1 (mod 5), and 44 = 256 ≡ 1 (mod 5). So
the result holds in all cases.

• For the second part, we just showed that a4 ≡ 1 (mod 5) for any nonzero a. Taking the kth power
then yields a4k ≡ 1k ≡ 1 (mod 5).

• Now, if n1 ≡ n2 (mod 4), then n2 − n1 = 4k for some integer k which (by interchanging n1, n2 if
needed) we may assume is nonnegative. We then have an2 = an1+4k = an1 · (a4)k ≡ an1 · 1k = an1

(mod 5), as claimed.

Now suppose we want to �nd the remainder when we divide 2516 by 61. Here is an e�cient approach:
compute the values 21 ≡ 2, 22 ≡ 4, 24 ≡ 16, 28 ≡ 162 ≡ 12, 216 ≡ 122 ≡ 22, 232 ≡ 222 ≡ −4, 264 ≡ 16,
2128 ≡ 12, 2256 ≡ 22, 2512 ≡ 57 modulo 61 by squaring each previous term and reducing. Then simply evaluate
2516 = 2512 · 24 ≡ 57 · 16 ≡ 58 (modulo 61), so the remainder is 58.

(e) Use the method described above to �nd the remainder when 3261 is divided by 43.

• We compute 31 ≡ 3, 32 ≡ 9, 34 ≡ 81 ≡ −5, 38 ≡ 25, 316 ≡ 625 ≡ 23, 332 ≡ 529 ≡ 13, 364 ≡ 169 ≡
−3, 3128 ≡ (−3)2 ≡ 9, 3256 ≡ −5.

• Then 3261 = 3256 · 34 · 31 ≡ (−5) · (−5) · 3 ≡ 75 ≡ 32. Therefore, the remainder when 3261 is divided

by 43 is 32 .

• Remark: E�cient calculations with modular exponentiation are a fundamental part of the RSA cryp-
tosystem, which is still in wide use today.
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5. Let p be a prime. The goal of this problem is to prove that ap ≡ a (mod p) for every integer a, which is a
result known as Fermat's Little Theorem.

(a) Show that the binomial coe�cient
(
p
k

)
= p!

k!·(p−k)! is divisible by p for each integer k with 0 < k < p.

• If 0 < k < p then
(
p
k

)
= p!

k!·(p−k)! has a factor of p in the numerator (from the p!) but neither k! nor

(p − k)! has a factor of p because p is prime and the only terms in k! and (p − k)! are integers less
than p.

• Hence the numerator is divisible by p but the denominator is not, so the quotient divisible by p.

(b) Prove that ap ≡ a (mod p) for every positive integer a.

• Fix p and use induction on a. The base case a = 1 is trivial since clearly 1p ≡ 1 (mod p).

• For the inductive step, suppose ap ≡ a (mod p).

• Then (a+ 1)p = ap +
(
p
1

)
ap−1 +

(
p
2

)
ap−2 + · · ·+

(
p

p−1

)
a+

(
p
p

)
1 by the binomial theorem.

• By part (a), each of the middle terms is divisible by p, and so we have (a + 1)p ≡ ap + 1 ≡ a + 1
(mod p) by the inductive hypothesis. This establishes the inductive step so by induction the result
holds for all positive integers a.

(c) Show in fact that ap ≡ a (mod p) for all integers a. [Hint: The value of ap − a mod p only depends on
what residue class a lies in mod p.]

• For a �xed p, the value of ap − a mod p only depends on the value of a mod p, since if a ≡ b (mod
p) then ap − a ≡ bp − b (mod p).

• So since (b) establishes that ap − a is 0 modulo p for a = 0, 1, 2, . . . , p − 1 (which represent all p
possible residue classes for a), in fact ap − a is 0 modulo p for all integers a.

6. The goal of this problem is to establish a simple way to show large integers are composite without �nding an
explicit factorization.

(a) Show that if there exists an integer a such that am 6≡ a (mod m), then m is composite. [Hint: The result
of problem 5 states that if p is prime, then ap ≡ a (mod p) for all integers a.]

• Fermat's little theorem, in problem 5, states �If p is prime, then ap ≡ a (mod p) for all integers a�.

• Taking the contrapositive yields �If there exists an integer a with ap 6≡ a (mod p), then p is not
prime�.

• Changing the variable from p to m yields the desired result immediately.

(b) Given that 223381 ≡ 9352 (mod 23381), what can be concluded about whether 23381 is prime or com-
posite?

• With a = 2 and m = 23381, since am 6≡ a (mod m), part (a) implies that 23381 is composite.

(c) Given that 223377 ≡ 2 (mod 23377), what can be concluded about whether 23377 is prime or composite?

• The result of part (a) is not an if-and-only-if statement. Since 223377 ≡ 2 (mod 23377), the hypothesis
of part (a) does not apply, and therefore we cannot make any conclusion about whether 23377 is
prime or composite. (In fact, 23377 = 97 · 241 is composite!)

• Remark: The powers in parts (b) and (c) can be calculated quickly using the method discussed in problem
4(e).
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