E. Dummit’s Math 1465 ~ Intensive Mathematical Reasoning, Fall 2024 ~ Homework 5 Solutions

1. For each pair of integers (a,b), use the Euclidean algorithm to calculate their greatest common divisor d =
ged(a,b) AND also to find integers « and y such that d = ax + by. (Make sure to include the Euclidean
algorithm calculations in your writeup.)

(a) a =12, b=44.

Applying the Euclidean algorithm to a = 12 and b = 44 yields

44=3-12+8
12=1-8+14
8§=2-4

and thus the ged is the last nonzero remainder of .
For the linear combination, we solve for the remainders:

8 = = 1-44-3-12
4 = 12-1-8 = 4-12—-1-44
and so we see [4 =4-12—1-44|so we can take x =4 and y = —1.

(b) a=20,b=107.
Applying the Euclidean algorithm to a = 12 and b = 44 yields

107=5-20+7
20=2-7+6
7T=1-6+1
6=6-1

and thus the gcd is the last nonzero remainder of .
For the linear combination, we solve for the remainders:

7T = = 107 —=5-20
6 = 20-2-7 = —-2-107+4+11-20
1 = 7-1-6 = 3-107-16-20

and so we see |1 = 3-107 — 16 - 20 | so we can take z = 3 and y = —16.
(¢) a =2023, b =20234.
Applying the Euclidean algorithm to a = 2023 and b = 20234 yields

20234 = 10-2023+4
2023 = 505-4+3
4 = 1-3+1

3 = 3-1

and so the ged is the last nonzero remainder of .
For the linear combination, we solve for the remainders:

4 = = 1-20234 — 10 - 2023
3 = 2023-505-4 = —505-20234 4 5051 - 2023
1 = 4—-1-3 = 50620234 — 5061 - 2023

and so we see | 1 = —505 - 20234 4 5051 - 2023 | so we can take x = —505 and y = 5051.
(d) a = 5567, b= 12445.




Applying the Euclidean algorithm to a = 5567 and b = 12445 yields

12445 = 2-5567 4 1311
5567 = 4-1311+4 323
1311 = 4-323+419

323 = 17-19

and so the ged is the last nonzero remainder of .
For the linear combination, we solve for the remainders:

1311 = = 1-12445— 25567
323 = 5567 —-4-1311 = —4-12445+4 95567
19 = 1311-4-323 = 17-12445— 385567

and so we see |19 = 17 - 12445 — 38 - 5567 | so we can take x = 17 and y = —38.
(e) a =233, b=144.
e Applying the Euclidean algorithm to a = 233 and b = 144 yields

233 = 1-144+489
144 = 1-894 55
89 = 1-55+34
95 = 1-34+21
34 = 1-21+13
21 = 1-13+8
13 = 1-845
8§ = 1-5+3
5 = 1-3+2
3 = 1-2+1
2 = 2-1

and so the gcd is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

89 = = 233 —-1-144

55 = 144-1-89 = —1-233+2-144
34 = 89-1-56 = 2-233-3-144

21 = 55-1-34 = —=3-233+5-144
13 = 34-1-21 = 5-233-8-144

8§ = 21-1-13 = —-8-233+13-144
5 = 13-1-8 = 13-233-21-144
3 = 8§—1-5 = —21-233+34-144
2 = 5—1-3 = 34-233-55-144
1 = 3—1-2 = —55-233+89-144

and so we see |1 = —55-233 + 89 - 144 | so we can take x = 89 and y = 144.

2. Find the following;:

(a) Find the gcd and lem of 144 and 300.
e By the Euclidean algorithm, ged(144,300) = [12]. Then lem(144, 300) = 144 - 300/12 = [3600 .
(b) Find the ged and lem of 283115778112 and 243857771111,

e From the prime factorizations, the ged is|2%3%5777112 | and the lem is | 283157781111 |,

(c) Find the prime factorizations of 1600, 2024, 2025, and 20242025,

e We have 1600 = | 2652 |, 2024 = |23 . 11 - 23] 2025 = and so 20242025 — | 900751 12025932025 |




3. Suppose that a, b, ¢ are integers such that ged(a,b) =1 and that a|c and b|c. Prove that (ab)|c.

e Since a|c there exists an integer k such that ¢ = ka. Then b|c says that b|(ka).
e But a and b are relatively prime, so since b|(ka), the relatively prime divisibility property implies b|k.

e Thus, there exists an integer [ such that k = [b. Then ¢ = ka = lba, and so ab|c.

4. The goal of this problem is to demonstrate that the uniqueness of prime factorizations is not as obvious as it
may seem. Let S be a nonempty set of positive integers, and define an S-prime to be an element p € S such
that p > 1 and there do not exist a,b € S such that ab = p and 1 < a,b < p. (If S is the set of all positive
integers, then this definition reduces to the usual one for prime numbers.) Let £ = {2,4,6,8,10, ...} be the
set of even positive integers and O = {1,3,5,7,9,11, ...} be the set of odd positive integers.

(a) Which of 2, 4, 6, 8, 10, 12, 14, and 16 are E-primes?

e Wehave 4 =2-2,8=2-4,12=2-6, and 16 = 2 - 8 so these elements are not E-primes.

e On the other hand, we cannot factor 2, 6, 10, or 14 as the product of two elements of F, since the
product of two elements of F is always divisible by 4. So these elements are E-primes.

(b) Show that 2n € F is an E-prime if and only if n is odd. [Hint: Show the contrapositive.]

e Suppose n is even. Then 4n = 2 - 2n is a factorization of 4n as the product of two elements in F, so
2n is not an E-prime.

e On the other hand, suppose 2n is not an E-prime. Then 2n = (2a)(2b) = 4ab for some integers a, b,
so 2n is a multiple of 4 hence n is even.

(c¢) Show that 60 has two different factorizations as a product of E-primes. Deduce that E does not have
unique F-prime factorization.

e We have 60 = 6-10 = 2 - 30, and by (b) each of 2, 6, 10, and 30 is an E-prime. Since the terms
are actually different, and not just rearranged, we see that the factorizations are different, and so F
does not have unique E-prime factorization.

(d) Which of 1, 3, 5, 7,9, 11, 13, and 15 are O-primes?
e We have 9 = 3-3 and 15 = 3 - 5 so these elements are not O-primes, and by definition 1 is also not
an O-prime.
e On the other hand, as the product of two elements of E, since the product of two elements of E is
always divisible by 4. So these elements are F-primes.

(e) Show that p € O is an O-prime if and only if p is an odd prime integer.

e Suppose p is an O-prime: then p > 1 is odd. If p = ab for some positive integers a and b with
1 < a,b <1, then a and b must both be odd. But this would mean a,b € O, which contradicts the
assumption that p is an O-prime. So p must be an odd prime integer.

e Conversely, suppose p is an odd prime. Then p € O and p cannot be factored as the product of two
smaller integers, so in particular p cannot be factored as the product of two smaller integers in O.
So p is an O-prime.

(f) Explain why O has unique O-prime factorization.

e By (e) the O-primes are the same as the odd primes, and since we have unique prime factorization
in Z, the same proof shows that we have unique prime factorization in O.




5. The Fibonacci numbers are defined as follows: F} = F» =1 and for n > 2, F,, = F,,_1 + F,,_o. The first few
terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that Fy + Fo + F3+---+ F,, = F,,; o — 1 for every positive integer n. [Hint: Use induction.]

e We prove the result by induction on n.

e For the base case n = 1, we must verify F; = F3 — 2, which is true because F3 = 3 and F} = 1.

e For the inductive step, we assume that Fy + F» + F3 + --- + F, = Fj412 — 1 and must show that
P+ B+ Fs+- -+ Fy+ Fioyg = Figps — 1

e Then Fi +Fo+Fs+ -+ Fp+Fyq1 = [F1 +F2+F3+"'+Fk]+Fk+1 =Fypio—1+Fpy1 = Fps—1
as required.

e Hence by induction, Fy + F5 + F5 + --- 4+ F,, = F,, 42 — 1 for every positive integer n.
(b) Prove that FZ2 + Fy + Fi + -+ F2? = F,F,, 1, for every positive integer n.

e We prove the result by induction on n.

e For the base case n = 1, we must verify F12 = F1 F5, which is true because I} = F5 = 2.

e For the inductive step, we assume that F12 + F22 + F32 + e+ F,f = FjyFi4+1 and must show that
FP+F;+F3+ -+ F2+ F2, = Fip1Frgo.

o Wehave F{ + F§ + F§ +-- -+ F2+F2 | = [FP+F3+F§ +- -+ FAl+ F2, = FuFpn + FL | =
[Fi + Fit1]Fr41 = Fjy1Fjq2 as required.

e Hence by induction, FZ + F3 + F§ + -+ + F2 = F,F,, 4 for every positive integer n.

(¢) Prove that F,, .3 — F, is even for every positive integer n.

e We prove the result by strong induction on n.

e For the base cases we take n =1 and n = 2. For n = 1 we have Fy — F; =3 —1 = 2 is even, and for
n =2 we have F5 — F» =5 — 1 = 4 is also even.

e For the inductive step, now suppose n > 3 and both F, 35 — F, and F,, 5 — F},,_; are even.

e Then Fj44 — Frip1 = (Fn+3 + Fn+2) — (Fn + Fn—l) = (Fn+3 — Fn) + (Fn+2 — Fn—l) is the sum of
two even numbers hence is also even, as desired.

e Hence by induction, F, 3 — F), is even for every positive integer n.

(d) A “lyrical pattern” consists of a sequence of long and short beats, where a long beat is twice as long as a
short beat. Some examples are long-long-short-long (length 7) and short-short-short-short-long (length
6). Prove that for all n > 1, the number of lyrical patterns whose length equals n short beats is the
Fibonacci number F,,;1. [Hint: What happens if you delete the last beat in a sequence of length n?]

e We prove the result by strong induction on n.

e For the base cases we take n = 1 and n = 2. There is one pattern for n = 1 (short) and two for
n = 2 (short-short, long), and indeed F» = 1 and F3 = 2.

e For the inductive step, now suppose n > 3 and that the result holds for patterns of total length n —2
and n — 1.

e Suppose we have a lyrical pattern of length n. Then it either ends in a short beat or a long beat. If
it ends in a short beat, deleting the last beat yields a sequence of length n — 1, and by hypothesis
there are F), such sequences. If it ends in a long beat, deleting the last beat yields a sequence of
length n — 2, and by hypothesis there are F,_; such sequences.

e Since these cases don’t overlap, in total there are F;,_; + F,, = F, 1 lyrical patterns of length n.
This establishes the inductive hypothesis so we are done.

Remark: The study of lyrical patterns by Indian poets writing in Sanskrit (e.g., Pingala in approximately 200
BCE) is the first known analysis of the Fibonacci numbers (historically so called following Fibonacci’s
description of them in 1202 CE, but Virahanka was the first to give a clear description of them in
approximately the year 700 CE). There are very many identities involving the Fibonacci numbers, and
they show up in many applications.




6. Prove that logs; 5 is irrational. [Hint: Suppose otherwise, so that logs5 = a/b. Convert this to statement
about positive integers and find a contradiction.|

Following the hint, suppose log; 5 = a/b for positive integers a and b.
Exponentiating with the base 3, this means that 5 = 3%/°.
If we then take the bth power of both sides, this yields 5° = 32,

However, this is impossible, because by the uniqueness of prime factorizations, we cannot have 5° = 3¢ for
any pair of positive integers (a,b): otherwise, the positive integer n = 5 = 3% would have two different
prime factorizations.

This is a contradiction, so there cannot exist any positive integers ¢ and b with logs 5. Thus logs 5 is
irrational as claimed.

7. The goal of this problem is to prove the rational root test from algebra, and derive some of its consequences.

(a)

Suppose p(x) = apz"™ + an_12"" 1 + -+ + ap is a polynomial with integer coefficients, meaning that
ap,Gp_1,...,00 are integers. Prove the rational root test: if /s is a rational root in lowest terms,
meaning that r, s are relatively prime and p(r/s) = 0, then r|ag and s|a,. [Hint: Clear denominators
and rearrange to show that s|a,r™ and r|ags™.]

e If r/s is a root of p(x), then a,(r/s)" + an_1(r/s)" ! + -+ + ag = 0. Clearing denominators yields
ap™™ + ap_ 1" s+ -+ ars” T 4+ aps™ = 0.

e By rearranging we see that a,r"” = s(—an,lrn_l — - —apS
r are relatively prime, this means s divides a,,.

n=1) 50 s divides a,7". But since s and

n—1 _ n—l)

e In a similar way, since ags™ = r(—a,r ---— a8 , we see that r divides ags™ hence ag.

Suppose z is such that 2" + a,_12" ! +--- + a1z + ap = 0 for some integers a,_i,...,ag. Show that if
x is not an integer, then z is irrational.
e We show the contrapositive: if z is rational, then z is an integer.
e So suppose z = r/s is rational and 2" +a,,_12" "1+ -+ a1z +ag = 0 for some integers a,,_1,...,ao.
e By part (a), r|lap and s|1. But since s|1, we have s = £1 and so z = %7 is actually an integer, as
required.
If n is not a perfect square, prove that /n is irrational.
e Let x = \/n: then 22 —n = 0. If 2 were an integer k, then we would have n = k2, but n is not a
perfect square.
e Therefore, x is not an integer. Therefore by part (b), since x is not an integer, it is irrational.
Prove that v/2++/3 is irrational. [Hint: Show v/24 /3 is not an integer, then consider [(v/2++/3)% —5]2.]
e We first note that v/2 + v/3 is not an integer, since 1.4 < V2 < 15 and 1.7 < V3 < 1.8, so
3.1<Vv2++3<33.
e Now we search for a polynomial with integer coefficients of which z = V2 + /3 is a root. Since
22 — 5 = 2/6 this means (22 — 5) = 24, which when expanded yields z* — 1022 + 25 = 24 so that
2% — 1022 + 1 = 0. This means x is a root of a polynomial with integer coefficients.
e But then by part (b), since 2* — 1022 + 1 = 0 but x is not an integer, we conclude z is irrational.




