
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 5 Solutions

1. For each pair of integers (a, b), use the Euclidean algorithm to calculate their greatest common divisor d =
gcd(a, b) AND also to �nd integers x and y such that d = ax + by. (Make sure to include the Euclidean
algorithm calculations in your writeup.)

(a) a = 12, b = 44.

• Applying the Euclidean algorithm to a = 12 and b = 44 yields

44 = 3 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4

and thus the gcd is the last nonzero remainder of 4 .

• For the linear combination, we solve for the remainders:

8 = = 1 · 44− 3 · 12
4 = 12− 1 · 8 = 4 · 12− 1 · 44

and so we see 4 = 4 · 12− 1 · 44 so we can take x = 4 and y = −1.
(b) a = 20, b = 107.

• Applying the Euclidean algorithm to a = 12 and b = 44 yields

107 = 5 · 20 + 7

20 = 2 · 7 + 6

7 = 1 · 6 + 1

6 = 6 · 1

and thus the gcd is the last nonzero remainder of 1 .

• For the linear combination, we solve for the remainders:

7 = = 107− 5 · 20
6 = 20− 2 · 7 = −2 · 107 + 11 · 20
1 = 7− 1 · 6 = 3 · 107− 16 · 20

and so we see 1 = 3 · 107− 16 · 20 so we can take x = 3 and y = −16.
(c) a = 2023, b = 20234.

• Applying the Euclidean algorithm to a = 2023 and b = 20234 yields

20234 = 10 · 2023 + 4

2023 = 505 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1

and so the gcd is the last nonzero remainder of 1 .

• For the linear combination, we solve for the remainders:

4 = = 1 · 20234− 10 · 2023
3 = 2023− 505 · 4 = −505 · 20234 + 5051 · 2023
1 = 4− 1 · 3 = 506 · 20234− 5061 · 2023

and so we see 1 = −505 · 20234 + 5051 · 2023 so we can take x = −505 and y = 5051.

(d) a = 5567, b = 12445.
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• Applying the Euclidean algorithm to a = 5567 and b = 12445 yields

12445 = 2 · 5567 + 1311

5567 = 4 · 1311 + 323

1311 = 4 · 323 + 19

323 = 17 · 19

and so the gcd is the last nonzero remainder of 19 .

• For the linear combination, we solve for the remainders:

1311 = = 1 · 12445− 2 · 5567
323 = 5567− 4 · 1311 = −4 · 12445 + 9 · 5567
19 = 1311− 4 · 323 = 17 · 12445− 38 · 5567

and so we see 19 = 17 · 12445− 38 · 5567 so we can take x = 17 and y = −38.
(e) a = 233, b = 144.

• Applying the Euclidean algorithm to a = 233 and b = 144 yields

233 = 1 · 144 + 89

144 = 1 · 89 + 55

89 = 1 · 55 + 34

55 = 1 · 34 + 21

34 = 1 · 21 + 13

21 = 1 · 13 + 8

13 = 1 · 8 + 5

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1

and so the gcd is the last nonzero remainder of 1 .

• For the linear combination, we solve for the remainders:

89 = = 233− 1 · 144
55 = 144− 1 · 89 = −1 · 233 + 2 · 144
34 = 89− 1 · 55 = 2 · 233− 3 · 144
21 = 55− 1 · 34 = −3 · 233 + 5 · 144
13 = 34− 1 · 21 = 5 · 233− 8 · 144
8 = 21− 1 · 13 = −8 · 233 + 13 · 144
5 = 13− 1 · 8 = 13 · 233− 21 · 144
3 = 8− 1 · 5 = −21 · 233 + 34 · 144
2 = 5− 1 · 3 = 34 · 233− 55 · 144
1 = 3− 1 · 2 = −55 · 233 + 89 · 144

and so we see 1 = −55 · 233 + 89 · 144 so we can take x = 89 and y = 144.

2. Find the following:

(a) Find the gcd and lcm of 144 and 300.

• By the Euclidean algorithm, gcd(144, 300) = 12 . Then lcm(144, 300) = 144 · 300/12 = 3600 .

(b) Find the gcd and lcm of 283115778112 and 243857771111.

• From the prime factorizations, the gcd is 24385777112 and the lcm is 2831157781111 .

(c) Find the prime factorizations of 1600, 2024, 2025, and 20242025.

• We have 1600 = 2652 , 2024 = 23 · 11 · 23 , 2025 = 34 · 52 and so 20242025 = 26075112025232025 .
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3. Suppose that a, b, c are integers such that gcd(a, b) = 1 and that a|c and b|c. Prove that (ab)|c.

• Since a|c there exists an integer k such that c = ka. Then b|c says that b|(ka).
• But a and b are relatively prime, so since b|(ka), the relatively prime divisibility property implies b|k.
• Thus, there exists an integer l such that k = lb. Then c = ka = lba, and so ab|c.

4. The goal of this problem is to demonstrate that the uniqueness of prime factorizations is not as obvious as it
may seem. Let S be a nonempty set of positive integers, and de�ne an S-prime to be an element p ∈ S such
that p > 1 and there do not exist a, b ∈ S such that ab = p and 1 < a, b < p. (If S is the set of all positive
integers, then this de�nition reduces to the usual one for prime numbers.) Let E = {2, 4, 6, 8, 10, . . . } be the
set of even positive integers and O = {1, 3, 5, 7, 9, 11, . . . } be the set of odd positive integers.

(a) Which of 2, 4, 6, 8, 10, 12, 14, and 16 are E-primes?

• We have 4 = 2 · 2, 8 = 2 · 4, 12 = 2 · 6, and 16 = 2 · 8 so these elements are not E-primes.

• On the other hand, we cannot factor 2, 6, 10, or 14 as the product of two elements of E, since the
product of two elements of E is always divisible by 4. So these elements are E-primes.

(b) Show that 2n ∈ E is an E-prime if and only if n is odd. [Hint: Show the contrapositive.]

• Suppose n is even. Then 4n = 2 · 2n is a factorization of 4n as the product of two elements in E, so
2n is not an E-prime.

• On the other hand, suppose 2n is not an E-prime. Then 2n = (2a)(2b) = 4ab for some integers a, b,
so 2n is a multiple of 4 hence n is even.

(c) Show that 60 has two di�erent factorizations as a product of E-primes. Deduce that E does not have
unique E-prime factorization.

• We have 60 = 6 · 10 = 2 · 30, and by (b) each of 2, 6, 10, and 30 is an E-prime. Since the terms
are actually di�erent, and not just rearranged, we see that the factorizations are di�erent, and so E
does not have unique E-prime factorization.

(d) Which of 1, 3, 5, 7, 9, 11, 13, and 15 are O-primes?

• We have 9 = 3 · 3 and 15 = 3 · 5 so these elements are not O-primes, and by de�nition 1 is also not
an O-prime.

• On the other hand, as the product of two elements of E, since the product of two elements of E is
always divisible by 4. So these elements are E-primes.

(e) Show that p ∈ O is an O-prime if and only if p is an odd prime integer.

• Suppose p is an O-prime: then p > 1 is odd. If p = ab for some positive integers a and b with
1 < a, b < 1, then a and b must both be odd. But this would mean a, b ∈ O, which contradicts the
assumption that p is an O-prime. So p must be an odd prime integer.

• Conversely, suppose p is an odd prime. Then p ∈ O and p cannot be factored as the product of two
smaller integers, so in particular p cannot be factored as the product of two smaller integers in O.
So p is an O-prime.

(f) Explain why O has unique O-prime factorization.

• By (e) the O-primes are the same as the odd primes, and since we have unique prime factorization
in Z, the same proof shows that we have unique prime factorization in O.
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5. The Fibonacci numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2. The �rst few
terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n. [Hint: Use induction.]

• We prove the result by induction on n.

• For the base case n = 1, we must verify F1 = F3 − 2, which is true because F3 = 3 and F1 = 1.

• For the inductive step, we assume that F1 + F2 + F3 + · · · + Fk = Fk+2 − 1 and must show that
F1 + F2 + F3 + · · ·+ Fk + Fk+1 = Fk+3 − 1.

• Then F1+F2+F3+ · · ·+Fk+Fk+1 = [F1+F2+F3+ · · ·+Fk]+Fk+1 = Fk+2−1+Fk+1 = Fk+3−1
as required.

• Hence by induction, F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n.

(b) Prove that F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1 for every positive integer n.

• We prove the result by induction on n.

• For the base case n = 1, we must verify F 2
1 = F1F2, which is true because F1 = F2 = 2.

• For the inductive step, we assume that F 2
1 + F 2

2 + F 2
3 + · · · + F 2

k = FkFk+1 and must show that
F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

k + F 2
k+1 = Fk+1Fk+2.

• We have F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

k + F 2
k+1 = [F 2

1 + F 2
2 + F 2

3 + · · ·+ F 2
k ] + F 2

k+1 = FkFk+1 + F 2
k+1 =

[Fk + Fk+1]Fk+1 = Fk+1Fk+2 as required.

• Hence by induction, F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1 for every positive integer n.

(c) Prove that Fn+3 − Fn is even for every positive integer n.

• We prove the result by strong induction on n.

• For the base cases we take n = 1 and n = 2. For n = 1 we have F4 −F1 = 3− 1 = 2 is even, and for
n = 2 we have F5 − F2 = 5− 1 = 4 is also even.

• For the inductive step, now suppose n ≥ 3 and both Fn+3 − Fn and Fn+2 − Fn−1 are even.

• Then Fn+4 − Fn+1 = (Fn+3 + Fn+2) − (Fn + Fn−1) = (Fn+3 − Fn) + (Fn+2 − Fn−1) is the sum of
two even numbers hence is also even, as desired.

• Hence by induction, Fn+3 − Fn is even for every positive integer n.

(d) A �lyrical pattern� consists of a sequence of long and short beats, where a long beat is twice as long as a
short beat. Some examples are long-long-short-long (length 7) and short-short-short-short-long (length
6). Prove that for all n ≥ 1, the number of lyrical patterns whose length equals n short beats is the
Fibonacci number Fn+1. [Hint: What happens if you delete the last beat in a sequence of length n?]

• We prove the result by strong induction on n.

• For the base cases we take n = 1 and n = 2. There is one pattern for n = 1 (short) and two for
n = 2 (short-short, long), and indeed F2 = 1 and F3 = 2.

• For the inductive step, now suppose n ≥ 3 and that the result holds for patterns of total length n−2
and n− 1.

• Suppose we have a lyrical pattern of length n. Then it either ends in a short beat or a long beat. If
it ends in a short beat, deleting the last beat yields a sequence of length n − 1, and by hypothesis
there are Fn such sequences. If it ends in a long beat, deleting the last beat yields a sequence of
length n− 2, and by hypothesis there are Fn−1 such sequences.

• Since these cases don't overlap, in total there are Fn−1 + Fn = Fn+1 lyrical patterns of length n.
This establishes the inductive hypothesis so we are done.

Remark: The study of lyrical patterns by Indian poets writing in Sanskrit (e.g., Pingala in approximately 200
BCE) is the �rst known analysis of the Fibonacci numbers (historically so called following Fibonacci's
description of them in 1202 CE, but Virahanka was the �rst to give a clear description of them in
approximately the year 700 CE). There are very many identities involving the Fibonacci numbers, and
they show up in many applications.
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6. Prove that log3 5 is irrational. [Hint: Suppose otherwise, so that log3 5 = a/b. Convert this to statement
about positive integers and �nd a contradiction.]

• Following the hint, suppose log3 5 = a/b for positive integers a and b.

• Exponentiating with the base 3, this means that 5 = 3a/b.

• If we then take the bth power of both sides, this yields 5b = 3a.

• However, this is impossible, because by the uniqueness of prime factorizations, we cannot have 5b = 3a for
any pair of positive integers (a, b): otherwise, the positive integer n = 5b = 3a would have two di�erent
prime factorizations.

• This is a contradiction, so there cannot exist any positive integers a and b with log3 5. Thus log3 5 is
irrational as claimed.

7. The goal of this problem is to prove the rational root test from algebra, and derive some of its consequences.

(a) Suppose p(x) = anx
n + an−1x

n−1 + · · · + a0 is a polynomial with integer coe�cients, meaning that
an, an−1, . . . , a0 are integers. Prove the rational root test: if r/s is a rational root in lowest terms,
meaning that r, s are relatively prime and p(r/s) = 0, then r|a0 and s|an. [Hint: Clear denominators
and rearrange to show that s|anrn and r|a0sn.]
• If r/s is a root of p(x), then an(r/s)

n + an−1(r/s)
n−1 + · · ·+ a0 = 0. Clearing denominators yields

anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0.

• By rearranging we see that anr
n = s(−an−1r

n−1− · · ·− a0s
n−1), so s divides anr

n. But since s and
r are relatively prime, this means s divides an.

• In a similar way, since a0s
n = r(−anrn−1 − · · · − a1s

n−1), we see that r divides a0s
n hence a0.

(b) Suppose x is such that xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0 for some integers an−1, . . . , a0. Show that if

x is not an integer, then x is irrational.

• We show the contrapositive: if x is rational, then x is an integer.

• So suppose x = r/s is rational and xn+an−1x
n−1+ · · ·+a1x+a0 = 0 for some integers an−1, . . . , a0.

• By part (a), r|a0 and s|1. But since s|1, we have s = ±1 and so x = ±r is actually an integer, as
required.

(c) If n is not a perfect square, prove that
√
n is irrational.

• Let x =
√
n: then x2 − n = 0. If x were an integer k, then we would have n = k2, but n is not a

perfect square.

• Therefore, x is not an integer. Therefore by part (b), since x is not an integer, it is irrational.

(d) Prove that
√
2+
√
3 is irrational. [Hint: Show

√
2+
√
3 is not an integer, then consider [(

√
2+
√
3)2−5]2.]

• We �rst note that
√
2 +
√
3 is not an integer, since 1.4 <

√
2 < 1.5 and 1.7 <

√
3 < 1.8, so

3.1 <
√
2 +
√
3 < 3.3.

• Now we search for a polynomial with integer coe�cients of which x =
√
2 +
√
3 is a root. Since

x2 − 5 = 2
√
6 this means (x2 − 5)2 = 24, which when expanded yields x4 − 10x2 + 25 = 24 so that

x4 − 10x2 + 1 = 0. This means x is a root of a polynomial with integer coe�cients.

• But then by part (b), since x4 − 10x2 + 1 = 0 but x is not an integer, we conclude x is irrational.
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