
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 4 Solutions

1. Let I = {1, 2, 3, . . . } be the set of positive integers.

(a) For each i ≥ 1 let Fi be the set of positive integer divisors of i (so for example, F6 = {1, 2, 3, 6}). Find⋃
i∈I Fi and

⋂
i∈I Fi.

• Since each Fi consists of positive integers, the union and intersection also contain only positive
integers. But since i ∈ Fi for each i, we see that every positive integer is in

⋃
i∈I Fi , meaning that⋃

i∈I Fi = Z+ = {1, 2, 3, 4, 5, . . . } .
• On the other hand, since F1 = {1} and 1 ∈ Fi for all i ≥ 1, the only positive integer in all of the Fi

is 1, meaning that
⋂

i∈I Fi = {1} .

(b) For each i ≥ 1 let Gi be the set of positive integer multiples of i (so for example, G2 = {2, 4, 6, 8, . . . }).
Find

⋃
i∈I Gi and

⋂
i∈I Gi.

• Since each Gi consists of positive integers, the union and intersection also contain only positive
integers. But since i ∈ Gi for each i, we see that every positive integer is in

⋃
i∈I Gi , meaning that⋃

i∈I Gi = Z+ = {1, 2, 3, 4, 5, . . . } .
• On the other hand, for any �xed positive integer n, n 6∈ Gn+1. So no positive integer is in all of the

Gi, meaning that
⋂

i∈I Gi = ∅ .

2. Each item below contains a proposition (which may be true or may be false) and an incorrect proof of the
proposition. Identify at least one mistake in each claimed proof:

(a) Proposition: 1 is the largest positive integer.
Proof: Let n be the largest positive integer. Since n ≥ 1 that means n2 ≥ n. But n is the largest positive
integer, so n2 ≤ n. We conclude that n2 = n, so since n is not zero, we have n = 1.

• The mistake here is that the proof assumes without justi�cation that a largest positive integer exists.
Of course, there is no largest positive integer, so that assumption is erroneous.

• This error may seem trivial, but it's actually very important to be aware of it, because the same kind
of mistake occurs all the time in optimization problems: namely, starting with an extremal element
and working out a bunch of its properties, but without actually showing that such an element must
exist.

(b) Proposition: For any integer a > 0, there exists a unique integer b > 0 such that a = b2.
Proof: Suppose that there exist two values b1 and b2 such that b21 = a and b22 = a with b1 > 0 and b2 > 0.
Subtracting yields b21− b22 = 0 so that (b1− b2)(b1+ b2) = 0 so that b1 = b2 or b1 = −b2. But since b1 > 0
and b2 > 0 we cannot have b1 = −b2. Therefore b1 = b2 which means there exists a unique integer b such
that b > 0 and a = b2, as claimed.

• The issue is that, although the proof correctly shows that such a value b would necessarily be unique,
it has not shown that b actually exists (which is part of the �there exists a unique� requirement).

• In fact, for many values of a, there exists no such b: for example, a = 2.

(c) Proposition: If a1 = 1 and an+1 = 2an − 1 for all n ≥ 1, then an = 2n + 1 for all n.
Proof: We use induction on n. The base case n = 1 is trivial. For the inductive step, suppose an = 2n+1.
Then an+1 = 2an − 1 = 2(2n + 1)− 1 = 2n+1 + 1 as required.

• The argument for the inductive step is completely correct. The issue is that the base case is wrong:
although a1 = 1, the formula gives instead a1 = 21 + 1 = 3.

• The issue is that the base case is simply asserted rather than actually proven. (Of course, this would
have been very obvious if the calculations for the base case were actually given in the proof!)

(d) Proposition: If a1 = 2, and an+1 = 4an − 4an−1 for all n ≥ 1, then an = 2n for all n.
Proof: We use strong induction on n. The base case n = 1 follows since a1 = 2 = 21. For the inductive
step, suppose ak = 2k for all k ≤ n. Then ak+1 = 4an−4an−1 = 4·2n−4·2n−1 = 4·2n−2·2n = 2·2n = 2n+1

as required.

1



• The issue here is that the inductive step uses the two previous cases k = n and k = n− 1, but only
one base case is actually established.

• One way to see that this is a problem is to use the recurrence to �nd a2 (i.e., by setting n = 1), it
yields a2 = 4a1 − 4a0, but a0 has not been de�ned!

(e) Proposition: We have 2n = 1 for every nonnegative integer n.
Proof: We use strong induction on n. The base case n = 0 holds since 20 = 1. For the inductive step
suppose that 2k = 1 for all k ≤ n. Then applying the inductive hypothesis yields 2n+1 = 2n2n/2n−1 =
1 · 1/1 = 1, as desired.

• The error, like in (d), is that only one base case is established, but the argument in the inductive
step uses the two previous cases n and n − 1. That is not valid since not enough base cases have
been established. (Explicitly, it fails when n = 1, since the case n = −1 was not established.)

(f) Proposition: All horses are the same color.
Proof: We use induction on n, the number of horses. The base case n = 1 is trivial because any 1 horse
is the same color as itself. For the inductive step, suppose that any n + 1 horses are the same color.
Ignoring the last horse yields means that we need to show that n horses are the same color, which is true
by the induction hypothesis. Therefore the result holds by induction.

• The error is that the proof of the inductive step assumes P (n + 1) and uses it to establish P (n).
This is backwards from the correct logic, which is to show that P (n) implies P (n+ 1).

(g) Proposition: For every positive integer n, 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1).

Proof: We use induction on n. The base case n = 1 follows because 1 = 1
2 (1)(2). To show the inductive

step, we want 1 + 2 + 3 + · · ·+ n+ (n+ 1) = 1
2 (n+ 1)(n+ 2). Subtracting n+ 1 from both sides yields

1 + 2 + 3 + · · ·+ n = 1
2 (n+ 1)(n+ 2)− (n+ 1) = 1

2n(n+ 1) which is true by the induction hypothesis.
Therefore the result holds by induction.

• The error is the same mistake as in part (e): the inductive step starts out by assuming P (n+1) and
then reduces it to P (n) which is true. This is backwards from the correct logic, which is to show
that P (n) implies P (n+ 1).

• In this case the mistake can be �xed by writing the steps in the correct order.

3. Prove the following properties of divisibility:

(a) If a, b are integers then a|b if and only if (−a)|b.
• First suppose a|b so that b = pa for some integer p. Then b = (−p)(−a) so (−a)|b.
• Conversely, suppose (−a)|b so that b = q(−a) for some integer q. Then b = (−q)a so a|b.

(b) If a, b, c, x, y are integers with a|b and a|c, show that a|(xb+ yc).

• By de�nition, if a|b and a|c, then there exist integers p and q with b = pa and c = qa.

• Then xb + yc = x(pa) + y(qa) = (xp)a + (yq)a = (xp + yq)a, and so for k = xy + yq we see that
xb+ yc = ka, meaning that a|(xb+ yc).

(c) If a, b,m are integers with m 6= 0, show that a|b if and only if (ma)|(mb).

• First suppose a|b, so that b = pa for some integer p. Then mb = mpa = p(ma) so (ma)|(mb).

• Conversely suppose (ma)|(mb), so that mb = p(ma) for some integer p. Since m 6= 0 we can cancel
m to conclude that b = pa, meaning a|b as required.

(d) If a, b are integers with a|b and b|a then a = b or a = −b. [Hint: Use the fact that the only divisors of 1
are 1 and −1. Be careful when a = 0 or b = 0.]

• Suppose a|b and b|a so that b = pa and a = qb for some integers p and q.

• Then ab = pqab yielding ab(pq − 1) = 0, so either pq = 1 or a = 0 or b = 0. If a = 0 then since a|b
we must have b = 0 so since a = b the result holds.

• Otherwise we have pq = 1 so (per the hint) we must have q = 1 or q = −1, meaning that a = b or
a = −b.

• So in all cases we have a = b or a = −b as required.
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4. Show the following:

(a) For all positive integers n, show that the sum 12 + 22 + 32 + · · ·+ n2 equals
n(n+ 1)(2n+ 1)

6
.

• We prove this by induction on n.

• For the base case n = 1, we must show that 12 =
1 · 2 · 3

6
which is clearly true.

• For the inductive step, we are given that 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
and must show

that 12 + 22 + 32 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

• By the inductive hypothesis, we can write

12 + 22 + 32 + · · ·+ n2 + (n+ 1)2 = [12 + 22 + 32 + · · ·+ n2] + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
2n3 + 3n2 + n

6
+ (n2 + 2n+ 1)

=
2n3 + 9n2 + 13n+ 6

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

and therefore we see 12 + 22 + 32 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
, as required.

• By induction, 12 + 22 + 32 + · · ·+ n2 equals
n(n+ 1)(2n+ 1)

6
for every positive integer n.

(b) For all positive integers n, show that the sum 30 + 31 + 32 + · · ·+ 3n equals
3n+1 − 1

2
.

• We prove this by induction on n.

• For the base case n = 1, we must show that 20 =
31 − 1

2
which is clearly true.

• For the inductive step, we suppose that 30 + 31 + 32 + · · · + 3n =
3n+1 − 1

2
and must show that

30 + 31 + 32 + · · ·+ 3n + 3n+1 =
3n+2 − 1

2
.

• By the inductive hypothesis, we can write

30 + 31 + 32 + · · ·+ 3n + 3n+1 = [30 + 31 + 32 + · · ·+ 3n] + 3n+1

=
3n+1 − 1

2
+ 3n+1

=
3 · 3n+1 − 1

2
=

3n+1 − 1

2

and therefore we see 30 + 31 + 32 + · · ·+ 3n + 3n+1 =
3n+2 − 1

2
, as required.

• By induction, 30 + 31 + 32 + · · ·+ 3n equals
3n+1 − 1

2
for every positive integer n.

(c) The sequence {dn}n≥1 is de�ned recursively by d1 = 3, d2 = 9, and for all n ≥ 3, dn = 2dn−1 + 3dn−2.
Prove that dn = 3n for all positive integers n.

• We prove this by strong induction on n.

• For the base cases n = 1 and n = 2, we see d1 = 3 = 31 and d2 = 9 = 32 as required.

• For the inductive step, we suppose that dn = 3n and dn−1 = 3n−1 for some n ≥ 3, and must show
that dn+1 = 3n+1.
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• By the inductive hypotheses and the de�nition of dn+1, we can write

dn+1 = 2dn + 3dn−1

= 2 · 3n + 3 · 3n−1

= 2 · 3n + 3n = 3 · 3n = 3n+1

as required.

• By induction, dn = 3n for all positive integers n.

5. Recall that an integer n is even if n = 2a for some integer a, while an integer n is odd if n = 2b+ 1 for some
integer b. As noted in class, as a consequence of the division algorithm, every integer is either even or odd,
and no integer is both.

(a) Show that the sum of two even or two odd integers is even, and that the sum of an even integer and an
odd integer is odd.

• If m and n are both even then m = 2a and n = 2b for some integers a and b, in which case
m+ n = 2a+ 2b = 2(a+ b) is also even.

• If m and n are both odd then m = 2a + 1 and n = 2b + 1 for some integers a and b, in which case
m+ n = 2a+ 1 + 2b+ 1 = 2(a+ b+ 1) is even.

• If m is even and n is odd then m = 2a and n = 2b + 1 for some integers a and b, in which case
m+ n = 2a+ 2b+ 1 = 2(a+ b) + 1 is odd. The same argument applies if m is odd and n is even.

(b) Show that the product of an even integer with any integer is even, and the product of two odd integers
is odd.

• Ifm is even thenm = 2a for some integer a. Then for any even integer n, we havemn = 2an = 2(an),
so mn is even. By the same argument, if n is even then mn is also even.

• If m and n are both odd then m = 2a + 1 and n = 2b + 1 for some integers a and b, in which case
mn = (2a+ 1)(2b+ 1) = 2(2ab+ a+ b) + 1 is odd.

(c) Show that if n is even then n2 is even, and if n is odd then n2 is odd.

• If n is even, then n2 = n · n is even by part (b). This is the forward direction of the biconditional.

• If n is odd, then n2 = n · n is odd, also by part (b).

(d) Deduce that n2 is even if and only if n is even. [Hint: What is the contrapositive of �if n is odd then n2

is odd�?]

• This is an if-and-only-if statement so we must prove both directions: if n is even then n2 is even,
and if n2 is even then n is even.

• The �rst statement was done in (c). In (c) we also showed that if n is odd then n2 is odd.

• But the contrapositive of this last statement is �if n2 is even, then n is even� (since an integer that
is not odd is even), which is the other statement. So we are done.

6. The goal of this problem is to prove the Binomial Theorem. First, we de�ne the factorial function as n! =
n · (n − 1) · · · · · 2 · 1, so that for example 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, and so forth: in general,

n! = n · (n − 1)! for n ≥ 1. Now de�ne the binomial coe�cient
(
n
k

)
=

n!

k!(n− k)!
for integers 0 ≤ k ≤ n, and

note that
(
n
0

)
=
(
n
n

)
= 1 for every n.

(a) Show that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
for every 0 ≤ k ≤ n. Conclude in particular that

(
n
k

)
is always an integer.

• We have
(
n
k

)
= n· (n− 1)!

k!(n− k)!
= (n−k)· (n− 1)!

k!(n− k)!
+k· (n− 1)!

k!(n− k)!
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!
=(

n−1
k

)
+
(
n−1
k−1
)
.
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• Then we can induct on n to see
(
n
k

)
is always an integer: the base cases n = 0 and n = 1 are obvious.

For the inductive step, observe that
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
is the sum of two integers for any value of

k with 1 ≤ k ≤ n− 1, and
(
n
0

)
and

(
n
n

)
are also integers.

(b) Suppose that x and y are arbitrary real numbers. Prove the Binomial Theorem: that (x + y)n =(
n
0

)
xn+

(
n
1

)
xn−1y+

(
n
2

)
xn−2y2+ · · ·+

(
n
n

)
yn =

∑n
k=0

(
n
k

)
xn−kyk for any positive integer n. [Hint: Induct

on n.]

• We use induction on n. The base case n = 1 is obvious, since x+ y = x+ y.

• For the inductive step, observe that

(x+ y)n = (x+ y) · (x+ y)n−1

= (x+ y)

n−1∑
k=0

(
n− 1

k

)
xn−1−kyk

=

n−1∑
k=0

(
n− 1

k

)
xn−kyk +

n−1∑
j=0

(
n− 1

j

)
xn−1−jyj+1

=

n−1∑
k=0

(
n− 1

k

)
xn−kyk +

n−1∑
k=0

(
n− 1

k − 1

)
xn−kyk

=

n−1∑
k=0

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
xn−kyk =

n∑
k=0

(
n

k

)
xn−kyk

where we made the substitution j = k − 1 in the third equation, and used the result of part (a) in
the �nal step.

Remark: The binomial coe�cient
(
n
k

)
counts the number of ways of selecting a subset of k elements

from the set {1, 2, 3, . . . , n}. Intuitively, for (b), in distributing out the product (x + y)n = (x +
y)(x + y) · · · (x + y), a term xn−kyk is formed when we select a y from exactly k of the terms. So
the total number of ways to obtain a term xn−kyk is the same as the number of ways of selecting a
subset of k elements from {1, 2, 3, . . . , n}, and there are

(
n
k

)
such subsets.

7. Suppose that A = {Ai : i ∈ I} and B = {Bj : j ∈ J} are two families of sets indexed by I and J respectively.

(a) Prove that for each s ∈ I it is true that
⋂

i∈I Ai ⊆ As.

• This is essentially by de�nition. Explicitly, for any x ∈
⋂

i∈I Ai we have x ∈ Ai for all i ∈ I. In
particular, we have x ∈ As. Thus x ∈

⋂
i∈I Ai implies x ∈ As, which means

⋂
i∈I Ai ⊆ As as claimed.

(b) Prove that for each t ∈ J it is true that Bt ⊆
⋃

j∈J Bj .

• This is very similar to (a). Explicitly,
⋃

j∈J Bj consists of all elements x such that x ∈ Bj for some
j ∈ J . So in particular, if x ∈ Bt then x ∈

⋃
j∈J Bj . Thus x ∈ Bt implies x ∈

⋃
j∈J Bj , which means

Bt ⊆
⋃

j∈J Bj as claimed.

(c) Prove that if A∩B 6= ∅ then
⋂

i∈I Ai ⊆
⋃

j∈J Bj . [Hint: Suppose S ∈ A∩B and apply (a) and (b) to it.]

• Following the hint suppose that S ∈ A ∩ B. Then S = As for some s ∈ I and also S = Bt for some
t ∈ J .

• By (a) and (b) we then have
⋂

i∈I Ai ⊆ As = S = Bt ⊆
⋃

j∈J Bj , and so
⋂

i∈I Ai ⊆
⋃

j∈J Bj as
claimed.
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