
E. Dummit's Math 1465 ∼ Intensive Mathematical Reasoning, Fall 2024 ∼ Homework 3 Solutions

1. With universe Z, take P (x, y) to be the statement �y = 2x�.

(a) There are 8 possible ways, listed below, of quantifying both x and y in the statement P (x, y). For each
statement, translate it into words and then �nd its truth value.

i. ∀x∀y, P (x, y): this means �For all x, for all y, y = 2x�. This statement is false because there exist
(many!) choices of x and y where y = 2x is false, such as x = 1 and y = 1.

ii. ∀x∃y, P (x, y): this means �For all x there exists a y such that y = 2x�. This statement is true
because no matter what integer x is, we can in fact take y = 2x.

iii. ∃x∀y, P (x, y): this means �There exists an x such that for all y, y = 2x�. This statement is false
because for any value of x, there is (at most!) one value of y with y = 2x.

iv. ∃x∃y, P (x, y): this means �There exists an x such that there exists a y with y = 2x�. This statement

is true because there are (many!) choices of x and y where y = 2x, such as x = y = 0.

v. ∀y∀x, P (x, y): this means �For all y, for all x, y = 2x�. This statement is false because there exist
(many!) choices of x and y where y = 2x is false, such as x = 1 and y = 1.

vi. ∀y∃x, P (x, y): this means �For all y there exists an x such that y = 2x�. This statement is false
because if we take y = 1, there is no integer x with y = 2x.

vii. ∃y∀x, P (x, y): this means �There exists a y such that for all x, y = 2x�. This statement is false
because no matter what y is, we could always pick x not equal to y/2.

viii. ∃y∃x, P (x, y): this means �There exists a y such that there exists an x with y = 2x�. This statement

is true because there are (many!) choices of x and y where y = 2x is true, such as x = y = 0.

(b) Of the eight quanti�ed statements in part (a), two pairs will always be logically equivalent for any
statement P (x, y). Identify these pairs.

• As we discussed, we may reverse the order of identical quanti�ers without changing the truth value.

• Therefore, statements (i) ∀x∀y, P (x, y) and (v) ∀y∀x, P (x, y) will always be equivalent, as will
statements (iv) ∃x∃y, P (x, y) and (viii) ∃y∃x, P (x, y).

2. Negate each given statement and then rewrite the result as an equivalent positive statement. (All quanti�ers
should appear ahead of any negation operators.)

(a) ∃x, x2 = 2.

• The negation is ¬[∃x, x2 = 2] = ∀x,¬(x2 = 2) = ∀x, x2 6= 2 .

(b) ∃x∃y, x+ y 6= 5.

• The negation is ¬[∃x∃y, x+ y 6= 5] = ∀x¬[∃y, x+ y 6= 5] = ∀x∀y, ¬[x+ y 6= 5] = ∀x∀y, x+ y = 5 .

(c) ∀x∃y∃z, x · y + z > 2.

• The negation is ¬[∀x∃y∃z, x · y + z > 2] = ∃x∀y∀z, x · y + z ≤ 2 .

(d) ∀a ∈ A∃b ∈ B, (a ∈ C ∧ b ∈ C).

• The negation is ∃a ∈ A, ∀b ∈ B, ¬(a ∈ C ∧ b ∈ C) = ∃a ∈ A, ∀b ∈ B, (a 6∈ C ∨ b 6∈ C) .

(e) There exists an x such that for all y, it is true that y2 > x.

• Symbolically, this is ∃x∀y, y2 > x. The negation is ¬[∃x∀y, y2 > x] = ∀x∃y, y2 ≤ x : for all x there

exists y such that y2 ≤ x.

(f) For all n there exist a, b, and c such that n = a2 + b2 + c2.

• Symbolically, this is ∀n∃a∃b∃c, n = a2 + b2 + c2. The negation is ¬[∀n∃a∃b∃c, n = a2 + b2 + c2] =

∃n∀a∀b∀c, n 6= a2 + b2 + c2 : there exists n such that for all a, b, and c, n 6= a2 + b2 + c2.

1



3. For each statement, translate it into words and then �nd its truth value. (Assume that all capital-letter
variables refer to sets.)

(a) ∀x ∈ R, x2 > 0.

• This means �For any real number x, x2 > 0�.

• This statement is false because there is a counterexample, namely x = 0, for which x2 > 0 is false.

(b) ∃x ∈ Z, x2 − 3x+ 2 = 0.

• This means �There exists an integer x such that x2 − 3x+ 2 = 0�.

• This statement is true because x = 1 is such an integer (as is x = 2).

(c) ∀A∀B∀C, [x ∈ A ∩B ∩ C]⇒ [x ∈ A ∩B] ∧ [x ∈ A ∪ C].

• This means �For any A, for any B, for any C, x ∈ A ∩B ∩ C implies x ∈ A ∩B and x ∈ A ∪ C�.

• This statement is true because if x ∈ A ∩ B ∩ C then x ∈ A and x ∈ B and x ∈ C, and therefore
x ∈ A ∩B and also x ∈ A ∪ C.

(d) ∀A∃x(x ∈ A).

• This means �For any A there exists x such that x ∈ A�.

• This statement is false because A could be the empty set, in which case there is no element x ∈ A.

(e) ∀A∃x∃y, (A = ∅) ∨ [(x ∈ A) ∧ (y ∈ A)].

• This means �For any A there exists x such that there exists y such that either (A is the empty set)
or x ∈ A and y ∈ A�.

• This statement is true : if A is the empty set then the conclusion holds, and if A is not the empty
set, then by de�nition it contains at least one element e. We can then take x = e and y = e, and
the conclusion again holds. (Note that there is no requirement or expectation that x and y must be
di�erent elements.)

4. Each item below contains a proposition (which may be true or may be false) and an incorrect proof of the
proposition. Identify at least one mistake in each claimed proof:

(a) Proposition: For all real numbers x, it is true that x2 ≥ 2.
Proof: Suppose by way of contradiction that the desired result is false. Then for all real numbers x, it is
true that x2 < 2. But this statement is incorrect, because taking x = 3 yields the false statement 9 < 2.
This is a contradiction, so it must be true that for all real numbers x, x2 ≥ 2.

• The error is that the original statement is not negated correctly: it says �for all real x, x2 ≥ 0�, and
the claimed negation in the proposition is �for all real x, it is true that x2 < 0�.

• But negation swaps quanti�ers: the correct negation is �there exists a real x such that x2 < 0�, and
this result is not contradicted just by noting that the inequality is false when x = 3.

(b) Proposition: For all real numbers x there exists a real number y such that x− 2y = y2 + 1.
Proof: Let x = (y + 1)2: then x− 2y = (y + 1)2 − 2y = (y2 + 2y + 1)− 2y = y2 + 1, as required.

• The error is that the order of the quanti�ers does not allow us to select the value of x in terms of
y. The variables are quanti�ed with x �rst, then y second, so we can only de�ne the value of y in
terms of x.

• In this case, for some values of x there need not exist any possible value of y: for example, if x = −5
then we would require (y + 1)2 = −5, which is impossible.

(c) Proposition: There exists a real number y such that for all real numbers x, it is true that x−2y = y2+1.
Proof: Let x = (y + 1)2: then x− 2y = (y + 1)2 − 2y = (y2 + 2y + 1)− 2y = y2 + 1, as required.

• The error is that the quanti�ers do not allow us to select the value x at all: for a speci�c y, the
statement must hold for all possible values of x, whereas the proof only shows that a single value of
x actually works.
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5. The goal of this problem is to examine the quanti�er �there exists a unique�, written as ∃!. Thus, for example,
the statement �there exists a unique x such that x2 = 2� would be written ∃!x, x2 = 2. The meaning of this
quanti�er is that there exists an element x satisfying the hypotheses, and that there is exactly one such x.

(a) Identify the truth values of the following statements:

i. ∃!n ∈ Z, n2 = 2.

• This statement means �There exists a unique integer n such that n2 = 2.�

• This statement is false , because there is no such integer n: neither
√
2 nor −

√
2 is an integer.

ii. ∃!n ∈ Z, n2 = 4.

• This statement means �There exists a unique integer n such that n2 = 4.�

• This statement is false , because there are two such integers n: namely, n = 2 and n = −2.
iii. ∃!n ∈ Z, n2 = 0.

• This statement means �There exists a unique integer n such that n2 = 0.�

• This statement is true , because the only integer with n2 = 0 is n = 0.

iv. ∀x ∈ R∃!y ∈ R, x = y2.

• This statement means �For all real x, there exists a unique real y such that x = y2�.

• This statement is false , because (e.g.,) for x = 4 there are two such y, namely y = 2,−2.
v. ∀x ∈ R∃!y ∈ R, x = y2.

• This item accidentally duplicated part (iv).

vi. ∃!x ∈ R ∃!y ∈ R, x2 + y2 = 0.

• This statement means �There exists a unique real x such that there exists a unique real y such
that x2 + y2 = 0�.

• This statement is true , because there is only one choice of real numbers x, y with x2 + y2 = 0,
namely, x = 0 and y = 0.

(b) It may seem that ∃! is a new quanti�er, but in fact, it can be expressed in terms of ∃ and ∀. Brie�y
explain why ∃!x ∈ A, P (x) is logically equivalent to ∃x ∈ A, P (x) ∧ [∀y ∈ A, P (y) ⇒ (y = x)] for any
proposition P (x). (Your explanation does not have to be fully rigorous.)

• The second statement means �There exists x ∈ A such that P (x) is true and, for any y ∈ A, if P (y)
is true then y = x�.

• By unpacking this statement, the �rst part says that there is at least one x ∈ A such that P (x) is
true, and the second part says that if y ∈ A is any element of A where P (y) is true, then y = x.

• In other words, the second part says that x must be the only element of A for which P is true.
Together with the �rst part, this says that there exists a unique element of A (namely, x) for which
P (x) is true, which is the same as saying ∃!x ∈ A, P (x).

• Another approach: to say there exists a unique x such that P (x) is true is to say there exists an x
for which P (x) is true, and there does not exist a y with y 6= x such that P (y) is true. This is the
statement ∃x ∈ A, P (x) ∧ ¬[∃y ∈ A, P (y) ∧ (y 6= x)], which upon moving the negation to the right
is seen to be equivalent to the statement given above.
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6. Many of our proofs involving sets have implicitly used quanti�ers. The goal of this problem is to make some of
these ideas more explicit by analyzing the proof (given in class) that if A and B are any sets then A∩B = A
is logically equivalent to A ⊆ B.

(a) If P and Q are propositions, show that P ⇒ (P ∧Q) is logically equivalent to P ⇒ Q.

• By using a truth table we can see that the column for P ⇒ (P ∧Q) is identical to the one for P ⇒ Q,
so they are logically equivalent:

P Q P ⇒ Q P ∧Q P ⇒ (P ∧Q)

T T T T T
T F F F F
F T T F T
F F T F T

• Alternatively, we can work it out using Boolean algebra: we have P ⇒ (P ∧Q) i� ¬P ∨ (P ∧Q) i�
(¬P ∨ P ) ∧ (¬P ∧Q) i� True ∧ (¬P ∧Q) i� ¬P ∧Q i� P ⇒ Q, as desired.

(b) If A and B are sets, show that ∀x, (x ∈ A)⇒ [(x ∈ A)∧ (x ∈ B)] is logically equivalent to ∀x, (x ∈ A)⇒
(x ∈ B). [Hint: Use (a).]

• By setting P = (x ∈ A) and Q = (x ∈ B) in the result from (a), we see that (x ∈ A) ⇒ [(x ∈
A) ∧ (x ∈ B)] is logically equivalent to (x ∈ A)⇒ (x ∈ B).

• This is true regardless of the value of x, which is to say, ∀x, (x ∈ A)⇒ [(x ∈ A)∧(x ∈ B)] is logically
equivalent to ∀x, (x ∈ A)⇒ (x ∈ B).

(c) Explain why (b) says that A ⊆ A ∩B is equivalent to A ⊆ B.

• The statement ∀x, (x ∈ A)⇒ (x ∈ B) is merely the de�nition of A ⊆ B.

• So translating the result from (b) into the language of subset containment yields the claimed fact:
A ⊆ A ∩B is logically equivalent to A ⊆ B.

7. The goal of this problem is to examine an example of how quanti�ers can a�ect propositional logic.

(a) If P and Q are propositions, show that at least one of the two statements P ⇒ Q and Q⇒ P is true.

• By using a truth table we can see that at least one of P ⇒ Q and Q⇒ P is true in all cases:

P Q P ⇒ Q Q⇒ P

T T T T
T F F T
F T T F
F F T T

(b) Show that neither the statement �if x = 1 then x = 2� nor its converse are true.

• Clearly, if x = 1 then x 6= 2, so �if x = 1 then x = 2� is false.

• Likewise, if x = 2 then x 6= 1, so �if x = 2 then x = 1� is also false.

Part (b) would seem to provide a counterexample to part (a), but of course it does not. The reason is that
the variable x in part (b) is implicitly quanti�ed at the start as ∀x, and the presence and placement of the
quanti�er a�ects the logic of the statement. To examine further, suppose P (x) and Q(x) are propositions.

(c) Show that ∀x, [P (x)⇒ Q(x)] ∨ [Q(x)⇒ P (x)] is true.

• By part (a), we know that at least one of the conditionals P (x) ⇒ Q(x) and Q(x) ⇒ P (x) is true,
so the statement [P (x)⇒ Q(x)] ∨ [Q(x)⇒ P (x)] is always true.

• Therefore, the universal statement ∀x, [P (x)⇒ Q(x)] ∨ [Q(x)⇒ P (x)] is true.

(d) Is the statement [∀x, P (x)⇒ Q(x)] ∨ [∀x,Q(x)⇒ P (x)] necessarily true?

• The statement [∀x, P (x)⇒ Q(x)] ∨ [∀x,Q(x)⇒ P (x)] means that for any x it is true that P (x)⇒
Q(x), or that for any x it is true that Q(x)⇒ P (x).

• This is not always a true statement, since it may not be the case that either statement always implies
the other. The counterexample in part (b) works here: taking P (x) to be x = 1 and Q(x) to be
x = 2, we see that the compound statement is false.

4



8. Suppose A and B are sets. The goal of this problem is to study the question of when A×B = B ×A.

Proposition: A×B = B ×A if and only if A = B.
Proof: If A = B, then clearly A × B = A × A = B × A. Now suppose A × B = B × A, and let a ∈ A and
b ∈ B be arbitrary elements of A and B respectively. Then by de�nition, (a, b) ∈ A×B, and so by hypothesis,
(a, b) ∈ B×A. This means a ∈ B and b ∈ A. Since a ∈ A and b ∈ B are arbitrary, the fact that a ∈ B implies
A ⊆ B, and the fact that b ∈ A implies B ⊆ A. We conclude that A = B, as required.

(a) Consider the proposition and proof given above. Show that the proposition is incorrect by explaining
why taking A = ∅ and B = {1, 2} yields a counterexample.

• Observe that if A = ∅ and B = {1, 2}, then A×B = ∅ and B×A = ∅, so in particular A×B = B×A.
• This yields a counterexample because A×B = B ×A but A and B are not the same set.

(b) Part (a) shows that the proposition stated above is incorrect, so the proof must contain a logical error.
Identify what the error is, and why it causes the proof to be incorrect. [Hint: The counterexample from
part (a) is clearly relevant.]

• The error in the proof is the statement �let a ∈ A and b ∈ B be arbitrary elements of A and B
respectively�.

• We can only select an element of A and an element of B if A and B are both nonempty, so in the
event that A = ∅ or B = ∅, the proof is erroneous because of this statement.

(c) Give a corrected version of the proposition, and then give a correct proof. [Hint: Your corrected propo-
sition should start with �A×B = B×A if and only if A = B or...� and the proof should also make sure
to address the error you identi�ed in part (b).]

• The correct statement is as follows:
Proposition: A×B = B ×A if and only if A = B or A = ∅ or B = ∅.

• Here is a proof:

• First, if A = ∅, then A×B = ∅ = B×A so the result holds. Likewise, if B = ∅, then A×B = ∅ = B×A
so the result holds as well.

• Now suppose that A and B are nonempty. At this point, we can simply quote the proof given above,
because it is correct as long as A and B are nonempty.

• Remark: A common error was not to address the cases where A = ∅ or B = ∅ in the corrected proof.
If this is not done before the statement �Let a ∈ A and b ∈ B be arbitrary elements of A and B
respectively�, then the new proof is still wrong for the reasons explained in (b) above.
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