
E. Dummit's Math 1465, Fall 2024 ∼ Final Exam Review Solutions

1. Calculate/determine the following things:

(a) In words, any even n > 2 has a square m > 1 dividing n. So n = 6 is a counterexample (no square other
than 1 divides 6).

(b) The contrapositive is �if n2 = 9 then n = 3� which has n = −3 as a counterexample.

(c) The negation is ∃x∃y∀z, x+ y + z ≤ 5.

(d) The negation is ∃x ∈ A∃y ∈ B, x · y 6∈ A ∩B.

(e) The negation is ~ there exists an x ∈ R such that for all n ∈ Z, x ≥ n.

(f) A ∩B = {1} so A× (A ∩B) = {(1, 1), (3, 1), (5, 1), (7, 1), (9, 1)}.
(g) Take A = {1, 2} and B = {1, 3}: then (A ∩B)c ∪B = {1, 2, 3, 4} but (Ac ∪B)c = {2}.
(h) (i) False (take x = y = 1), (ii) True (take any y 6= x), (iii) False (no x has y 6= x for all y), (iv) True (take

x = 1, y = 2).

(i) (i) False (take x = 1, y = 0), (ii) True (take any y2 > x), (iii) True (take x = −1), (iv) True (take
x = y = 1).

(j) Many choices, such as a = 1, b = 2, c = 3: then a|b and a|c but b - c.
(k) Use Euclid: 256,520 have gcd 8 and lcm 256 · 520/8 while 921,177 have gcd 3 and lcm 921 · 177/3.
(l) Gcd has min of exponents so gcd is 233254 and lcm has max of exponents so lcm is 24335471111.

(m) For example p = 2 and q = 3 are prime and p+ q = 5 is also prime.

(n) Any perfect square is a counterexample, such as n = 4, since
√
4 = 2 is rational.

(o) The negation is ~ there exist positive integers a and b with 2 = (a/b)3.

(p) 4 + 8 = 3, 4− 8 = 5, 4 · 8 = 5, 4
2
= 7, and 4

−1
= 7 in Z/9Z.

(q) 10 does not (gcd 5). For 11 by Euclid −9 ·11+4 ·25 = 1 so 11
−1

= −9. For 12 by Euclid −2 ·12+1 ·25 = 1

so 12
−1

= −2.
(r) 30 does not (gcd 6). For 31 by Euclid 19 · 31− 14 · 42 = 1 so 31

−1
= 19. And 32 does not (gcd 2).

(s) {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4), (3, 3), (3, 5), (5, 3), (5, 5), (6, 6)}.
(t) Solving y = 6x+5

2x−7 for x yields y(2x− 7) = 6x+ 5 so 2xy − 7y = 6x+ 5 so f−1(y) = x = 7y+5
2y−6 .

(u) im(f) = {2, 3, 4, 1} = {1, 2, 3, 4}. In fact f−1 is a function from {1, 2, 3, 4} → {1, 2, 3, 4} so f is one-to-one
and onto.

(v) We have im(g) = {1, 3, 5}. g is not one-to-one since g(1) = g(4) and g is not onto since there is no n with
g(n) = 0.

(w) We have im(h) = Z/6Z, and in fact h is both one-to-one and onto.

(x) Here f has an inverse function f−1 : R→ R with f−1(y) = y/2 so f is a bijection.

(y) Here g is one-to-one since g(x1) = g(x2) implies x1 = x2, but g is not onto since the image of f is the even
integers. We have g−1(2n) = n.

(z) Many choices, such as f(n) = n3 or f(n) = n for n ≤ 0 and n+ 1 for n ≥ 1, and g(n) = bn/2c or g(n) = n
for n ≤ 0 and n− 1 for n ≥ 1.

2.

# Re�exive Symmetric Transitive Antisymmetric Irre�exive Equiv Rel Partial Total

(a) Yes No Yes Yes No No Yes Yes
(b) No Yes No No Yes No No No
(c) Yes Yes Yes No No Yes No No
(d) Yes No Yes Yes No No Yes No
(e) Yes No Yes Yes No No Yes Yes
(f) Yes Yes Yes No No Yes No No
(g) No (0) Yes Yes No No No No No
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3. Calculate/determine the following things:

(a) Q and Q ∩ R = Q are countable, while R, Q× R, Q ∪ R = R, and R\Q are uncountable.

(b) P(∅) and P({1, , . . . , 10000}) are �nite hence countable, while P(Z), P(Q), P(R), P(P(Q)) are uncountable.

(c) It is not a group: the operation is not associative and there is no identity (n− 0 = n but 0− n = −n).
(d) It is a group: the operation is associative, there is an identity 0, and 2n has an additive inverse −2n.
(e) The inverse of 30 in the additive group is simply −30 = 29.

(f) By Euclid we have 2 · 30− 59 = 1 so 2 · 30 = 1 so the inverse of 30 in the multiplicative group is 2.

(g) (sr)(sr2) = s(sr−1)r2 = r and s2r3s4r5 = r3r5 = r8.

(h) (r3)−1 = r9 and (sr2)−1 = r−2s−1 = r−2s = sr2.

(i) This permutation is (1 8)(2 7)(3 6)(4 5).

(j) This permutation is (1 3 2 6 4 5)(7) = (1 3 2 6 4 5).

(k) (3 1 4)(1 5) = (1 5 4 3) by tracing right to left.

(l) (2 7 1 8) · (2 8) · (1 8) · (2 8) = (1 7)(2 8) by tracing right to left.

(m) [(1 4 2 8 5)(6 7)]−1 = (6 7)−1(1 4 2 8 5)−1 = (7 6)(5 8 2 4 1) = (1 5 8 2 4)(6 7).

(n) Z/8Z and (Z/4Z)× (Z/2Z) and (Z/2Z)× (Z/2Z)× (Z/2Z) all work.
(o) The dihedral group D2·10 of order 20 is non-abelian.

(p) The groups (Z,+), (Q,+), (Q\{0}, ·) are all countably in�nite.

(q) A Cartesian product of a group in (p) with S3 or D2·4 is countably in�nite and non-abelian.

(r) The groups (R,+) and (R\{0}, ·) are both uncountably in�nite.

(s) A Cartesian product of one of the groups in (r) with S3 or D2·4 is uncountably in�nite and non-abelian.

(t) s has order 2, r has order 10, r2 has order 5, r3 has order 10.

(u) (1 2 3) has order 3, (4 5) has order 2, (1 2 3)(4 5) has order 6.

(v) (2 4 5) has order 3, (1 5)(2 3) has order 2, (2 4 5) · (1 5)(2 3) = (1 2 3 4 5) has order 5.

(w) By Lagrange's theorem these are the divisors of 20: 1, 2, 4, 5, 10, 20.

4. Prove the following:

(a) Truth table, or P ∧ ¬[Q ∨ (R ⇒ P )] = P ∧ ¬[Q ∨ ¬R ∨ P ] = P ∧ ¬Q ∧ R ∧ ¬P which is false due to the
P ∧ ¬P .

(b) When P is true, Q is false, R is true, then (P ⇒ Q)⇔ R is false while P ⇒ (Q⇔ R) is true.

(c) Truth table, or ¬[Q∧¬(P∧Q)]∧¬P = [¬Q∨(P∧Q)]∧¬P = (¬Q∧¬P )∨(P∧Q∧¬P ) = (¬Q∧¬P )∨False =
¬Q ∧ ¬P .

(d) Let x ∈ (A\B) ∪ (B\C). Then x ∈ A\B or x ∈ B\C. If x ∈ A\B then x ∈ A and x 6∈ B so x ∈ A ∪B and
x 6∈ B ∩C, meaning x ∈ (A∪B)\(B ∩C). If x ∈ B\C then x ∈ B and x 6∈ C so x ∈ A∪B and x 6∈ B ∩C,
so again x ∈ (A ∪B)\(B ∩ C).

(e) First suppose A\B = ∅. If x ∈ A then since A\B is empty, x must be in B (otherwise x would be in A\B),
so A ⊆ B. Conversely, if A ⊆ B, then there are no elements of A not in B, so A\B = ∅.

(f) Note x ∈ A\(B ∩ C) ⇐⇒ x ∈ A and x 6∈ (B ∩ C) ⇐⇒ x ∈ A and (x 6∈ B or x 6∈ C) ⇐⇒ (x ∈ A and
x 6∈ B) or (x ∈ A and x 6∈ C) ⇐⇒ x ∈ A\B or x ∈ A\C ⇐⇒ x ∈ (A\B) ∪ (A\C).

(g) Observe (A ∪ Bc)c = Ac ∩ (Bc)c = Ac ∩ B by de Morgan's laws, so A ∪ Bc and Ac ∩ B are complements.
Thus, if A ∪Bc = U then Ac ∩B = U c = ∅ and conversely if Ac ∩B = ∅ then A ∪Bc = ∅c = U .

(h) First suppose A ⊆ B ∪ C. If x ∈ A\B then x ∈ A and x 6∈ B. Since A ⊆ B ∪ C, x ∈ B ∪ C so x ∈ B
or x ∈ C but since x 6∈ B we must have x ∈ C: thus A\B ⊆ C. Conversely suppose A\B ⊆ C and let
x ∈ A. If x ∈ B then clearly x ∈ B ∪ C and otherwise if x 6∈ B then x ∈ A\B hence x ∈ C and once again
x ∈ B ∪ C: thus A ⊆ B ∪ C.

(i) Induct on n. Base case n = 1 has F1 + F3 = 3 = F4. Inductive step: if F1 + · · · + F2n+1 = F2n+2 then
F1 + · · ·+ F2n+1 + F2n+3 = [F1 + · · ·+ F2n+1] + F2n+3 = F2n+2 + F2n+3 = F2n+4 as required.
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(j) Induct on n. Base cases n = 1 and n = 2 have c1 = 2F1 and c2 = 2F2 . Inductive step: if cn = 2Fn and
cn−1 = 2Fn−1 then cn+1 = cncn−1 = 2Fn2Fn−1 = 2Fn+Fn−1 = 2Fn+1 as required.

(k) Induct on n. Base case n = 1 has a1 = 31 − 2. Inductive step: if an = 3n − 2 then an+1 = 3(3n − 2) + 4 =
3n+1 − 2.

(l) Induct on n. Base case n = 1 has b1 = 21+1. Inductive step: if bn = 2n+n then bn+1 = 2(2n+n)−n+1 =
2n+1 + (n+ 1).

(m) Induct on n. Base cases n = 0 and n = 1 have c0 = 6 · 20 and c1 = 4 · 21. Inductive step: if cn = (6− 2n)2n

and cn = (6− 2(n− 1))2n−1 = (4− n)2n then cn+1 = 4(6− 2n)2n − 4(4− n)2n = (24− 8n− 16 + 4n)2n =
(8− 4n)2n = (6− 2(n+ 1))2n+1 as required.

(n) Induct on n . Base cases n = 1 and n = 2 have d1 = 21 and d2 = 22. Inductive step: if dn = 2n and
dn−1 = 2n−1 then dn+1 = 2n + 2(2n−1) = 2n + 2n = 2n+1 as required.

(o) Induct on n. Base case n = 1 has 251 + 7 = 32 a multiple of 8. Inductive step: if 8 divides 25n + 7, then 8
divides 25 · (25n + 7)− 24 · 7 = 25n+1 + 7. (Reducing modulo 8 also works.)

(p) Induct on n. Base case n = 1 has 1/2 = 2− 1/20 − 1/21. Inductive step: If 1+
1

2
+

1

4
+ · · ·+ 1

2n
= 2− 1

2n
,

then 1 +
1

2
+

1

4
+ · · ·+ 1

2n
+

1

2n+1
= 2− 1

2n
+

1

2n+1
= 2− 1

2n+1
as required.

(q) Induct on n. Base case n = 1 has
1

1 · 2
=

1

2
. Inductive step: if

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1

then
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n+ 1

n+ 2
as required.

(r) If n is the sum of k, k+ 1, k+ 2, k+ 3, k+ 4, k+ 5 then n = 6k+ 15 ≡ 3 (mod 6). Conversely if n ≡ 3 mod
6 so that n = 3 + 6a, then n is the sum of a− 2, a− 1, a, a+ 1, a+ 2, a+ 3.

(s) Modulo 6 we have 7n + 5 ≡ 1n + 5 ≡ 1 + 5 ≡ 0 (mod 6), which means 7n + 5 is divisible by 6.

(t) Since a ≡ b (mod n) and c ≡ d (mod n) we see b+ c ≡ a+ d (mod n). Then a(b+ c) ≡ b(b+ c) ≡ b(a+ d)
(mod n) so a(b+ c) ≡ b(a+ d) (mod n).

(u) Clearly, if 6|n then 2|n and 3|n. For the other direction, if 2|n then n = 2k. Then if 3|2k we must have 3|k
since 3 - 2 and 3 is prime. So k = 3a, and thus n = 6a, meaning 6|n.

(v) First, A ⊆ B because if n = 4a + 6b then n = 2(2a + 3c) ∈ B. Also, B ⊆ A because if n = 2c then we
would have n = 4(2c) + 6(−c) ∈ A via Euclidean algorithm calculation.

(w) Note gcd(n, n+p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal
to p if and only if p|n (by de�nition of gcd).

(x) If n ∈ C, then n = 6c for some c. Then n = 10(2c) + 14(−c) ∈ D as required.

(y) Note (2n)(2n+ 2) = 4n2 + 4n is 1 less than (2n+ 1)2 = 4n2 + 4n+ 1.

(z) Note n− 1 ≡ −1 (mod n) so (n− 1)−1 ≡ (−1)−1 ≡ −1 ≡ n− 1 (mod n). Or, (n− 1)2 = n2 − 2n+ 1 ≡ 1
(mod n).

5. Prove the following:

(a) Note (a, b) ∈ R−1 ∩ S−1 ⇐⇒ (a, b) ∈ R−1 and (a, b) ∈ S−1 ⇐⇒ (b, a) ∈ R and (b, a) ∈ S ⇐⇒ (b, a) ∈
R ∩ S ⇐⇒ (a, b) ∈ (R ∩ S)−1.

(b) R is re�exive since |x| = |x|, R is symmetric since |x| = |y| implies |y| = |x|, and R is transitive since
|x| = |y| and |y| = |z| imply |x| = |z|. Also, [0] = {0}, [2] = [−2] = {2,−2}, [4] = {4,−4}.

(c) xR y when 6x ≡ y (mod 5), or equivalently when x ≡ y (mod 5). So this relation is just congruence modulo
5, which we already know is an equivalence relation, and the equivalence classes are the congruence classes
modulo 5: [n] = {. . . , n− 10, n− 5, n, n+ 5, n+ 10, . . . }.

(d) If R is re�exive and a function, then R(a) = a for all a ∈ A, so the only possibility is to have R(a) = a for
all a ∈ A. But clearly the identity function is also an equivalence relation, so it is the only one that works.

(e) Re�exive: For each a ∈ A we have (a, a) ∈ R and so (a, a) ∈ R−1 hence (a, a) ∈ S. Symmetric: if (a, b) ∈ S
then (a, b) ∈ R and (a, b) ∈ R−1 so (b, a) ∈ R−1 and (b, a) ∈ R so (b, a) ∈ S. Transitive: if (a, b), (b, c) ∈ S
then (a, b), (b, c) ∈ R so (a, c) ∈ R and also (c, b), (b, a) ∈ R so (c, a) ∈ R so (a, c) ∈ R−1 so (a, c) ∈ S.
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(f) Note f(f(a)) = a for all a ∈ A ⇐⇒ f ◦ f = iA ⇐⇒ f−1 = f as functions on A ⇐⇒ f−1 exists and
f−1(a) = f(a) for all a ∈ A.

(g) Let x ∈ A. Then by hypothesis (f ◦g)(x) = (f ◦h)(x) which means f(g(x)) = f(h(x)). But f is one-to-one,
so this implies g(x) = h(x). Since g and h agree on all elements in A, that means g = h.

(h) Suppose c ∈ C. Then f(c) ∈ f(C), so by de�nition we have c ∈ f−1(f(C)).

(i) From above C ⊆ f−1(f(C)). For the reverse, suppose c ∈ f−1(f(C)), so that f(c) ∈ f(C). Since f is
one-to-one, f(a) = f(c) implies a = c, so f(a) ∈ f(C) implies a ∈ C.

(j) Suppose a ∈ f−1(D). Then f(a) ∈ D by de�nition. This holds for all a ∈ f−1(D), so f(f−1(D)) ⊆ D.

(k) From above, f(f−1(D)) ⊆ D. For the reverse, suppose d ∈ D. Since f is onto, there exists a ∈ A with
f(a) = d, so a ∈ f−1(D). Hence d ∈ f(f−1(D)).

(l) Suppose x ∈ f(C1) ∩ f(C2), meaning that x = f(c1) = f(c2) for some c1 ∈ C1 and c2 ∈ C2. But since f is
one-to-one this means c1 = c2, and so c1 ∈ C1∩C2: thus x = f(c1) for some c1 ∈ C1∩C2 so x ∈ f(C1∩C2).

(m) Note f has an inverse g. Then in fact f̃ has an inverse g̃ : P(B) → P(A) with g̃(T ) = {g(t) : t ∈ T}.
Explicitly, for S ⊆ A, g̃(f̃(S)) = g̃({f(s) : s ∈ S} = {g(f(s)) : s ∈ S} = {s : s ∈ S} = S and
f̃(g̃(T )) = f̃({g(t) : t ∈ T}) = {f(g(t)) : t ∈ T} = {t : t ∈ T} = T .

(n) All equivalence relations contain the identity relation. So f is one-to-one ⇐⇒ [a] = [b] is equivalent to
a = b ⇐⇒ aR b is equivalent to a = b ⇐⇒ R equals the identity relation.

(o) Note that B is a subset of A∪ (B\A). If A and B\A are countable then their union is also countable, hence
any subset is countable. If B is uncountable then this is a contradiction, so B\A is uncountable.

(p) Both Q and Q ∩ (0, 1) are countably in�nite, so there is a bijection between these sets since they are both
in bijection with the positive integers.

(q) The Cartesian product of two countable sets is countable, so Q × Z is countable since both Q and Z are
countable. But R × Z contains R × {1} which is in bijection with R, so R × Z has an uncountable subset
hence is uncountable itself.

(r) If Sn is the set of n-element subsets of Z then Sn is countable since it is a subset of Z×Z× · · · ×Z (with n
terms) and this set is countable. Then the set of �nite subsets of Z is ∪∞n=0Sn which is a countable union
of countable sets, hence countable.

(s) The functions f : [1, 7)→ (2, 9) with f(x) = 2+ (x/2) and g : (2, 9)→ [1, 7) with g(x) = 1+ (x/2) are both
one-to-one, so by Cantor-Schröder-Bernstein there exists a bijection between [1, 7) and (2, 9).

(t) The functions f : (0, 1) → [0, 1] with f(x) = x and g : [0, 1] → (0, 1) with g(x) = (x + 1)/3 are both
one-to-one, so by Cantor-Schröder-Bernstein there exists a bijection between (0, 1) and [0, 1].

(u) Induct on n. Base case n = 1 is given. For inductive step suppose ghn = hng. Then ghn+1 = (gh)(hn) =
(hg)hn = h(ghn) = h(hng) = hn+1g using gh = hg and ghn = hng.

(v) Multiply g−1h−1 = h−1g−1 on the left by hg and on the right by gh. This yields hg(g−1h−1)gh =
hg(h−1g−1)gh. Then hg(g−1h−1)gh = hgg−1h−1gh = hh−1gh = gh while hg(h−1g−1)gh = hgh−1g−1gh =
hgh−1h = hg, so gh = hg.

(w) By hypothesis gn = e. Multiplying by g−1 on both sides yields g−1gn = g−1e = g−1 and since g−1gn =
g−1g(gn−1) = egn−1 = gn−1 we see gn−1 = g−1.

(x) The function f is an element of the symmetric group Sn. By Lagrange's theorem, its order divides n!
hence is �nite. But if the order is A then this means fA is the identity, which is to say, fA(i) = i for each
i ∈ {1, 2, 3, . . . , n}.

(y) Re�extive: e ∈ H and g1 = eg1 so g1 Rg1. Symmetric: If g1 Rg2 so that g1 = hg2 with h ∈ H then
h−1g1 = g2 and h−1 ∈ H, so g2 Rg1. Transitive: If g1 Rg2 and g2 Rg3 so that g1 = hg2 and g2 = kg3 with
h, k ∈ H then g1 = hg2 = hkg3 and hk ∈ H so g1 Rg3.

(z) First e ∈ S since e2 = e. Second if g, h ∈ S then g2 = e and h2 = e so (gh)2 = ghgh = g2h2 = ee = e since
gh = hg because G is abelian, so gh ∈ S. Finally if g ∈ S then g2 = e so (g−1)2 = (g2)−1 = e so g−1 ∈ S .
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