- 1. Calculate/determine the following things:
 - (a) With universe \mathbb{Z}_+ , let E(n) = "n is even" and S(n) = "n is a perfect square greater than 1". Give a counterexample to the statement $\forall n \ [E(n) \land (n > 2)] \Rightarrow [\exists m \ S(m) \land m | n].$
 - (b) Give a counterexample to this statement: If $n \neq 3$ then $n^2 \neq 9$.
 - (c) Negate this statement: $\forall x \forall y \exists z, x + y + z > 5$.
 - (d) Negate this statement: $\forall x \in A \,\forall y \in B, x \cdot y \in A \cap B$.
 - (e) Negate this statement: for any $x \in \mathbb{R}$ there exists an $n \in \mathbb{Z}$ such that x < n.
 - (f) If $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 2, 4, 8\}$, find $A \times (A \cap B)$.
 - (g) Find subsets A, B of a universal set $\{1, 2, 3, 4\}$ giving a counterexample to the statement $(A \cap B)^c \cup B \subseteq (A^c \cup B)^c$.
 - (h) With universe \mathbb{R} , find truth values of (i) $\forall x \forall y \ y \neq x$, (ii) $\forall x \exists y \ y \neq x$, (iii) $\exists x \forall y \ y \neq x$, (iv) $\exists x \exists y \ y \neq x$.
 - (i) With universe \mathbb{R} , find truth values of (i) $\forall x \forall y \ y^2 \ge x$, (ii) $\forall x \exists y \ y^2 \ge x$, (iii) $\exists x \forall y \ y^2 \ge x$, (iv) $\exists x \exists y \ y^2 \ge x$.
 - (j) Give a counterexample to this statement: For integers a, b, and c, if a|b and a|c, then b|c.
 - (k) Find the gcd and lcm of 256, 520 and also of 921, 177.
 - (l) Find the gcd and lcm of $2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.
 - (m) Give a counterexample to this statement: If p and q are prime, then p + q is never prime.
 - (n) Give a counterexample to this statement: If n > 1 is an integer, then \sqrt{n} is always irrational.
 - (o) Negate this statement: there exist positive integers a and b with $2 = (a/b)^3$.
 - (p) Find the values of $\overline{4} + \overline{8}$, $\overline{4} \overline{8}$, $\overline{4} \cdot \overline{8}$, $\overline{4}^2$, and $\overline{4}^{-1}$ in $\mathbb{Z}/9\mathbb{Z}$.
 - (q) Identify which of $\overline{10}$, $\overline{11}$, $\overline{12}$ mod 25 have multiplicative inverses and find the inverses of those that do.
 - (r) Identify which of $\overline{30}$, $\overline{31}$, $\overline{32}$ mod 42 have multiplicative inverses and find the inverses of those that do.
 - (s) List the ordered pairs in the equivalence relation on $\{1, 2, 3, 4, 5, 6\}$ with corresponding partition $\{1, 2, 4\}, \{3, 5\}, \{6\}$.
 - (t) Find a formula for the inverse of the function $f: \mathbb{Q}\setminus\{\frac{7}{2}\} \to \mathbb{Q}$ where $f(x) = \frac{6x+5}{2x-7}$.
 - (u) Define $f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ via $f = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$. Find im(f). Is f one-to-one? Onto?
 - (v) Define $g: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ via $g(\overline{n}) = \overline{2n+3}$. Find $\operatorname{im}(g)$. Is g one-to-one? Onto?
 - (w) Define $h: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ via $h(\overline{n}) = \overline{5n-3}$. Find im(h). Is h one-to-one? Onto?
 - (x) Define $f : \mathbb{R} \to \mathbb{R}$ via f(x) = 2x. Is f one-to-one? Onto? What is f^{-1} ?
 - (y) Define $q: \mathbb{Z} \to \mathbb{Z}$ via f(x) = 2x. Is f one-to-one? Onto? What is q^{-1} ?
 - (z) Find functions $f, g: \mathbb{Z} \to \mathbb{Z}$ with f one-to-one but not onto and g onto but not one-to-one.
- 2. For each of the following relations, decide whether they are (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) irreflexive, (vi) an equivalence relation, (vii) a partial ordering, and (viii) a total ordering.
 - (a) $R = \{(1,1), (2,1), (2,2)\}$ on the set $\{1,2\}$.
 - (b) $R = \{(1,2), (2,1)\}$ on the set $\{1,2\}$.
 - (c) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$ on the set $\{1,2,3,4\}$.
 - (d) The divisibility relation on the set $\{2, -3, 4, -5, 6\}$.
 - (e) The divisibility relation on the set $\{2, -4, -12, 36\}$.
 - (f) The relation R on \mathbb{Z} with a R b precisely when $|a| \equiv |b|$ modulo 5.
 - (g) The relation R on \mathbb{R} with a R b precisely when ab > 0.

- 3. Calculate/determine the following things:
 - (a) Which of the sets \mathbb{Q} , \mathbb{R} , $\mathbb{Q} \times \mathbb{R}$, $\mathbb{Q} \cap \mathbb{R}$, $\mathbb{Q} \cup \mathbb{R}$, and $\mathbb{R} \setminus \mathbb{Q}$ are countable.
 - (b) Which of the power sets $\mathcal{P}(\emptyset)$, $\mathcal{P}(\{1, 2, 3, 4, 5, \dots, 10000\})$, $\mathcal{P}(\mathbb{Z})$, $\mathcal{P}(\mathbb{Q})$, $\mathcal{P}(\mathbb{R})$, and $\mathcal{P}(\mathcal{P}(\mathbb{Q}))$ are countable.
 - (c) Whether the set $(\mathbb{Z}, -)$ of integers under subtraction is a group.
 - (d) Whether the set $(2\mathbb{Z}, +)$ of even integers under addition is a group.
 - (e) The inverse of $\overline{30}$ in the additive group $\mathbb{Z}/59\mathbb{Z}$ of integers modulo 59.
 - (f) The inverse of $\overline{30}$ in the multiplicative group $(\mathbb{Z}/59\mathbb{Z})^{\times}$ of nonzero integers modulo 59.
 - (g) The products $(sr)(sr^2)$ and $s^2r^3s^4r^5$ in the dihedral group $D_{2\cdot 10}$ of order 20.
 - (h) The inverses of r^3 and sr^2 in the dihedral group $D_{2\cdot 12}$ of order 24.
 - (i) The cycle decomposition of the permutation $\sigma \in S_8$ with $\sigma(n) = 9 n$ for each $1 \le n \le 8$.
 - (j) The cycle decomposition of the permutation $\sigma \in S_7$ with $\sigma(n) \equiv 3n \pmod{7}$ for each $1 \leq n \leq 7$.
 - (k) The cycle decomposition of the product (314)(15) in S_6 .
 - (l) The cycle decomposition of the product $(2718) \cdot (28) \cdot (18) \cdot (28)$ in S_8 .
 - (m) The cycle decomposition of the inverse of (14285)(67) in S_8 .
 - (n) An example of an abelian group of order 8.
 - (o) An example of a non-abelian group of order 20.
 - (p) A example of a countably infinite abelian group.
 - (q) An example of a countably infinite non-abelian group.
 - (r) An example of an uncountably infinite abelian group.
 - (s) An example of an uncountably infinite non-abelian group.
 - (t) The orders of the elements s, r, and r^2 in the dihedral group $D_{2\cdot 10}$.
 - (u) The orders of the elements (123), (45), and (123)(45) in S_5 .
 - (v) The orders of the elements (245), (15)(23), and $(245) \cdot (15)(23)$ in S_5 .
 - (w) The possible orders of a subgroup of a group of order 20.

4. Prove the following:

- (a) Let P, Q, and R be propositions. Show that $P \wedge \neg[Q \lor (R \Rightarrow P)]$ is always false.
- (b) Let P, Q, and R be propositions. Show that $(P \Rightarrow Q) \Leftrightarrow R$ and $P \Rightarrow (Q \Leftrightarrow R)$ are not logically equivalent.
- (c) Let P, Q, and R be propositions. Show that $\neg [Q \land \neg (P \land Q)] \land \neg P$ and $\neg Q \land \neg P$ are logically equivalent.
- (d) Let A, B, and C be sets. Prove that $(A \setminus B) \cup (B \setminus C) \subseteq (A \cup B) \setminus (B \cap C)$.
- (e) Let A and B be sets. Prove that $A \setminus B = \emptyset$ if and only if $A \subseteq B$.
- (f) For any sets A, B, C, prove $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- (g) For any sets A, B inside a universal set U, prove $A \cup B^c = U$ if and only if $A^c \cap B = \emptyset$.
- (h) For any sets A, B, C, prove $A \subseteq B \cup C$ if and only if $A \setminus B \subseteq C$.
- (i) If F_n is the *n*th Fibonacci number, show $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer *n*.
- (j) Suppose $c_1 = c_2 = 2$, and for all $n \ge 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n, where F_n is the *n*th Fibonacci number.
- (k) Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
- (l) Suppose $b_1 = 3$ and $b_{n+1} = 2b_n n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
- (m) A sequence is defined by the recurrence relation $c_n = 4c_{n-1} 4c_{n-2}$ for $n \ge 2$, where $c_0 = 6$ and $c_1 = 8$. Prove that $c_n = (6-2n)2^n$ for all integers $n \ge 0$.
- (n) Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \ge 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.
- (o) Show that $25^n + 7$ is a multiple of 8 for every positive integer n.
- (p) Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
- (q) Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ for every positive integer n.
- (r) Prove that the sum of any six consecutive integers is congruent to $3 \mod 6$.
- (s) Prove that $7^n + 5$ is divisible by 6 for all positive integers n.
- (t) Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Show that $a(b+c) \equiv b(a+d) \pmod{n}$.
- (u) Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.
- (v) If $A = \{4a + 6b : a, b \in \mathbb{Z}\}$ and $B = \{2c : c \in \mathbb{Z}\}$, prove that A = B.
- (w) If p is a prime, prove that gcd(n, n+p) > 1 if and only if p|n.
- (x) If $C = \{6c : c \in \mathbb{Z}\}$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}$, prove that $C \subseteq D$.
- (y) Prove that the product of two consecutive even integers is always 1 less than a perfect square.
- (z) If n is any positive integer, prove that n-1 is invertible modulo n and its multiplicative inverse is itself.

- 5. Prove the following:
 - (a) If $R, S: A \to B$ are relations, prove that $R^{-1} \cap S^{-1} = (R \cap S)^{-1}$.
 - (b) Show $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| = |y|\}$ is an equivalence relation on \mathbb{Z} and list the equivalence classes of 0, 2, -2, 4.
 - (c) A relation R on integers is defined via x R y when 5|(6x y). Prove that R is an equivalence relation and describe the equivalence classes of R.
 - (d) Show that the only equivalence relation R on A that is a function from A to A is the identity relation.
 - (e) Suppose R is a reflexive and transitive relation on a set A. Show that $S = R \cap R^{-1}$ is an equivalence relation on A.
 - (f) Suppose that $f: A \to A$ is a function. Show that f(f(a)) = a for all $a \in A$ if and only if $f^{-1}: A \to A$ is a function and $f^{-1}(a) = f(a)$ for all $a \in A$.
 - (g) Suppose $f: B \to C$ is one-to-one. If $g, h: A \to B$ have $f \circ g = f \circ h$, show that g = h.
 - (h) Let $f: A \to B$ be a function. For a subset D of B, recall that $f^{-1}(D) = \{a \in A : f(a) \in D\}$. For any subset C of A, show that $C \subseteq f^{-1}(f(C))$.
 - (i) If $f: A \to B$ is one-to-one and C is a subset of A, prove that $C = f^{-1}(f(C))$.
 - (j) If $f: A \to B$ is a function and D is any subset of B, show that $f(f^{-1}(D)) \subseteq D$.
 - (k) If $f: A \to B$ is onto and D is any subset of B, prove that $f(f^{-1}(D)) = D$.
 - (l) If $f: A \to B$ is one-to-one and C_1, C_2 are subsets of A, prove that $f(C_1) \cap f(C_2) \subseteq f(C_1 \cap C_2)$.
 - (m) Suppose $f : A \to B$ is a bijection. Show that $\tilde{f} : \mathcal{P}(A) \to \mathcal{P}(B)$ given by $\tilde{f}(S) = \{f(s) : s \in S\}$ is also a bijection, where $\mathcal{P}(S)$ denotes the power set of S (the set of subsets of S).
 - (n) Let S be the set of equivalence classes of an equivalence relation R on A and define the function $f: A \to S$ via f(a) = [a]. Show that f is one-to-one if and only if R is the identity relation.
 - (o) Prove that if A is countable and B is uncountable, then the set difference $B \setminus A$ is uncountable.
 - (p) Prove that there exists a bijection between \mathbb{Q} and $\mathbb{Q} \cap (0, 1)$, the set of rational numbers strictly between 0 and 1.
 - (q) Prove that the set $\mathbb{Q} \times \mathbb{Z}$ is countable and that the set $\mathbb{R} \times \mathbb{Z}$ is uncountable.
 - (r) Prove that the set of all finite subsets of \mathbb{Z} is countable.
 - (s) Prove that there exists a bijection between the half-closed interval $[1,7) = \{x \in \mathbb{R} : 1 \le x < 7\}$ and the open interval $(2,9) = \{x \in \mathbb{R} : 2 < x < 9\}$.
 - (t) Prove that there exists a bijection between $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ and $[0,1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$.
 - (u) Suppose g and h are elements in a group such that gh = hg. Prove that $gh^n = h^n g$ for all positive integers n.
 - (v) Suppose g and h are elements of a group such that $g^{-1}h^{-1} = h^{-1}g^{-1}$. Prove that gh = hg.
 - (w) Suppose g is an element of a group G and that g has order n. Show that $g^{-1} = g^{n-1}$.
 - (x) Let $f: \{1, 2, 3, ..., n\} \to \{1, 2, 3, ..., n\}$ be a bijection. Show that there exists some positive integer A such that $f^A(i) = i$ for each $i \in \{1, 2, 3, ..., n\}$, where f^A denotes f composed with itself A times.
 - (y) Suppose G is a group and H is a subgroup, and define the relation R on G by saying $g_1 R g_2$ whenever there exists $h \in H$ such that $g_1 = hg_2$. Prove that R is an equivalence relation.
 - (z) Suppose G is an abelian group. Show that the subset $S = \{a \in G : a^2 = e\}$ is a subgroup of G.