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Preamble

Now that we have dispensed with all of the preliminary facts about
algebraic curves, we can start our work on studying elliptic curves
using the tools of algebraic geometry.

Our next task is to study divisors on curves.

In all of our discussion, C will be a smooth projective curve
defined over the algebraically closed field k.

To emphasize, references to “points of C ” are always viewing
C as being defined over an algebraically closed field, and the
points have coordinates in this algebraically closed field.

Also, for convenience I will usually give examples in affine
form, because the notation is easier to follow.



Divisors, I

Definition

Let C be a smooth curve. The divisor group of C , written Div(C ),
is the additive free abelian group generated by the k-points of C .
The degree of a divisor D =

∑
P∈C nPP is deg(D) =

∑
P∈C nP .

The elements of Div(C ) are of the form D =
∑

P∈C nPP for
nP ∈ Z, where all but finitely many of the nP are zero. We
will write ordP(D) = nP .

Some divisors on A1(C) are P0, P0 − 3P∞, and
P1 − Pi − 11P1−i + 4Pπ−e .

The degree map is well defined because only finitely many nP

are nonzero, and it is a homomorphism from DC to Z. Its
kernel is the set of degree-0 divisors Div0(C ).
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Divisors, II

You might be wondering why we call these formal linear
combinations of points “divisors”. Let me outline the reason:

If C1 = V (f ) and C2 = V (g) are two distinct projective plane
curves sharing no common component, then their intersection
C1 ∩ C2 = V (f , g) is finite. (Indeed, Bézout’s theorem states
that the number of intersection points is at most
deg(f ) · deg(g).)

We may associate a divisor to this intersection C1 ∩ C2 as∑
P∈C1∩C2

nPP, where nP is the intersection number of

C1 ∩ C2 at P given by nP = dimk OP(P2)/(f , g).



Divisors, III

Why do we take that intersection divisor C1 ∩ C2 as∑
P∈C1∩C2

nPP, where nP is the intersection number given by

nP = dimk OP(P2)/(f , g)?

For polynomials in one variable, the ideal (f , g) is principal
and generated by the gcd of f and g . (One may check that
the intersection number at a point P, under the definition
above, is the power of x − P that divides their gcd.)

The idea is that in the one-variable case, this “intersection
number” summed over all points precisely captures the notion
of “common divisor”.

I’ll do an example.



Divisors, IV

Take f = x3(x − 1)(x + 5) and g = x2(x − 1)(x + 2) as functions
on P1(C), where as usual x = X/Y .

We have (f , g) = (gcd(f , g)) = (x2(x − 1)). This function
has a pole at P∞, a double zero at P0, and a single zero at P1.

At P0, since x generates the maximal ideal of the local ring
there, we see ordP0(f , g) = 2 (note that x − 1 is a unit in OP0 .

Likewise, since x − 1 generates the maximal ideal of the local
ring at P1, we see ordP1(f , g) = 1,

So the intersection divisor is 2P0 + P1.

If we instead think of this divisor multiplicatively, and replace
P0 with x and P1 with x − 1 (the respective local
uniformizers), the “multiplicative divisor” comes out to be
x2(x − 1): precisely the “common divisor” of f and g .
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Divisors, V

For polynomials in two variables (f , g) will no longer be principal,
but it still carries the natural sense of being a “common divisor”.

Thus, we can think of the divisor
∑

P∈C1∩C2
nPP as describing

the precise way in which the curves C1 and C2 intersect.

It is not particularly obvious that this value dimk OP(P2)/(f , g) is
really the right definition. But here are a few reasons:

The value is invariant under linear changes of coordinates.

The value is 1 whenever P is a simple point of C1 and C2

where C1 and C2 meet transversally (i.e., their tangent lines
at P are different).

The value is additive when we take unions of curves.

We will not really use this particular formulation of divisors; it is
merely some motivation for how divisors arise in a fairly natural
way in the context of curves.
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Divisors, VI

If E is a subfield of the algebraically closed field k over which C is
defined, the Galois group Gal(k/E ) acts on the k-rational points
of C , and thus it also acts on divisors pointwise.

Definition

Suppose C is a smooth curve defined over the algebraically closed
field k, and E is a subfield of k with E = k.

If σ ∈ Gal(k/E ) is an element of the Galois group and
D =

∑
P∈C nPP is a divisor, we define the action of σ on D via

σ(D) =
∑

P∈C npσ(P).

We then say a divisor D is defined over E when σ(D) = D for all
σ ∈ Gal(k/E ), and we denote the subgroup of divisors defined
over E as DivE (C ).



Divisors, VII

If all of the points having nonzero coefficients in a divisor D are
defined over E , then certainly D is defined over E , but this is not
necessary.

Compare σ(D) =
∑

P∈C npσ(P) to the reindexed sum
D =

∑
P∈C nσ(P)σ(P).

For those to be equal we need nσ(P) = nP for all P ∈ C and
all σ ∈ Gal(k/E ).
So all that is required is for Galois-conjugate points to have
the same coefficients (and this is also sufficient).
For example, for the curve C = A1(C), with P = i and
Q = −i , the divisor 2P + Q is defined over Q(i) (any element
of the Galois group C/Q(i) fixes i and −i , hence sends P to
P and Q to Q) while the divisor P + Q is defined over Q (any
element of the Galois group C/Q either fixes i or maps it to
−i , and these operations map P + Q to P + Q or Q + P
respectively).



Divisors, VIII

For example, consider C = A1(C) with points P = i and Q = −i .

Then the divisor 2P + Q is defined over Q(i): any element of
the Galois group C/Q(i) fixes i and −i , hence sends P to P
and Q to Q.

On the other hand, the divisor P + Q is actually defined over
the smaller field Q: any element of the Galois group C/Q
either fixes i or maps it to −i , and these operations map
P + Q to P + Q or Q + P respectively. In both cases the
divisor P + Q is fixed, and so P + Q is defined over Q.
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Divisors of Functions, I

We can attach a divisor to a rational function on C using its zeroes
and poles:

Definition

Let C be a smooth curve and α ∈ k(C ) be a nonzero rational
function on C. We define the divisor of α, denoted div(α), as
div(α) =

∑
P∈C vP(α)P. The divisors of the form div(α) for some

α ∈ k(C )× are called principal divisors.

Some notational remarks:

You’d think there would be a notation for the set of principal
divisors, but there isn’t.

In many sources, the divisor of α is often written (α). In our
context, this can lead to ambiguities, since the same notation
is also used for the ideal generated by α. As such, I will always
write div(α) for the divisor of α, since that’s unambiguous.



Divisors of Functions, II

As we/you have already shown1, for any nonzero α, vP(α) is
nonzero only for finitely many P ∈ C , so div(α) is well defined.

Now because ordP(α/β) = ordP(α)− ordP(β), summing over
all primes shows that div(α/β) = div(α)− div(β), so the
principal divisors are a subgroup of the divisor group Div(C ).2

I’ll do some examples on the next slides. Just remember that when
computing the divisor of a function on a smooth curve C , all of
our curves are projective, so we need to remember to include the
point at ∞.

1This was an exercise from the Sep 21 lecture, and is on homework 2
2I suppose technically I should point out that the divisor of a constant is

zero, as well, so that the set of principal divisors contains the identity.



Divisors of Functions, III

Example: Let C = P1(C) with points denoted [X : Y ]. Consider
the rational function α = X/Y .

Note that α has a pole when Y = 0, which is the point [1 : 0],
and α is defined everywhere else.

When X = 0, namely at the point [0 : 1], α is zero, and
everywhere else α is nonzero.

So since α = X/Y is a local uniformizer at [0 : 1] and
1/α = Y /X is a local uniformizer at [1 : 0], we see that
ord[0:1] α = 1 and ord[1:0] α = −1, and ordP α = 0 for other
points P.

Thus div(α) = P[0:1] − P[1:0]
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Divisors of Functions, IV

Example: Let C = P1(C) with points denoted [X : Y ]. Consider

the rational function β =
X 3 − XY 2

Y 3
.

Using similar calculations as for α, we can see that β has
three single zeroes at [0 : 1], [1 : 1], and [−1 : 1] and a triple
pole at [1 : 0].

Therefore, we have div(β) = P[0:1] + P[1:1] + P[−1:1] − 3P[1:0].

If we dehomogenize these last two examples, we see α∗ = x and
β∗ = x3 − x .

The associated divisors are div(α∗) = P0 − P∞ and
div(β∗) = P0 + P1 + P−1 − 3P∞.

Note they are the same as the divisors we calculated using the
projective model, just with the points given affine labels.
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Divisors of Functions, V

Exercise: On C = A1(C), suppose α = u
(x − p1)a1 · · · (x − pl)

al

(x − q1)b1 · · · (x − qm)bm

for u ∈ C× and take distinct elements p1, . . . , pl , q1, . . . , qm ∈ C
having associated points P1, . . . ,Pk ,Q1, . . . ,Ql respectively.

Show that
div(a) = a1P1+· · ·+alPl−b1Q1−· · ·−bmQm+[

∑
j bj−

∑
i ai ]P∞.

[Hint: This is a generalization of the examples we just did.]

Exercise: Show that for any C = A1(C) and any nonzero rational
function α ∈ C(C ) we have deg(div(α)) = 0.



Divisors of Functions, VI

Example: For C = V (Y 2Z − X 3 − XZ 2) consider the rational
function γ = Y /Z .

The zeroes for γ can only occur when Y = 0 yielding the
points [0 : 0 : 1], [i : 0 : 1], [−i : 0 : 1], while the poles for γ
can only occur when Z = 0 yielding the point [0 : 1 : 0].

To compute the order of vanishing γ at each point we may
compute a local uniformizer3 (for the three zeroes, γ = Y /Z
is itself a local uniformizer, while for the pole, Z/X is a local
uniformizer).

One obtains ord[0:0:1]γ = ord[i :0:1]γ = ord[−i :0:1]γ = 1 and
also ord[0:1:0]γ = −3.

Therefore, div(γ) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0].

3This is exercise 6 from Sep 21, on homework 2
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Divisors of Functions, VII

Example (continued): For C = V (Y 2Z − X 3 − XZ 2) consider the
rational function γ = Y /Z .

We computed div(γ) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0].

If we dehomogenize the example above, so as to work instead
with the affine model y2 = x3 + x , the corresponding rational
function is γ∗ = y .

The associated divisor is
div(γ∗) = P(0,0) + P(i ,0) + P(−i ,0) − 3P∞.



Divisors of Functions, VII
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Divisors of Functions, VIII

We can also pick out the zeroes (respectively, poles) of an element
by extracting only the portion of its divisor with positive
(respectively, negative) coefficients:

Definition

If α ∈ k(C )× has divisor div(α) =
∑

P nPP, we define the “zero
divisor” div+(α) =

∑
P max(0, nP)P =

∑
P:nP>0 nPP and the

“pole divisor” div−(a) =
∑

P min(0, nP)P =
∑

P:nP<0 nPP.

Notice that div(α) = div+(α)− div−(α) for any α ∈ k(C )×.

There are various other notations for these quantities that are
often used, such as (a)0 for div+ and (a)∞ for div−, which
are intended to evoke the idea of picking out the zeroes and
poles of a.
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Divisors of Functions, IX

Examples:

For α = X/Y on P1(C) with div(α) = P[0:1] − P[1:0], we have
div+(α) = P[0:1] and div−(α) = P[1:0].

For β = (X 3 − XY 2)/(Y 3) on P1(C) with
div(β) = P[0:1] + P[1:1] + P[−1:1] − 3P[1:0], we have
div+(β) = P[0:1] + P[1:1] + P[−1:1] and div−(β) = 3P[1:0].

For γ = Y /Z on V (Y 2Z − X 3 − XZ 2) with
div(γ) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0] we have
div+(γ) = P[0:0:1] + P[i :0:1] + P[−i :0:1] and div−(γ) = 3P[0:1:0].

You may notice that in all of these cases, the degrees of the zero
part and the pole part are the same.
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Divisors of Functions, X: Marks The Spot

In fact, the degrees of the zero part and pole part of div(α) will
always be equal, and this common degree represents the degree of
a field extension:

Theorem (Divisor Degrees)

For any nonconstant α ∈ k(C )× on a curve C/k, we have
deg(div+(α)) = deg(div−(α)) = [k(C ) : k(α)]. As a consequence,
deg(div(α)) = 0 for all α ∈ k(C )×.

I will defer the proof of this result temporarily, since it would
otherwise require developing a lot of additional material out of
order.

But the idea connecting the divisor to the field extension is to
view α as a morphism from C to P1. (Recall from last time
that we can view morphisms of curves as giving rise to field
extensions of the function fields.)
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Divisors of Functions, XI: This One Goes To Eleven

Here’s how the field extension degrees work for the three divisors
we wrote down:

For C = P1 with function field k(C ) = C(x) where x = X/Y ,
we have α = x so k(α) = C(x) and so the extension degree
[k(C ) : k(α)] = [C(x) : C(x))] = 1.

For C = P1 with β = x3 − x we have k(β) = C(x3 − x) and
so [k(C ) : k(β)] = [C(x) : C(x3 − x))] = 3.

Why is this extension degree 3? Because x is a root of the
irreducible polynomial p(t) = t3 − t − (x3 − x) with
coefficients in C(x3 − x).
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Here’s how the field extension degrees work for the three divisors
we wrote down:

For C = P1 with function field k(C ) = C(x) where x = X/Y ,
we have α = x so k(α) = C(x) and so the extension degree
[k(C ) : k(α)] = [C(x) : C(x))] = 1.

For C = P1 with β = x3 − x we have k(β) = C(x3 − x) and
so [k(C ) : k(β)] = [C(x) : C(x3 − x))] = 3.

Why is this extension degree 3? Because x is a root of the
irreducible polynomial p(t) = t3 − t − (x3 − x) with
coefficients in C(x3 − x).



Divisors of Functions, XII: Something About Clocks

For C = V (Y 2Z − X 3 − XZ 2) the situation is a bit more exciting.

The function field is k(x , y) = C(x , y) where x = X/Z and
y = Y /Z satisfy the relation y2 = x3 + x .

For γ = Y /Z = y , we have k(γ) = C(y) and so
[k(C ) : k(γ)] = [C(x , y) : C(y))] =

3.

Why does this extension have degree 3? Because it’s
generated by x , which is a root of the irreducible polynomial
p(t) = t3 + t − y2 with coefficients in C(y).



Divisors of Functions, XII: Something About Clocks

For C = V (Y 2Z − X 3 − XZ 2) the situation is a bit more exciting.

The function field is k(x , y) = C(x , y) where x = X/Z and
y = Y /Z satisfy the relation y2 = x3 + x .

For γ = Y /Z = y , we have k(γ) = C(y) and so
[k(C ) : k(γ)] = [C(x , y) : C(y))] = 3.

Why does this extension have degree 3? Because it’s
generated by x , which is a root of the irreducible polynomial
p(t) = t3 + t − y2 with coefficients in C(y).



Divisors of Functions, XIII: Lucky Thirteen

Let me do another example with C = V (Y 2Z − X 3 − XZ 2), for
the rational function δ = X/Z = x .

As before the function field is k(x , y) = C(x , y) where
x = X/Z and y = Y /Z satisfy the relation y2 = x3 + x .

For δ = X/Z = x , we have k(γ) = C(x) and so
[k(C ) : k(γ)] = [C(x , y) : C(x))] =

2.

Why does this extension have degree 2? Because it’s
generated by y , which is a root of the irreducible polynomial
p(t) = t2 − x3 − x with coefficients in C(x).



Divisors of Functions, XIII: Lucky Thirteen

Let me do another example with C = V (Y 2Z − X 3 − XZ 2), for
the rational function δ = X/Z = x .

As before the function field is k(x , y) = C(x , y) where
x = X/Z and y = Y /Z satisfy the relation y2 = x3 + x .

For δ = X/Z = x , we have k(γ) = C(x) and so
[k(C ) : k(γ)] = [C(x , y) : C(x))] = 2.

Why does this extension have degree 2? Because it’s
generated by y , which is a root of the irreducible polynomial
p(t) = t2 − x3 − x with coefficients in C(x).



Divisors of Functions, XIV

Computing degrees for these types of extensions can be difficult.
Here’s one general case you can work out explicitly for yourself:

Exercise: For any field k , if f (t), g(t) ∈ k[t] are relatively prime (t

is an indeterminate), show [k(t) : k( f (t)
g(t))] = max(deg f , deg g).

[Hint: Use Gauss’s lemma to show that

q(y) = f (y)− f (t)
g(t)g(y) ∈ k( f (t)

g(t))[y ] is the minimal polynomial of t

over k( f (t)
g(t)).]

This example generalizes the observation [k(x) : k(x3 − x)] = 3.



Equivalence of Divisors, I: Finally, Something Else

So, the main takeaway right now is that the divisor of an element
a ∈ k(C )× always has degree 0, which is to say, the principal
divisors are actually a subgroup of the group of degree-0 divisors.

Definition

On a curve C/k, we say two divisors D1 and D2 are
linearly equivalent (and write D1 ∼ D2) if D1 − D2 is principal.
The equivalence classes of divisors modulo principal divisors form a
group called the class group, or the Picard group, of C .

Exercise: Verify that this relation is an equivalence relation and
that the equivalence classes are the elements in the quotient group
of divisors modulo principal divisors.



Equivalence of Divisors, II

There are a bunch of different groups of divisors. Let me
summarize the notation for all of them:

Div(C ) = DC is the group of all divisors on C .

Div0(C ) is the group of degree-0 divisors on C .

The principal divisors have no special notation.

Cl(C ) = Pic(C ) = Div(C )/[principal divisors] is the Picard
group, or class group, of C .

In fact, because principal divisors all have degree 0, we can actually
take the quotient of degree-0 divisors by principal divisors:

Pic0(C ) = Div0(C )/[principal divisors] is the reduced Picard
group, or reduced class group, of C .
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Div0(C ) is the group of degree-0 divisors on C .

The principal divisors have no special notation.

Cl(C ) = Pic(C ) = Div(C )/[principal divisors] is the Picard
group, or class group, of C .

In fact, because principal divisors all have degree 0, we can actually
take the quotient of degree-0 divisors by principal divisors:

Pic0(C ) = Div0(C )/[principal divisors] is the reduced Picard
group, or reduced class group, of C .



Equivalence of Divisors, III

For P1, the reduced Picard group is trivial:

Proposition (Reduced Picard Group of P1)

If C = P1, then Pic0(C ) = Div0(C )/[principal divisors] is the
trivial group, and Pic(C ) ∼= Z.

Once we show that Pic0(C ) = 0, the statement that
Pic(C ) ∼= Z follows immediately from Div(C )/Div0(C ) ∼= Z.

Remark: It can be shown that the case C = P1 is essentially the
only situation where the reduced Picard group is trivial. So do not
be misled by the convenience of this particular result!



Equivalence of Divisors, IV

Proof:

The result is equivalent to showing that every divisor of
degree 0 is principal, so suppose D =

∑
P bPP has degree 0.

For P = [a : b] ∈ P1 let fP = (bX − aY )/Y , whose divisor is
div(fP) = P − P∞.

Now consider the rational function α =
∏

P f bP
P : by the

calculation above we have ordP(α) = bP for each point
P 6=∞.

But since
∑

P bP deg(P) = 0 by the assumption on D, and
deg(div(α)) = 0 as well, we must have ord∞(a) = b∞ also.

Then ordP(α) = bp for all P ∈ P1, so div(α) = D and so D
is principal as claimed.



Equivalence of Divisors, V

We have a fundamental analogy between divisors on curves and
ideals of algebraic number fields.

If K/Q is an algebraic number field, we have an exact
sequence
1→ [units of OK ]→ K ∗ → [fractional ideals of OK ]→
[ideal class group of K ]→ 1.

If C is an algebraic curve defined over k , the analogous exact
sequence is
1→ k∗ → k(C )∗ → Div0(C )→ Pic0(C )→ 1.

The constant field k plays the role of the units of an algebraic
number field, the group of degree-0 divisors plays the role of
the fractional ideals in the ring of integers, and the reduced
Picard group plays the role of the ideal class group.



Orderings of Divisors, I

We now put a partial ordering on divisors that is motivated by the
analogous idea of divisibility for integers and rational functions.

The underlying idea is that if we want to understand
divisibility for integers, we only need to compare the powers of
each prime dividing the two integers: equivalently, we
compare their p-adic valuations at each prime P.

The analogous idea for functions would be to compare their
order of vanishing at each point.

As a particular special case, we can identify the elements of Z
as those whose valuations are nonnegative at every finite
prime p.

The same principle holds for considering valuations of a
rational function at points on an algebraic curve C : we can
identify polynomial functions as those having no poles except
at the points at ∞.



Orderings of Divisors, II

Definition

If a divisor D =
∑

P nPP on a curve C/k has nP ≥ 0 at all points
P, we say D is effective and we write D ≥ 0. We extend this
notion to a partial ordering on divisors by writing D1 ≤ D2 if and
only if D2 − D1 is effective.

Exercise (easy): Check that the relation D1 ≤ D2 is a partial
ordering on divisors.

The partial ordering on divisors allows us to specify the order of
zeroes and poles.

To illustrate, for A1, saying that f has a pole of order at most
2 at x = 0 and a zero of order at least 3 at x = 1 is
equivalent to saying div(f ) ≥ 2P0 − 3P1.



Orderings of Divisors, II

Definition

If a divisor D =
∑

P nPP on a curve C/k has nP ≥ 0 at all points
P, we say D is effective and we write D ≥ 0. We extend this
notion to a partial ordering on divisors by writing D1 ≤ D2 if and
only if D2 − D1 is effective.

Exercise (easy): Check that the relation D1 ≤ D2 is a partial
ordering on divisors.

The partial ordering on divisors allows us to specify the order of
zeroes and poles.

To illustrate, for A1, saying that f has a pole of order at most
2 at x = 0 and a zero of order at least 3 at x = 1 is
equivalent to saying div(f ) ≥ 2P0 − 3P1.



Orderings of Divisors, III

Definition

If D is a divisor on a curve C/k, the Riemann-Roch space
associated to D is the set
L(D) = {α ∈ k(C )× : div(α) ≥ −D} ∪ {0}.

Equivalently, an element α ∈ k(C )× is in L(D) if and only if
vP(a) ≥ −vP(D) at all points P ∈ C .

When D is an effective divisor, L(D) represents all rational
functions whose poles are “no worse” than D.

More generally, if D =
∑

P nPP −
∑

Q mQQ with ni ,mi > 0,
then L(D) consists of all α ∈ k(C )× such that α has a zero of
order at least mQ at each point Q, and may have poles only
at the points P, of order at most nP at P.
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Definition

If D is a divisor on a curve C/k, the Riemann-Roch space
associated to D is the set
L(D) = {α ∈ k(C )× : div(α) ≥ −D} ∪ {0}.

Equivalently, an element α ∈ k(C )× is in L(D) if and only if
vP(a) ≥ −vP(D) at all points P ∈ C .

When D is an effective divisor, L(D) represents all rational
functions whose poles are “no worse” than D.

More generally, if D =
∑

P nPP −
∑

Q mQQ with ni ,mi > 0,
then L(D) consists of all α ∈ k(C )× such that α has a zero of
order at least mQ at each point Q, and may have poles only
at the points P, of order at most nP at P.



Orderings of Divisors, IV

It is not hard to see that L(D) is a k-vector space:

Explicitly, suppose α, β ∈ L(D).

Then α + β ∈ L(D) because
vP(α + β) ≥ min(vP(α), vP(β)) ≥ −vP(D) for each point P.

Likewise, for any c ∈ k , we see that cα ∈ L(D) because
vP(cα) = vP(c) + vP(α) = vP(α) ≥ −vP(D) since vP(c) = 0
at all points P.



Orderings of Divisors, V

Example: For C = A1, find L(P0).

The only possible poles of an element f /g ∈ L(P0) function
can occur at x = 0 (of order 1), so the denominator divides x .
So we can just assume g = x , if we don’t require the ratio in
lowest terms.

Also, because ordP∞(f /g) = deg g − deg f , we must have
1 = deg g ≥ deg f since there is no pole at ∞.

So the only possible f /g are of the form
ax + b

x
. Since all

such functions are in L(P0), we see that
L(P0) = span(1, x−1).



Orderings of Divisors, V

Example: For C = A1, find L(P0).

The only possible poles of an element f /g ∈ L(P0) function
can occur at x = 0 (of order 1), so the denominator divides x .
So we can just assume g = x , if we don’t require the ratio in
lowest terms.

Also, because ordP∞(f /g) = deg g − deg f , we must have
1 = deg g ≥ deg f since there is no pole at ∞.

So the only possible f /g are of the form
ax + b

x
. Since all

such functions are in L(P0), we see that
L(P0) = span(1, x−1).



Orderings of Divisors, VI

Example: For C = A1, find L(3P∞).

The only poles of an element f /g ∈ L(3P∞) are allowed to be
at ∞ of order at most 3, and so since there are no finite
poles, g cannot have any roots, so we can just take g = 1:
thus f /g is a polynomial.

Again because ordP∞(f /g) = deg g − deg f , we must have
deg f ≤ 3, so the only possible functions are polynomials of
degree at most 3.

Since all such functions are in L(3P∞), we see that
L(3P∞) = span(1, x , x2, x3).



Orderings of Divisors, VI

Example: For C = A1, find L(3P∞).

The only poles of an element f /g ∈ L(3P∞) are allowed to be
at ∞ of order at most 3, and so since there are no finite
poles, g cannot have any roots, so we can just take g = 1:
thus f /g is a polynomial.

Again because ordP∞(f /g) = deg g − deg f , we must have
deg f ≤ 3, so the only possible functions are polynomials of
degree at most 3.

Since all such functions are in L(3P∞), we see that
L(3P∞) = span(1, x , x2, x3).



Orderings of Divisors, VII

Example: For C = A1, find L(−P0).

Any nonzero element f /g ∈ L(−P0) would need to be zero at
x = 0 and defined at all other points.

In particular that means g would have to be constant
(otherwise as before any zeroes would yield poles of f /g) and
f would be divisible by x .

But then deg f > deg g and this would force f /g to have a
pole at P∞, which is not allowed.

So in fact, here L(−P0) = {0}.



Orderings of Divisors, VII

Example: For C = A1, find L(−P0).

Any nonzero element f /g ∈ L(−P0) would need to be zero at
x = 0 and defined at all other points.

In particular that means g would have to be constant
(otherwise as before any zeroes would yield poles of f /g) and
f would be divisible by x .

But then deg f > deg g and this would force f /g to have a
pole at P∞, which is not allowed.

So in fact, here L(−P0) = {0}.



Orderings of Divisors, VIII

Example: For arbitrary C/k, find L(0).

Since div(c) = 0 for all c ∈ k×, we see all the constants are
in L(0).

However, any nonconstant rational function x ∈ k(C )×\k
necessarily has at least one pole (its degree as a rational
function must be positive, and then any zero of the
denominator yields a pole – remember that we are working
projectively!).

Therefore the only elements of L(0) are the constants,
meaning L(0) = k .

Exercise: Determine L(D) when C = A1(C) for D = P0 − P∞,
P0 + P∞, and P0 + P1.



Orderings of Divisors, VIII

Example: For arbitrary C/k, find L(0).

Since div(c) = 0 for all c ∈ k×, we see all the constants are
in L(0).

However, any nonconstant rational function x ∈ k(C )×\k
necessarily has at least one pole (its degree as a rational
function must be positive, and then any zero of the
denominator yields a pole – remember that we are working
projectively!).

Therefore the only elements of L(0) are the constants,
meaning L(0) = k .

Exercise: Determine L(D) when C = A1(C) for D = P0 − P∞,
P0 + P∞, and P0 + P1.



Orderings of Divisors, VIII

Example: For arbitrary C/k, find L(0).

Since div(c) = 0 for all c ∈ k×, we see all the constants are
in L(0).

However, any nonconstant rational function x ∈ k(C )×\k
necessarily has at least one pole (its degree as a rational
function must be positive, and then any zero of the
denominator yields a pole – remember that we are working
projectively!).

Therefore the only elements of L(0) are the constants,
meaning L(0) = k .

Exercise: Determine L(D) when C = A1(C) for D = P0 − P∞,
P0 + P∞, and P0 + P1.



Orderings of Divisors, IX

We can also consider Riemann-Roch spaces over
non-algebraically-closed fields.

The only alteration to considering LE (D) for some subfield E
of its algebraic closure k is that
LE (D) = {α ∈ E (C )× : div(α) ≥ −D} ∪ {0} consists only of
the elements of the function field that are defined over E that
satisfy the required divisor inequality.



Orderings of Divisors, X

Examples: Consider C = A1 and D = P∞ − Pi .

Over the field R, we have LR(D) = {0}.
Why? Any such rational function f /g would necessarily be a
polynomial in R[x ] of degree at most 1 (since it could only
have a pole of order 1 at ∞).

It would also have to be zero at x = i , but any such
polynomial would also be zero at x = −i meaning that its
degree is at least 2: too big.

In contrast, over C, we see that LC(P∞ − Pi ) = span(i − x).

Note that the field of definition affects the dimension of the space
here: that is because the divisor P∞ − Pi is not defined over R.
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Examples: Consider C = A1 and D = P∞ − Pi .

Over the field R, we have LR(D) = {0}.
Why? Any such rational function f /g would necessarily be a
polynomial in R[x ] of degree at most 1 (since it could only
have a pole of order 1 at ∞).

It would also have to be zero at x = i , but any such
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Orderings of Divisors, XI

Examples: Consider C = A1 and D = 2P∞ − Pi − P−i .

Over the field R, we have LR(D) = span(1 + x2).

Why? As in the last example, any element would be a real
polynomial of degree at most 2 that is zero at both x = i and
x = −i , hence is a multiple of 1 + x2.

Over C the same logic applies to show that we see that
LC(2P∞ − Pi − P−i ) = span(1 + x2) as well.

Here, the field of definition does not affect the dimension of the
space because the divisor 2P∞ − Pi − P−i is defined over R.

Exercise: Suppose E is a subfield of k and D is a divisor of k that
is defined over E . Show that dimk [Lk(D)] = dimE [LE (D)]. [Hint:
Show that a basis for LE remains a basis over Lk .]
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LC(2P∞ − Pi − P−i ) = span(1 + x2) as well.

Here, the field of definition does not affect the dimension of the
space because the divisor 2P∞ − Pi − P−i is defined over R.

Exercise: Suppose E is a subfield of k and D is a divisor of k that
is defined over E . Show that dimk [Lk(D)] = dimE [LE (D)]. [Hint:
Show that a basis for LE remains a basis over Lk .]



Summary

We introduced divisors on curves and established some of their
basic properties.

We discussed principal divisors and effective divisors, and used
them to write down Riemann-Roch spaces L(D).

Next lecture: the Riemann-Roch theorem, elliptic curves via
Riemann-Roch.


