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Elliptic Curves via the Weierstrass ℘-Function

Elliptic Curves and Elliptic Functions



Recall the Weierstrass ℘-Function, I

So now let’s define some things:

Definition

Let ω1, ω2 are R-linearly independent complex numbers and
Λ = Zω1 + Zω2 be the associated complex lattice.

The Weierstrass ℘-function (with respect to Λ) is defined to be

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
.

The Eisenstein series of weight 2k (with respect to Λ) is

G2k(Λ) =
∑
ω∈Λ∗

1

ω2k
where the sums are over all nonzero ω ∈ Λ.

When Λ is clear from context, we will just write ℘(z) in place
of ℘(z ; Λ) and G2k in place of G2k(Λ).

We index as G2k because the G2k−1 are all zero.



Recall the Weierstrass ℘-Function, II

Theorem (Properties of ℘ and G2k , Part 1)

Let Λ be a complex lattice with

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
and G2k(Λ) =

∑
ω∈Λ∗

1

ω2k

1. The Eisenstein series G2k(Λ) is absolutely convergent for
k > 1 but not for k ≤ 1.

2. The series defining ℘(z) converges absolutely and uniformly
on compact subsets of C\Λ.

3. The ℘-function is meromorphic on C with a double pole with
residue 0 at each point of Λ (and no other poles).

4. The ℘-function is an even function: ℘(−z) = ℘(z).



Recall the Weierstrass ℘-Function, III

Theorem (Properties of ℘ and G2k , Part 2)

Let Λ be a complex lattice with

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
and G2k(Λ) =

∑
ω∈Λ∗

1

ω2k

5. The derivative ℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
is an odd function

with a triple pole at each point of Λ (and no other poles).

6. The ℘-function and its derivative are elliptic functions with
respect to Λ.

7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

8. The field of elliptic functions C(Λ) is equal to C(℘(z), ℘′(z)).



Elliptic Curves via ℘, I

The goal of this entire construction was to find the analogues of
the coordinate functions x and y on C/Λ.

Since ℘(z) has a double pole at 0 and ℘′(z) has a triple pole
at 0, these two functions are natural candidates for x and y ,
following the Riemann-Roch analogy (in which x was
constructed as an element of L(2P) not in L(P) and y was
constructed as an element of L(3P) not in L(2P)).

We therefore can hope that there exists a relation of the form
℘′(z)2 = ℘(z)3 + A℘(z) + B for some constants A and B
(which necessarily will depend on the lattice).



Elliptic Curves via ℘, II

Indeed, we know there must be some algebraic relation between
℘(z) and ℘′(z), because ℘′(z)2 is an even elliptic function, hence
by (7) in the proposition above it must be a rational function of
℘(z).

We can use (7) to compute the precise relation, which
requires only understanding the zeroes and poles of ℘′(z).
This will give us one form of the cubic expression we seek.

Alternatively, we could simply calculate the Laurent
expansions of each of the terms near z = 0 and compute an
appropriate linear combination that is holomorphic: then it
will be a holomorphic elliptic function hence constant. This
will give us a second form of the cubic expression.



Elliptic Curves via ℘, III

Theorem (Elliptic Curves and ℘-Functions)

Let Λ = Zω1 + Zω2 be a complex lattice with

℘(z) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
, G2k =

∑
ω∈Λ∗

1

ω2k
. Then:

1. The derivative ℘′(z) has three single zeroes, located at the
nonzero half-lattice points ω1/2, ω2/2, (ω1 + ω2)/2.

2. We have ℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) for
e1 = ℘(ω1/2), e2 = ℘(ω2/2), and e3 = ℘((ω1 + ω2)/2).

3. The Laurent series for ℘(z) around z = 0 is given by
℘(z) = z−2 +

∑∞
k=1(2k + 1)G2k+2z2k .

4. We have ℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

5. For g2 = 60G4 and g3 = 140G6, the polynomial
f (x) = 4x3 − g2x − g3 has distinct roots, so y 2 = f (x) is an
elliptic curve.



Elliptic Curves via ℘, IV

1. The derivative ℘′(z) has three single zeroes, located at the
nonzero half-lattice points ω1/2, ω2/2, (ω1 + ω2)/2.

Proof:

We have already shown that ℘′(z) has a triple pole at 0, and
so it must also have three zeroes.

From the fact that ℘′ is both elliptic and odd, we can see that
℘′(ω1/2) = ℘′(ω1/2− ω1) = ℘′(−ω1/2) = −℘′(ω1/2), and so
℘′(ω1/2) = 0.

Likewise we also have ℘′(ω2/2) = 0 and ℘′((ω1 + ω2)/2) = 0,
and so ℘′ has zeroes at the nonzero half-lattice points ω1/2,
ω2/2, (ω1 + ω2)/2. Since ℘′ only has three zeroes, these are
all of the zeroes.



Elliptic Curves via ℘, V

2. We have ℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) for
e1 = ℘(ω1/2), e2 = ℘(ω2/2), and e3 = ℘((ω1 + ω2)/2).

Proof:

Applying the proof of (7), for e1 = ℘(ω1/2), e2 = ℘(ω2/2),
and e3 = ℘((ω1 + ω2)/2), the function
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) has the same zeroes and
same zero multiplicities as ℘′(z)2, and both functions also
have a pole of order 6 at 0, so they are equal up to a scalar.

To find this constant factor observe ℘(z) = z−2 + O(z−1)
while ℘′(z) = −2z−3 + O(z−2) near z = 0, so
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) = z−6 + O(z−5) while
℘′(z)2 = 4z−6 + O(z−5).

Hence the constant factor is the ratio of the coefficients,
which is 4.



Elliptic Curves via ℘, VI

3. The Laurent series for ℘(z) around z = 0 is given by
℘(z) = z−2 +

∑∞
k=1(2k + 1)G2k+2z2k .

Proof:

For z closer to 0 than the nearest nonzero ω ∈ Λ∗, we have

℘(z)− z−2 =
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
=

∑
ω∈Λ∗

[
1

ω2
· 1

(1− z/ω)2
− 1

ω2

]

=
∑
ω∈Λ∗

[ ∞∑
n=1

(n + 1)
zn

ωn+2

]

=
∞∑
n=1

(n + 1)zn
∑
ω∈Λ∗

[
1

ωn+2

]
=
∞∑
n=1

(n + 1)Gn+2zn

where we switched the order using absolute convergence.



Elliptic Curves via ℘, VII

4. We have ℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

Proof:

Using ℘(z) = z−2 +
∑∞

k=1(2k + 1)G2k+2z2k we see that

℘(z) = z−2 + 3G4z2 + 5G6z4 + · · ·
℘(z)2 = z−4 + 6G4 + 10G6z2 + · · ·
℘(z)3 = z−6 + 9G4z−2 + 15G6 + · · ·
℘′(z) = −2z−3 + 6G4z + 20G6z3 + · · ·
℘′(z)2 = 4z−6 − 24G4z−2 − 40G6 + · · ·

and so ℘′(z)2 − 4℘(z)3 − 60G4℘(z) = 140G6 + · · · .
Hence the difference is a holomorphic elliptic function hence
constant hence equal to 140G6, its value at 0.



Elliptic Curves via ℘, VIII

5. For g2 = 60G4 and g3 = 140G6, the polynomial
f (x) = 4x3 − g2x − g3 has distinct roots, so y 2 = f (x) is an
elliptic curve.

Proof:

From (2) the roots of f (x) are the values e1 = ℘(ω1/2),
e2 = ℘(ω2/2), and e3 = ℘((ω1 + ω2)/2), so we need only see
they are distinct.

For this we observe that ℘(z)− ℘(ωi/2) is even hence has a
double zero at ωi , but since its total pole order is 2, we see it
only vanishes at ωi . In particular, it does not vanish at the
other two half-lattice points, and so e1, e2, e3 are distinct.



Elliptic Curves via ℘, X

The proposition above establishes an explicit correspondence
between complex tori C/Λ and complex elliptic curves E , via the
Weierstrass ℘-function and its derivative. In fact, this
correspondence is natural, in both the category of Riemann
surfaces and in the category of groups.

Theorem (Elliptic Curves and ℘-Functions)

Let Λ be a complex lattice with g2 = 60G4 and g3 = 140G6 and let
E be the elliptic curve y 2 = 4x3 − g2x − g3. Define the map
Φ : C/Λ→ E (C) via Φ(z) = (℘(z), ℘′(z)), with Φ(0) =∞.

1. The map Φ is a bijection.

2. The map Φ is a globally analytic isomorphism of Riemann
surfaces.

3. The map Φ is a group isomorphism.



Elliptic Curves via ℘, XI

1. The map Φ(z) = (℘(z), ℘′(z)) is a bijection from
C/Λ→ E (C).

Proof (surjection):

Since ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3, the image of Φ is a
subset of E (C).

To show Φ is onto, choose a finite point (x , y) ∈ E (C): then
℘(z)− x is a nonconstant elliptic function hence has a zero,
say at z = a.

Then ℘′(a)2 = 4a3 − g2a− g3 = y 2 so (swapping a for −a if
needed) we have ℘′(a) = y : then Φ(a) = (x , y).



Elliptic Curves via ℘, XI

1. The map Φ(z) = (℘(z), ℘′(z)) is a bijection from
C/Λ→ E (C).

Proof (injection):

To show Φ is one-to-one, if Φ(z1) = Φ(z2) then ℘(z)− ℘(z1)
is an elliptic function vanishing at z1, −z1, and z2. Since it
only has order 2, two of these points must be equivalent
modulo Λ.

If 2z1 6∈ Λ then we see z2 ≡ ±z1 (mod Λ), in which case
℘′(z1) = ℘′(z2) = ℘′(±z1) = ±℘′(z1) so we must have the
plus sign, and so z2 = z1 in C/Λ.

If 2z1 ∈ Λ then as noted in (5), ℘(z)− ℘(z1) has a double
zero at z1, so since it vanishes also at z2, we again have
z2 = z1 in C/Λ.



Elliptic Curves via ℘, XI

2. The map Φ(z) = (℘(z), ℘′(z)) is a globally analytic
isomorphism of Riemann surfaces C/Λ→ E (C).

Proof:

To show Φ is an analytic isomorphism, observe that

Φ∗(
dx

y
) =

d℘(z)

℘′(z)
=
℘′(z) dz

℘′(z)
= dz , so Φ∗ maps the invariant

differential of E (C) to the invariant differential dz of C/Λ.

This means Φ is locally an analytic isomorphism, and since Φ
is a bijection from (1), it is a global isomorphism.



Elliptic Curves via ℘, XI

3. The map Φ(z) = (℘(z), ℘′(z)) is a group isomorphism from
C/Λ→ E (C).

Proof (part 1):

By (1) we need only show that Φ is a homomorphism. Let
z1, z2 ∈ C: per the geometric group law, this requires showing
that Φ(z1), Φ(z2), Φ(−z1 − z2) are the three intersection
points of a line with E .

If z1 = 0 or z2 = 0 then the result follows by noting
Φ(−z) = (℘(−z), ℘′(−z)) = (℘(z),−℘′(z)) = −Φ(z), and
the case z1 = −z2 follows in the same way.



Elliptic Curves via ℘, XI

3. The map Φ(z) = (℘(z), ℘′(z)) is a group isomorphism from
C/Λ→ E (C).

Proof (part 2):

Otherwise, if the line through Φ(z1) and Φ(z2) is y = mx + b
then the elliptic function ℘′(z)−m℘(z)− b has a triple pole
at 0 hence has exactly three zeroes, two of which are z1 and
z2. (If z1 = z2 this argument is still valid, as long as we use
the tangent line and count with multiplicity.)

But by property (5) of elliptic functions, summing the
coordinates of all zeroes and poles yields an element of Λ:
hence the remaining zero must be −z1 − z2 modulo Λ, so the
third point is indeed Φ(−z1 − z2) as required.



So What Was The Point Of This?, I

The point of all of this discussion is that we now have an explicit
parametrization of the points on the elliptic curve E/C having
Weierstrass equation y 2 = 4x3 − g2x − g3, namely as
(x , y) = (℘(z), ℘′(z)) for z ∈ C/Λ.

Indeed, this was Weierstrass’ initial motivation for
constructing ℘(z) in the first place: to give a parametrization
of the points on an elliptic curve.

This is essentially the nicest possible form of a
parametrization for the points on E/C, since the parameter
functions are meromorphic.

Really, the only thing nicer would be if they were actually
rational functions, but a rational parametrization would give
an isomorphism with P1(C) hence is only possible in genus 0.



So What Was The Point Of This?, II

Indeed, this development nicely parallels the genus-0 case for the
circle x2 + y 2 = 1, which has a parametrization x = cos z ,
y = sin z for x ∈ C/2πiZ.

In the genus-0 case, the parameter functions are also obtained
by inverting the integrals of the differential ω = dx/y : here∫
C dx/y =

∫
C

dx√
1−x2

is the well-understood inverse sine

integral that can be made well-defined using a branch cut
from -1 to 1. (Then, up to sign, the other parameter function
is obtained as the derivative of the first.)

In our genus-1 case, the parameter function ℘ (up to a minus
sign) is obtained instead by inverting the elliptic integral∫
C dx/y =

∫
C

dx√
4x3−g2x−g3

.



Let’s Do Isogenies!, I

Our next task is to bring isogenies into the discussion.

We have a very robust correspondence between C modulo
lattices and elliptic curves over C, so we should expect that
the natural morphisms in the category of elliptic curves
(namely, isogenies) should have an equally natural counterpart
for lattices.

Since the correspondence respects the group structures, we
are seeking an analytic mapping that sends lattices to other
lattices.

The only obvious analytic maps with this property are linear
transformations (as any nonlinear function will distort the
lattice structure), and since they must be analytic and preserve
0, they could only be scalings ϕα(z) = αz for some α ∈ C.

We now show that indeed, complex scalings on lattices
correspond to isogenies of elliptic curves.


