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Elliptic Functions, I

Definition

Let Λ = Zω1 + Zω2 be a lattice in C. An elliptic function relative
to Λ is a meromorphic function on C that satisfies f (z + ω) = f (z)
for all ω ∈ Λ and z ∈ C.

The set of all elliptic functions relative to Λ is denoted C(Λ).

When the lattice Λ is clear from context, or not relevant, we will
simply say “elliptic function” without explicitly saying “relative to
Λ”.

Elliptic functions are also commonly called
doubly-periodic functions since the general condition above is
equivalent to f (z + ω1) = f (z + ω2) = f (z): in other words,
saying that f has two different periods ω1 and ω2.



Elliptic Functions, II

Obviously, constant functions are elliptic functions. Traditionally at
this point I would now give some examples. But...

Keep in mind the general principle that elliptic functions will
correspond to rational functions on the associated elliptic
curve E .

So we should expect it to be somewhat challenging to
construct elliptic functions, since most functions on E will not
be rational.

We will therefore study general properties of elliptic functions
first, and then use the results to give constructions of elliptic
functions.



Elliptic Functions, III

As with any meromorphic function, we have notions of the order of
vanishing, zeroes, poles, and residues of an elliptic function.

Explicitly, if f is a nonzero elliptic function on C, then for any
z0 ∈ C we have a local Laurent expansion
f (z) =

∑∞
n=k an(z − z0)n at z0, where we assume the leading

coefficient ak 6= 0.

Note that when k ≥ 0 this is a familiar power series, while
when k < 0 this is a Laurent series.

For this expansion, the order of vanishing of f at z0, denoted
ordz0(f ), is the value k.

We say that f has a pole of order |k | at z0 when k < 0 and a
zero of order k at z0 when k > 0.

The residue of f at z0, denoted resz0(f ), is the coefficient
a−1. Note that the residue can be nonzero only when f has a
pole at z0.



Elliptic Functions, IV

Let us now collect some basic facts about elliptic functions:

Proposition (Properties of Elliptic Functions)

Let Λ = Zω1 + Zω2 be a lattice in C, let C(Λ) denote the field of
elliptic functions with respect to Λ, and let D be a fundamental
region for C/Λ (e.g., the parallelogram with vertices 0, ω1, ω2,
ω1 + ω2 or some C-translate of it). Then the following hold:

1. A nonzero elliptic function f ∈ C(Λ) has finitely many zeroes
and poles inside of D.

2. An elliptic function with no zeroes, or no poles, is constant.

3. For any f ∈ C(Λ), we have
∑

w∈C/Λ resw (f ) = 0.

4. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f ) = 0.

5. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f )w ∈ Λ.

6. An elliptic function with at most one pole, with pole order at
most 1 there, is constant.



Elliptic Functions, V

Note to self: get up and write the results on the board.



Elliptic Functions, VI

1. A nonzero elliptic function f ∈ C(Λ) has finitely many zeroes
and poles inside of D.

Proof:

Since the fundamental parallelogram D is compact, if f had
infinitely many poles they would have an accumulation point,
but poles of a meromorphic function are discrete. Hence f has
only finitely many poles.

Applying the argument to 1/f shows that f also has finitely
many zeroes, so f has finitely many zeroes and poles.

This is the analogue of the statement that a nonzero rational
function in k(C ) has only finitely many zeroes and poles.
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Elliptic Functions, VII

2. An elliptic function with no zeroes, or no poles, is constant.

Proof:

If f has no poles then f is holomorphic on all of C (i.e., f is
an entire function).

Since C/Λ is compact and f is continuous, f is bounded on
D, hence on all of C because f is doubly periodic. But then f
is an entire function that is bounded, so by Liouville’s
theorem, f is constant.

If f has no zeroes, then applying the same argument to 1/f
shows that 1/f hence f is constant.

This is the analogue of the statement that a rational function in
k(C ) with no zeroes or no poles is constant.



Elliptic Functions, VII
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Elliptic Functions, VIII

3. For any f ∈ C(Λ), we have
∑

w∈C/Λ resw (f ) = 0.

Proof:

Choose any fundamental region D whose boundary contains
no zeroes or poles of f : this is possible since there are only
finitely many zeroes and poles by (1), but there are
uncountably many inequivalent translations to select for D.

Consider the integral
∫
∂D f (z) dz : since f takes the same

values on parallel edges of ∂D, the contributions to the
integral on opposite sides cancel since they have opposite
orientations, so the integral is zero.

Then Cauchy’s residue theorem immediately yields∑
w∈C/Λ resw (f ) =

1

2πi

∫
∂D f (z) dz = 0.



Elliptic Functions, VIII
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Elliptic Functions, IX

4. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f ) = 0.

Proof:

As in (3), choose any fundamental region D whose boundary
contains no zeroes or poles of f .

Since f is elliptic so is its derivative f ′ hence so is f ′/f .

If the Laurent series for f at w is ak(z − w)k + · · · , then the
Laurent series for f ′ is kak(z − w)k−1 + · · · and so the
Laurent series for the ratio f ′/f is k(z − w)−1 + · · · , and so
resw (f ′/f ) = k = ordw (f ).

Cauchy’s residue theorem yields
∑

w∈C/Λ ordw (f ) =∑
w∈C/Λ resw (f ′/f ) =

1

2πi

∫
∂D

f ′(z)

f (z)
dz = 0 since the integral

is zero as in (3).

This is the analogue of deg(div f ) = 0.
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Elliptic Functions, X

5. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f )w ∈ Λ.

Discussion:

Note that choosing a different fundamental region D will
potentially shift points w in the sum by an element of Λ, so
unlike the sums in (3) and (4) which are independent of the
choice of D, this sum is only well-defined modulo Λ.

This is the analogue of the statement that a divisor on E is
principal iff the underlying sum of points resolves to O.

Proof:

As in (4), we choose a fundamental region D whose boundary
contains no zeroes or poles of f : say with vertices a, a + ω1,
a + ω1 + ω2, a + ω2 in counterclockwise order.

By Cauchy’s residue theorem we have
∑

w∈C/Λ ordw (f )w =∑
w∈C/Λ resw (zf ′/f ) =

1

2πi

∫
∂D z

f ′(z)

f (z)
dz .
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Elliptic Functions, XI

5. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f )w ∈ Λ.

Proof (continued):

Decomposing the integral into components along the four
sides of D, and then applying ellipticity of f ′/f yields∫

∂D
z

f ′(z)

f (z)
dz =

[∫ a+ω1

a
+

∫ a+ω1+ω2

a+ω1

+

∫ a+ω2

a+ω1+ω2

+

∫ a

a+ω2

]
z

f ′(z)

f (z)
dz

=

∫ a+ω1

a
z

f ′(z)

f (z)
dz +

∫ a+ω2

a
(z + ω1)

f ′(z)

f (z)
dz

−
∫ a+ω1

a
(z + ω2)

f ′(z)

f (z)
dz −

∫ a+ω2

a
z

f ′(z)

f (z)
dz

= −ω2

∫ a+ω1

a

f ′(z)

f (z)
dz + ω1

∫ a+ω2

a

f ′(z)

f (z)
dz



Elliptic Functions, XI

5. For any f ∈ C(Λ), we have
∑

w∈C/Λ ordw (f )w ∈ Λ.

Proof (finished):

So
∫
∂D z

f ′(z)

f (z)
dz = −ω2

∫ a+ω1

a

f ′(z)

f (z)
dz + ω1

∫ a+ω2

a

f ′(z)

f (z)
dz

But now since f ′/f is elliptic, we have

(f ′/f )(a) = (f ′/f )(a + ω1), so
∫ a+ωj

a

f ′(z)

f (z)
dz equals 2πi

times the winding number Wγj (0) around 0 of the curve
γj : [0, 1]→ C with γ(t) = f (a + tωj).

Hence we obtain
∑

w∈C/Λ ordw (f )w =
1

2πi

∫
∂D z

f ′(z)

f (z)
dz =

−ω2Wγ1(0) + ω1Wγ2(0), which is an element of Λ because
the winding numbers are both integers.



Elliptic Functions, XI

6. An elliptic function with at most one pole, with pole order at
most 1 there, is constant.

Proof:

Suppose f were elliptic and had a single simple pole.

Then by (3), since the sum of the residues of f is 0, the
residue at that pole would be zero, but then f would be
holomorphic hence constant by (2).



Constructing Elliptic Functions, I

So far we have established some properties of elliptic functions
without actually describing any such functions aside from
constants. Let us use these properties to (try to) give a
construction of an elliptic function.

From (2) we know that any nonconstant elliptic function must
have at least one pole, and from (6) we see that the total pole
order must be at least 2.

Taking motivation from the x-coordinate function on an
elliptic curve (which has one pole, of order 2, at ∞), let us try
to construct an elliptic function f (z) with a double pole.

By translation we may place this pole anywhere, so let us put
it at 0.



Constructing Elliptic Functions, II

We have a double pole at 0.

Then the Laurent expansion of f (z) at z = 0 is
c−2z−2 + O(z−1) for some c 6= 0, and so by rescaling we may
assume c−2 = 1.

Now, by (3), since f has only one pole (up to periodicity), the
residue at that pole must be zero, so the z−1 coefficient in
the Laurent expansion at z = 0 must be zero.

So in fact, the Laurent expansion for f (z) is of the form
f (z) = z−2 + c0 + c1z + c2z2 + · · · for some power series
c0 + c1z + c2z2 + · · · that is necessarily holomorphic in a
neighborhood of 0.

In other words, f (z)− z−2 is holomorphic near 0.



Constructing Elliptic Functions, III

So: our function f (z)− z−2 is holomorphic near 0.

But f (z) is also supposed to be an elliptic function, so f (z)
also has a double pole at each point ω of the lattice Λ.

So by the same exact argument, f (z)− (z − ω)−2 will be
holomorphic near an arbitrary ω ∈ Λ.

So now, we ask: what happens if we subtract all of these
“pole contributions” (z − ω)−2 for all ω ∈ Λ from f (z)?

The resulting function would then have no poles at all, hence
be entire, hence (under the assumption it is elliptic) constant.

By shifting so that this constant is zero, we would obtain a
formula for f (z): namely, f (z) =

∑
ω∈Λ(z − ω)−2.
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Constructing Elliptic Functions, IV

Okay, so now we’ve constructed an elliptic function:
f (z) =

∑
ω∈Λ(z − ω)−2.... right?

Well... no, not so much.

Unfortunately, there’s a critical problem: the series∑
ω∈Λ(z − ω)−2 does not converge absolutely!

This is bad, because if we take a non-absolutely-convergent
series, we cannot manipulate it in the ways we’d like.
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Constructing Elliptic Functions, V

Exercise: Let ω = aω1 + bω2. Show that |ω|2 = xa2 + yab + zb2 is
a positive-definite quadratic form in (a, b), where x = |ω1|2,
y = 2Re(ω1ω2), z = |ω2|2.

Exercise: Show that if Q(a, b) is a positive-definite real quadratic

form, then
∑

(0,0)6=(a,b)∈Z×Z
1

Q(a, b)k
diverges for k ≤ 1 and

converges absolutely for k > 1. [Hint: Compare to the
corresponding integral, diagonalize the quadratic form, and use
polar coordinates.]

Exercise: Let Λ = Zω1 + Zω2 be a lattice. Show that∑
06=ω∈Λ |ω|

−k diverges for k ≤ 2 and converges absolutely for
k > 2.
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Constructing Elliptic Functions, VI

Let
∑

ω∈Λ∗ denote a sum over nonzero elements in Λ, for z
bounded (e.g., in a fundamental region).

Then the absolute value series is∑
ω∈Λ |z − ω|

−2 =
1

z2
+
∑

ω∈Λ∗

∣∣∣∣ 1

ω2
+

2z

ω3
+

3z2

ω4
+ · · ·

∣∣∣∣ =∑
ω∈Λ∗

∣∣ω−2 + O(ω−3)
∣∣ is on the order of

∑
ω∈Λ∗ |ω|

−2 which
diverges by the exercises on the last slide.

Notice, however, that this series just barely fails to converge:
indeed, if we could get rid of the ω−2 term, then the
remaining series would be∑

ω∈Λ∗

∣∣∣∣2z

ω3
+

3z2

ω4
+ · · ·

∣∣∣∣ = 2|z |
∑

ω∈Λ∗(|ω|
−3 + O(|ω|−4),

which does converge absolutely.
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How Do We Solve A Problem Like ω−2?

So how can we remove that ω−2 term?

Dumb idea: just subtract ω−2 from each term of the series
where ω 6= 0.

In other words, use instead

f (z) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
.

In fact, this is actually a rather good idea, because by the
calculations we just did this series does converge absolutely
and uniformly on compact subsets of C to a meromorphic
function having a double pole at each element of Λ.

But now it’s not so clear that this is actually an elliptic
function, because when we shift the series by ω ∈ Λ, its value
is not obviously the same anymore.



The Weierstrass ℘-Function, I

So now let’s define some things:

Definition

Let ω1, ω2 are R-linearly independent complex numbers and
Λ = Zω1 + Zω2 be the associated complex lattice.

The Weierstrass ℘-function (with respect to Λ) is defined to be

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
.

The Eisenstein series of weight 2k (with respect to Λ) is

G2k(Λ) =
∑
ω∈Λ∗

1

ω2k
where the sums are over all nonzero ω ∈ Λ.

When Λ is clear from context, we will just write ℘(z) in place
of ℘(z ; Λ) and G2k in place of G2k(Λ).

We index as G2k because the G2k−1 are all zero.



The Weierstrass ℘-Function, II

Theorem (Properties of ℘ and G2k , Part 1)

Let Λ be a complex lattice with

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
and G2k(Λ) =

∑
ω∈Λ∗

1

ω2k

1. The Eisenstein series G2k(Λ) is absolutely convergent for
k > 1 but not for k ≤ 1.

2. The series defining ℘(z) converges absolutely and uniformly
on compact subsets of C\Λ.

3. The ℘-function is meromorphic on C with a double pole with
residue 0 at each point of Λ (and no other poles).

4. The ℘-function is an even function: ℘(−z) = ℘(z).



The Weierstrass ℘-Function, III

1. The Eisenstein series G2k(Λ) =
∑
ω∈Λ∗

1

ω2k
is absolutely

convergent for k > 1 but not for k ≤ 1.

Proof:

By standard geometric results about lattices, if the
fundamental parallelogram for Λ has area ∆, then the number

of ω ∈ Λ with |ω| ≤ R is
π

∆
R2 + O(R) as R →∞.

Then for arbitrary R and sufficiently large d , the number nR

of ω ∈ Λ with R ≤ |ω| < R + d is Θ(R).

Hence by grouping ω together into the annuli
R ≤ |ω| < R + d , by the comparison test we see that∑

ω∈Λ∗ |ω|−2k has the same behavior as the series∑∞
R=1

#{ω ∈ Λ : Rd ≤ |ω| < Rd + d}
(Rd)k

∼
∑∞

R=1

R

R2k
which

as a p-series is convergent for k > 1 and divergent for k ≤ 1.
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The Weierstrass ℘-Function, IV

2. The series ℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
converges

absolutely and uniformly on compact subsets of C\Λ.

Proof:

For |ω| > 2 |z |, we have∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =
|z | |2ω − z |
|ω|2 |ω − z |2

≤ 10 |z |
|ω|3

.

Hence the tail of the series
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
with

|ω| > 2 |z | is bounded in absolute value by
∑

ω∈Λ∗
10 |z |
|ω|3

which converges absolutely by (a).

Hence by the Weierstrass M-test, the series defining ℘(z)
converges absolutely and uniformly on compact subsets of
C\Λ.



The Weierstrass ℘-Function, IV

2. The series ℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
converges

absolutely and uniformly on compact subsets of C\Λ.

Proof:

For |ω| > 2 |z |, we have∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =
|z | |2ω − z |
|ω|2 |ω − z |2

≤ 10 |z |
|ω|3

.

Hence the tail of the series
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
with

|ω| > 2 |z | is bounded in absolute value by
∑

ω∈Λ∗
10 |z |
|ω|3

which converges absolutely by (a).

Hence by the Weierstrass M-test, the series defining ℘(z)
converges absolutely and uniformly on compact subsets of
C\Λ.



The Weierstrass ℘-Function, V

3. The ℘-function is meromorphic on C with a double pole with
residue 0 at each point of Λ (and no other poles).

Proof:

For ω ∈ Λ the local expansion of ℘(z) at ω is
(z − ω)2 + O((z − ω)0) so there is a double pole with residue
0 at Λ.

Since the series for ℘ is absolutely convergent on C\Λ by (2),
℘ has no other poles.
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3. The ℘-function is meromorphic on C with a double pole with
residue 0 at each point of Λ (and no other poles).

Proof:

For ω ∈ Λ the local expansion of ℘(z) at ω is
(z − ω)2 + O((z − ω)0) so there is a double pole with residue
0 at Λ.

Since the series for ℘ is absolutely convergent on C\Λ by (2),
℘ has no other poles.



The Weierstrass ℘-Function, VI

4. The ℘-function is an even function: ℘(−z) = ℘(z).

Proof:

We have ℘(−z)

=
1

(−z)2
+
∑
ω∈Λ∗

[
1

(−z − ω)2
− 1

ω2

]
=

1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
= ℘(z)
by substituting ω 7→ −ω in the sum.



The Weierstrass ℘-Function, VI

4. The ℘-function is an even function: ℘(−z) = ℘(z).

Proof:

We have ℘(−z)

=
1

(−z)2
+
∑
ω∈Λ∗

[
1

(−z − ω)2
− 1

ω2

]
=

1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
= ℘(z)
by substituting ω 7→ −ω in the sum.



The Weierstrass ℘-Function, VII

Theorem (Properties of ℘ and G2k , Part 2)

Let Λ be a complex lattice with

℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
and G2k(Λ) =

∑
ω∈Λ∗

1

ω2k

5. The derivative ℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
is an odd function

with a triple pole at each point of Λ (and no other poles).

6. The ℘-function and its derivative are elliptic functions with
respect to Λ.

7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

8. The field of elliptic functions C(Λ) is equal to C(℘(z), ℘′(z)).



The Weierstrass ℘-Function, VI

5. The derivative ℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
is an odd function

with a triple pole at each point of Λ (and no other poles).

Proof:

Since the series for ℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
converges uniformly on compact subsets of C\Λ its derivative
is obtained by differentiating the series term by term,
immediately yielding the given sum.

Then ℘′ is odd since derivatives of even functions are odd,
and ℘′ has a triple pole at each point of Λ since differentiating
a pole creates a pole of one higher order but does not
otherwise create new poles.



The Weierstrass ℘-Function, VI

5. The derivative ℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
is an odd function

with a triple pole at each point of Λ (and no other poles).

Proof:

Since the series for ℘(z ; Λ) =
1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

ω2

]
converges uniformly on compact subsets of C\Λ its derivative
is obtained by differentiating the series term by term,
immediately yielding the given sum.

Then ℘′ is odd since derivatives of even functions are odd,
and ℘′ has a triple pole at each point of Λ since differentiating
a pole creates a pole of one higher order but does not
otherwise create new poles.



The Weierstrass ℘-Function, V

6. The ℘-function and its derivative are elliptic functions with
respect to Λ.

Proof:

First, ℘′(z) is elliptic since the series expression in (5) is
clearly invariant under translation by elements of Λ.

For ℘(z), taking the antiderivative of ℘′(z + ω) = ℘′(z) yields
℘(z + ω) = ℘(z) + Cω for some constant Cω depending only
on ω and not on z .

Setting z = −ω/2 and using evenness of ℘ immediately yields
Cω = 0, and so ℘ is also elliptic.



The Weierstrass ℘-Function, V

6. The ℘-function and its derivative are elliptic functions with
respect to Λ.

Proof:

First, ℘′(z) is elliptic since the series expression in (5) is
clearly invariant under translation by elements of Λ.

For ℘(z), taking the antiderivative of ℘′(z + ω) = ℘′(z) yields
℘(z + ω) = ℘(z) + Cω for some constant Cω depending only
on ω and not on z .

Setting z = −ω/2 and using evenness of ℘ immediately yields
Cω = 0, and so ℘ is also elliptic.



The Weierstrass ℘-Function, IV

7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

Discussion:

Suppose that f is an even elliptic function, with
f (−z) = f (z) = f (z + ω) for all ω ∈ Λ.

Our goal is to construct an elliptic function having the same
zeroes and poles as f using only expressions of the form
℘(z)− c for constants c : then the ratio of f to this function
is elliptic and has no zeroes nor poles hence is constant.

Let D be a fundamental parallelogram for Λ and let H be a
fundamental domain for (C/Λ)/{±1} (i.e., half of the
fundamental parallelogram, consisting of a unique
representative chosen among the two points {ζ, ω1 + ω2 − ζ}
for each ζ ∈ D).
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7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

Discussion:

Suppose that f is an even elliptic function, with
f (−z) = f (z) = f (z + ω) for all ω ∈ Λ.

Our goal is to construct an elliptic function having the same
zeroes and poles as f using only expressions of the form
℘(z)− c for constants c : then the ratio of f to this function
is elliptic and has no zeroes nor poles hence is constant.

Let D be a fundamental parallelogram for Λ and let H be a
fundamental domain for (C/Λ)/{±1} (i.e., half of the
fundamental parallelogram, consisting of a unique
representative chosen among the two points {ζ, ω1 + ω2 − ζ}
for each ζ ∈ D).



The Weierstrass ℘-Function, IV

7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

Proof (part 1):

Now, since f is even, for each ζ ∈ D we have
ordζ(f ) = ordω1+ω2−ζ(f ), and also for the half-lattice points
ζ with 2ζ ∈ Λ, we see that ordζ(f ) is even because
f (i)(z) = (−1)i−1f (i)(−z) hence f (i)(ζ) = 0 since ζ ≡ −ζ
mod Λ.

Now list all of the zeroes {a1, . . . , ak} and poles {b1, . . . , bk}
of f inside H, including appropriate multiplicities, where we
list any zero or pole ζ with 2ζ ∈ Λ with half multiplicity.

We claim that the function g(z) =
∏k

i=1

℘(z)− ℘(ai )

℘(z)− ℘(bi )
has

the same zero and pole orders as f .



The Weierstrass ℘-Function, III

7. The field of even elliptic functions C(Λ) is equal to C(℘(z)).

Proof (part 2):

We claim that the function g(z) =
∏k

i=1

℘(z)− ℘(ai )

℘(z)− ℘(bi )
has

the same zero and pole orders as f .

To see this, observe that ℘(z)− ℘(ai ) has a zero at ai and a
zero at −ai (if ai = −ai this is a double zero) and a double
pole at 0.

Hence by construction, g(z) has the same zero and pole order
as f does at all points except possibly at 0.

But because f and g are both elliptic, the sum of both of
their orders over all points is 0, and so they must have the
same order at 0 as well. Hence the ratio f (z)/g(z) is elliptic
with no zeroes or poles, so it is constant. We conclude that
f (z) ∈ C(℘(z)) as claimed.



The Weierstrass ℘-Function, II

7. The field of elliptic functions C(Λ) is equal to C(℘(z), ℘′(z)).

Proof:

If f (z) is elliptic, then both of the functions
f (z) + f (−z)

2

and
f (z)− f (−z)

2℘′(z)
are even and elliptic, hence by (7) they are

both rational functions of ℘(z).

Then if g(℘(z)) =
f (z) + f (−z)

2
, h(℘(z)) =

f (z)− f (−z)

2℘′(z)
,

we have f (z) = g(℘(z)) + ℘′(z) · h(℘(z)) ∈ C(℘(z), ℘′(z)) .

In fact, this shows every elliptic function is a rational function in
℘(z) plus ℘′(z) times another rational function in ℘(z).
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Proof:

If f (z) is elliptic, then both of the functions
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2
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2
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,
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In fact, this shows every elliptic function is a rational function in
℘(z) plus ℘′(z) times another rational function in ℘(z).



The Weierstrass ℘-Function, I

The goal of this entire construction was to find the analogues of
the coordinate functions x and y on C/Λ.

Since ℘(z) has a double pole at 0 and ℘′(z) has a triple pole
at 0, these two functions are natural candidates for x and y ,
following the Riemann-Roch analogy (in which x was
constructed as an element of L(2P) not in L(P) and y was
constructed as an element of L(3P) not in L(2P)).

We therefore can hope that there exists a relation of the form
℘′(z)2 = ℘(z)3 + A℘(z) + B for some constants A and B
(which necessarily will depend on the lattice).



The Weierstrass ℘-Function, 0

Indeed, we know there must be some algebraic relation between
℘(z) and ℘′(z), because ℘′(z)2 is an even elliptic function, hence
by (7) in the proposition above it must be a rational function of
℘(z).

We can use (7) to compute the precise relation, which
requires only understanding the zeroes and poles of ℘′(z).
This will give us one form of the cubic expression we seek.

Alternatively, we could simply calculate the Laurent
expansions of each of the terms near z = 0 and compute an
appropriate linear combination that is holomorphic: then it
will be a holomorphic elliptic function hence constant. This
will give us a second form of the cubic expression.


