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The Weil Pairing and the Weil Conjectures (Again)

The Weil Pairing

Properties of the Weil Pairing

Proof of the Weil Conjectures for Elliptic Curves



Recall

Recall the Tate module:

Definition

Let E be an elliptic curve and l be a prime. The l-adic Tate
module of E is the Zl -module Tl(E ) = lim←−dE [ld ].

The elements of the Tate module consist of sequences of points
(P1,P2,P3,P4, . . . ) such that lPd+1 = Pd for each d ≥ 0, where
we think of P0 = O.

When l 6= char(k), when we apply the inverse limit
construction starting with generators P and Q of E [l ], we
obtain topological generators for Tl(E ) yielding a group
isomorphism Tl(E ) ∼= Zl × Zl .
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Motivation for the Weil Pairing, I

The remaining ingredient for our plan in proving the Weil
conjectures is to find an analogue of an inner product structure
associated to the action of the Galois group on Aut[Tl(E )].

As with our construction of the Tate module, we will do this
by constructing a pairing on the components E [ld ] used in the
inverse limit construction of Tl(E ).

Indeed, for no additional cost, we can construct the pairing on
E [m].

Fix a positive integer m ≥ 2 not divisible by p = char(k).

Since we are being informal and lazy for now, we may as well
choose a basis {P,Q} of E [m], yielding an isomorphism
E [m] ∼= (Z/mZ)× (Z/mZ).

Then elements are of the form aP + bQ for a, b ∈ Z/mZ.
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Motivation for the Weil Pairing, II

A natural pairing with many convenient properties is

〈aP + bQ, cP + dQ〉 =

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc (mod m).

For instance, the pairing is bilinear, alternating, and
nondegenerate, all of which are properties we would want for
something analogous to an inner product.

Of course this pairing does not take values in a field unless m
is prime, but we can easily deal with this shortcoming by
instead using 〈aP + bQ, cP + dQ〉 = ζad−bc where ζ ∈ k is
some primitive mth root of unity.

However, this construction relies on several choices (the basis
{P,Q} and the mth root of unity ζ). In order to take an
inverse limit, we want to give a more natural pairing that
doesn’t depend on particular choices of basis and generator
for the group of mth roots of unity.
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Motivation for the Weil Pairing, III

So let’s try to do something more canonical.

First, for any Q ∈ E [m], since the divisor m[Q]−m[O] has
degree 0 and the sum of points resolves to the identity on E ,
it is principal: say m[Q]−m[O] = div(fQ), for a function
fQ ∈ k(C ) unique up to scaling.

We claim that the divisor [m]∗Q − [m]∗O is also principal.

To see this choose any Q ′ ∈ [m]−1Q: then by definition we
have [m]∗Q − [m]∗O =

∑
R∈E [m]([Q ′ + R]− [R]) which is

also principal since it has degree 0 and the underlying sum of
points is

∑
R∈E [m] Q ′ = [m2]Q ′ = [m]Q = O.

This means [m]∗Q − [m]∗O = div(gQ) for some function gQ
that is unique up to scaling.
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Motivation for the Weil Pairing, IV

We have div(fQ) = m[Q]−m[O] and div(gQ) = [m]∗Q − [m]∗O.

Then div(gm
Q ) =

∑
R∈E [m](m[Q ′ + R]−m[R]) and also

div(fQ ◦ [m]) =
∑

R∈E [m](m[Q ′ + R]−m[R]).

Thus gm
Q and fQ ◦ [m] have the same divisor, meaning that

they differ by a nonzero scalar factor (since the divisor of their
ratio is zero, hence is constant).

Hence by rescaling fQ , we may assume that fQ ◦ [m] = gm
Q .

Now suppose we have some other point P ∈ E [m].

Then for any X ∈ E , we see that
gQ(X + P)m = fQ([m]X + [m]P) = fQ([m]X ) = gQ(X )m.

Thus, as long as gQ(X ) is not zero or ∞, the ratio
gQ(X + P)/gQ(X ) is some mth root of unity.
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Motivation for the Weil Pairing, V

Exercise: Suppose h ∈ k(E ) is a rational function that takes only
finitely many values on E . Show that h is constant. (Note as
always that k is algebraically closed.)

By the exercise, since gQ(X + Q)/gQ(X ) ∈ k(E ) takes only
finitely many values, it must in fact be constant, so it is
independent of X .

Furthermore, since g is defined uniquely up to a constant
factor, the ratio gQ(X + P)/gQ(X ) is independent of the
specific choice of g .

Thus, we obtain a well-defined pairing
em(P,Q) = gQ(X + P)/gQ(X ) from E [m]× E [m] to the
multiplicative group of mth roots of unity
µm = {ζ ∈ k : ζm = 1} in k .



The Weil Pairing, I

This pairing is called the Weil pairing:

Definition

Let E/k be an elliptic curve and m ≥ 2 be an integer not divisible
by p = char(k).

The Weil pairing em : E [m]× E [m]→ µm is defined as follows: for
any P,Q ∈ E [m], choose any gQ ∈ k(C ) such that
div(gQ) = [m]∗Q − [m]∗O, and then define
em(P,Q) = gQ(X + P)/gQ(X ) for any X ∈ E such that the ratio
is defined.

From our discussion above, the definition of em(P,Q) is
independent from the specific choice of the function gP and from
the choice of the point X where the ratio is evaluated.



The Weil Pairing, II

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing)

Let E be an elliptic curve and m ≥ 2 be an integer not divisible by
p = char(k), with em : E [m]× E [m]→ µm the Weil pairing on E .
Then the following hold:

1. (Bilinearity) We have em(P1 + P2,Q) = em(P1,Q)em(P2,Q)
and em(P,Q1 + Q2) = em(P,Q1)em(P,Q2).

2. (Alternating) We have em(P,P) = 1 for all P ∈ E [m], or
equivalently, em(P,Q) = em(Q,P)−1 for all P,Q ∈ E [m].

3. (Nondegeneracy) If em(P,Q)=1 for all P∈E [m] then Q =O.

4. (Galois-equivariance) If E is defined over F , then for any
σ ∈ Gal(k/F ) we have em(σP, σQ) = σ[em(P,Q)].



The Weil Pairing, III

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing, continued)

Let E be an elliptic curve and m ≥ 2 be an integer not divisible by
p = char(k), with em : E [m]× E [m]→ µm the Weil pairing on E .
Then the following hold:

5. (Compatibility) For any P ∈ E [mm′] and Q ∈ E [m] we have
emm′(P,Q) = em([m′]P,Q).

6. (Surjectivity) For any mth root of unity ζm, there exist
P,Q ∈ E [m] with em(P,Q) = ζm.

7. (Adjoints) For any isogeny ϕ : E1 → E2 and any P ∈ E1[m]

and Q ∈ E2[m], we have e
(1)
m (P, ϕ̂(Q)) = e

(2)
m (ϕ(P),Q)

where e
(i)
m is the Weil pairing on Ei .



The Weil Pairing, IV

1. (Bilinearity 1) We have
em(P1 + P2,Q) = em(P1,Q)em(P2,Q).

Proof:

We have em(P1 + P2,Q) =
gQ(X + P1 + P2)

gQ(X )
=

gQ(X + P1 + P2)

gQ(X + P2)
· gQ(X + P2)

gQ(X )
= em(P1,Q)em(P2,Q) since

gQ(X + P1 + P2)

gQ(X + P2)
=

gQ(Y + P1)

gQ(Y )
for Y = X + P2.
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The Weil Pairing, IV: Wasn’t the Last One IV?

1. (Bilinearity 2) em(P,Q1 + Q2) = em(P,Q1)em(P,Q2).

Proof:

Let Q3 = Q1 + Q2 and take fi , gi with div(fi ) = m[Qi ]−m[O]
and div(gi ) = [m]∗Qi − [m]∗O so that fi ◦ [m] = gm

i for each i .

Since the divisor [Q3]− [Q2]− [Q1] + [O] has degree 0 and
resolves to the identity, it is div(h) for some h.

Then div(f3)− div(f1f2) = m div(h), so f3 = cf1f2hm for some
scalar c . Composing with [m] gives gm

3 = f3 ◦ [m]
= (cf1f2hm) ◦ [m] = c(f1 ◦ [m])(f2 ◦ [m])(h ◦ [m])m =
cgm

1 gm
2 (h ◦ [m])m so g3 = c ′g1g2(h ◦ [m]) for some c ′.

Now we have
em(P,Q1 + Q2) = g3(X+P)

g3(X ) = c ′g1(X+P)g2(X+P)h([m]X+[m]P)
c ′g1(X )g2(X )h([m]X ) =

g1(X+P)
g1(X )

g2(X+P)
g2(X ) = em(P,Q1)em(P,Q2), where

h([m]X + [m]P) = h([m]X ) since P ∈ E [m].
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The Weil Pairing, IV: No, We’re Not Doing This Again

2. (Alternating) We have em(P,P) = 1 for all P ∈ E [m], or
equivalently, em(P,Q) = em(Q,P)−1 for all P,Q ∈ E [m].

Proof:

Take f , g with div(f ) = m[P]−m[O] and
div(g) = [m]∗P − [m]∗O with gm = f ◦ [m].

Now for each k , let τ−kP : E → E be the translation map
τ−kP(X ) = X − kP and also take fk = f ◦ τ−kP .

Then div(f ◦ τ−kP) = m[(1 + k)P]−m[kP] since composing
with τ−kP simply translates zeroes and poles by kP.

Then div(f0f1 · · · fm−1) = 0 since the divisor sum telescopes,
meaning that the product f0f1 · · · fm−1 is constant.

Then for gk = g ◦ τ−kP′ for any P ′ with [m]P ′ = P, we see
that (g0g1 · · · gm−1)m = (f0f1 · · · fm−1) ◦ [m] is constant
whence g0g1 · · · gm−1 is constant.



The Weil Pairing, IV: No, We’re Not Doing This Again
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Proof:

Take f , g with div(f ) = m[P]−m[O] and
div(g) = [m]∗P − [m]∗O with gm = f ◦ [m].

Now for each k , let τ−kP : E → E be the translation map
τ−kP(X ) = X − kP and also take fk = f ◦ τ−kP .

Then div(f ◦ τ−kP) = m[(1 + k)P]−m[kP] since composing
with τ−kP simply translates zeroes and poles by kP.
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that (g0g1 · · · gm−1)m = (f0f1 · · · fm−1) ◦ [m] is constant
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The Weil Pairing, VI: Wait, Where’s V?

2. (Alternating) We have em(P,P) = 1 for all P ∈ E [m], or
equivalently, em(P,Q) = em(Q,P)−1 for all P,Q ∈ E [m].

Proof (continued):

Then for gk = g ◦ τ−kP′ for any P ′ with [m]P ′ = P, we see
that (g0g1 · · · gm−1)m = (f0f1 · · · fm−1) ◦ [m] is constant
whence g0g1 · · · gm−1 is constant.

This means
g(X )g(X + P ′) · · · g(X + (m − 1)P ′)
= g0(X )g1(X ) · · · gm−1(X )
= g0(X + P ′)g1(X + P ′) · · · gm−1(X + P ′)
= g(X + P ′)g(X + 2P ′) · · · g(X + mP ′)
and so cancelling the common terms yields
g(X ) = g(X + mP ′) = g(X + P), whence em(P,P) = 1.

For the second statement we have 1 = em(P + Q,P + Q) =
em(P,P)em(P,Q)em(Q,P)em(Q,Q) = em(P,Q)em(Q,P)
using bilinearity.
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The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If em(P,Q)=1 for all P∈E [m] then Q =O.

Proof:

Take fQ , gQ with div(fQ) = m[Q]−m[O] and
div(gQ) = [m]∗Q − [m]∗O with gm

Q = fQ ◦ [m].

Suppose em(P,Q) = 1 for all P ∈ E [m], meaning that
gQ(X + P) = gQ(X ) for all P ∈ E [m].

This means gQ ◦ τP = gQ for all translation maps τP with
P ∈ E [m]. But as we have shown, these translation maps are
the elements of the Galois group of the extension
k(E )/[m]∗k(E ) via the map Ξ sending P 7→ τ∗P .

Hence gQ is Galois-invariant, so it is an element of the base
field [m]∗k(E ), meaning gQ = h ◦ [m] for some h ∈ k(E ).

But now fQ ◦ [m] = gm
Q = hm ◦ [m] so fQ = hm.

So div(fQ) = mdiv(h) so div(h) = [Q]− [O]. Then [Q]− [O]
is principal so it resolves to the identity: thus Q = O.
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Q = hm ◦ [m] so fQ = hm.

So div(fQ) = mdiv(h) so div(h) = [Q]− [O]. Then [Q]− [O]
is principal so it resolves to the identity: thus Q = O.



The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F , then for any
σ ∈ Gal(k/F ) we have em(σP, σQ) = σ[em(P,Q)].

Proof:

Take fQ , gQ with div(fQ) = m[Q]−m[O] and
div(gQ) = [m]∗Q − [m]∗O with gm

Q = fQ ◦ [m].

Then div(σfQ) = m[σQ]−m[O] and
div(σgQ) = [m]∗σQ − [m]∗O and (σgQ)m = (σfQ) ◦ [m] since
the Galois action carries through on divisors and functions, so
we have fσQ = σfQ and gσQ = σgQ .

Then em(σP, σQ) =
gσQ(X + σP)

gσQ(X )
=
σgQ(σ−1X + P)

σgQ(σ−1X )
=

σ

[
gQ(Y + P)

gQ(Y )

]
= σ[em(P,Q)] where Y = σ−1X .



The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F , then for any
σ ∈ Gal(k/F ) we have em(σP, σQ) = σ[em(P,Q)].

Proof:

Take fQ , gQ with div(fQ) = m[Q]−m[O] and
div(gQ) = [m]∗Q − [m]∗O with gm

Q = fQ ◦ [m].

Then div(σfQ) = m[σQ]−m[O] and
div(σgQ) = [m]∗σQ − [m]∗O and (σgQ)m = (σfQ) ◦ [m] since
the Galois action carries through on divisors and functions, so
we have fσQ = σfQ and gσQ = σgQ .

Then em(σP, σQ) =
gσQ(X + σP)

gσQ(X )
=
σgQ(σ−1X + P)

σgQ(σ−1X )
=

σ

[
gQ(Y + P)

gQ(Y )

]
= σ[em(P,Q)] where Y = σ−1X .



The Weil Pairing, VII: We’re Just Ignoring Double VI?

5. (Compatibility) For any P ∈ E [mm′] and Q ∈ E [m] we have
emm′(P,Q) = em([m′]P,Q).

Proof:

Take fQ , gQ with div(fQ) = m[Q]−m[O] and
div(gQ) = [m]∗Q − [m]∗O with gm

Q = fQ ◦ [m].

Then div(f m′
Q ) = mm′[Q]−mm′[O] and

(gQ ◦ [m′])mm′ = (fQ ◦ [m′])m
′
.

Hence emm′(P,Q) =
(g ◦ [m′])(X + P)

(g ◦ [m′])(X )
=

g([m′]X + [m′]P)

g([m′]X )
= em([m′]P,Q).
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The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any mth root of unity ζm, there exist
P,Q ∈ E [m] with em(P,Q) = ζm.

Proof:

By (1) and (2), the image of em : E [m]× E [m]→ µm is a
subgroup of µm.

Suppose the image has order d |m. Then for all P and Q we
have em(P,Q)d = 1, which by (1) says that em(P, [d ]Q) = 1.

By non-degeneracy, this implies [d ]Q = O for all Q ∈ E [m],
which can only happen when d = m. Hence em is onto.

Exercise: Suppose E is defined over F and E [m] ⊆ E (F ). Show
that F contains the mth roots of unity.

Exercise: Suppose E is defined over Q and p > 2 is a prime. Show
that the p-torsion subgroup of E (Q) is either cyclic or trivial.
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The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any mth root of unity ζm, there exist
P,Q ∈ E [m] with em(P,Q) = ζm.

Proof:

By (1) and (2), the image of em : E [m]× E [m]→ µm is a
subgroup of µm.

Suppose the image has order d |m. Then for all P and Q we
have em(P,Q)d = 1, which by (1) says that em(P, [d ]Q) = 1.

By non-degeneracy, this implies [d ]Q = O for all Q ∈ E [m],
which can only happen when d = m. Hence em is onto.

Exercise: Suppose E is defined over F and E [m] ⊆ E (F ). Show
that F contains the mth roots of unity.

Exercise: Suppose E is defined over Q and p > 2 is a prime. Show
that the p-torsion subgroup of E (Q) is either cyclic or trivial.



The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny ϕ : E1 → E2 and any P ∈ E1[m]

and Q ∈ E2[m], we have e
(1)
m (P, ϕ̂(Q)) = e

(2)
m (ϕ(P),Q)

where e
(i)
m is the Weil pairing on Ei .

Proof:

Take fQ , gQ with div(fQ) = m[Q]−m[O] and
div(gQ) = [m]∗Q − [m]∗O with gm

Q = fQ ◦ [m].

First, we want to construct fϕ̂(Q) and gϕ̂(Q).

Observe that ϕ∗[Q]− ϕ∗[O]− [ϕ̂(Q)] + [O] ∈ Div(E1) is
principal on E1 since it has degree 0 and the sum of points
resolves to zero, since ϕ̂(Q) is defined to be the sum∑

Q′∈ϕ−1(Q) Q ′ −
∑

R∈ϕ−1(0) R and these are exactly the
points in the sum for ϕ∗[Q] and ϕ∗[O] respectively.

So choose h with div(h) = ϕ∗[Q]− ϕ∗[O]− [ϕ̂(Q)] + [O].
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Q′∈ϕ−1(Q) Q ′ −
∑
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points in the sum for ϕ∗[Q] and ϕ∗[O] respectively.

So choose h with div(h) = ϕ∗[Q]− ϕ∗[O]− [ϕ̂(Q)] + [O].



The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny ϕ : E1 → E2 and any P ∈ E1[m]

and Q ∈ E2[m], we have e
(1)
m (P, ϕ̂(Q)) = e

(2)
m (ϕ(P),Q).

Proof (continued):

Take fQ , gQ with div(fQ) = m[Q]−m[O] and gm
Q = fQ ◦ [m]

and div(h) = ϕ∗[Q]− ϕ∗[O]− [ϕ̂(Q)] + [O].

Now, we have div(fQ ◦ ϕ) = ϕ∗div(fQ) = mϕ∗[Q]−mϕ∗[O]

by properties of ϕ∗, and so div
[
fQ◦ϕ
hm

]
= m[ϕ̂(Q)]−m[O],

meaning that we may take fϕ̂(Q) =
fQ◦ϕ
hm .

To find a corresponding gϕ̂(Q) we can observe that

fϕ̂(Q) ◦ [m] =
fQ ◦ ϕ

hm
◦ [m] =

fQ ◦ [m] ◦ ϕ
hm ◦ [m]

=
gm
Q ◦ ϕ

hm ◦ [m]
=

(
gQ ◦ ϕ
h ◦ [m]

)m

so we may take gϕ̂(Q) =
gQ ◦ ϕ
h ◦ [m]

.
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Proof (continued):

Take fQ , gQ with div(fQ) = m[Q]−m[O] and gm
Q = fQ ◦ [m]

and div(h) = ϕ∗[Q]− ϕ∗[O]− [ϕ̂(Q)] + [O].

Now, we have div(fQ ◦ ϕ) = ϕ∗div(fQ) = mϕ∗[Q]−mϕ∗[O]

by properties of ϕ∗, and so div
[
fQ◦ϕ
hm

]
= m[ϕ̂(Q)]−m[O],

meaning that we may take fϕ̂(Q) =
fQ◦ϕ
hm .

To find a corresponding gϕ̂(Q) we can observe that

fϕ̂(Q) ◦ [m] =
fQ ◦ ϕ

hm
◦ [m] =

fQ ◦ [m] ◦ ϕ
hm ◦ [m]

=
gm
Q ◦ ϕ

hm ◦ [m]
=

(
gQ ◦ ϕ
h ◦ [m]

)m

so we may take gϕ̂(Q) =
gQ ◦ ϕ
h ◦ [m]

.



The Weil Pairing, XVI: Wait, Is XVI Actually Correct?

7. (Adjoints) For any isogeny ϕ : E1 → E2 and any P ∈ E1[m]

and Q ∈ E2[m], we have e
(1)
m (P, ϕ̂(Q)) = e

(2)
m (ϕ(P),Q).

Proof (the grand finale):

We have fϕ̂(Q) =
fQ ◦ ϕ

hm
and gϕ̂(Q) =

gQ ◦ ϕ
h ◦ [m]

.

Then e
(1)
m (P, ϕ̂(Q)) =

gϕ̂(Q)(X + P)

gϕ̂(Q)(X )

=
(gQ ◦ ϕ)(X + P)/(h ◦ [m])(X + P)

(gQ ◦ ϕ)(X )/(h ◦ [m])(X )

=
gQ(ϕ(X ) + ϕ(P))

gQ(ϕ(X ))
· h(mX )

h(mX + mP)

=
gQ(Y + ϕ(P))

gQ(Y )
= e

(2)
m (ϕ(P),Q) where Y = ϕ(X ).



The Weil Pairing, XVII: Let’s Just Say This Is Right

Now that we have given a more natural construction of the Weil
pairing on E [m], we can extend this pairing to the Tate module by
taking inverse limits.

Explicitly, for a prime l 6= char(k), we have a Weil pairing
eld : E [ld ]× E [ld ]→ µld .

The Tate module is formed using the inverse system

E [l ]
[l ]← E [l2]

[l ]← E [l3]
[l ]← E [l4]

[l ]← · · · .
The corresponding inverse system on l-power roots of unity is

µl
l← µl2

l← µl3
l← µl4

l← · · · ,
where the map l : µld+1 → µld is the lth-power map.

Those certainly look fairly consistent!
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The Weil Pairing, XVIII: I’m Fine If You Are

But what does the inverse limit of the groups µld look like?

By choosing a specific root of unity as generator and making
consistent choices the inverse system becomes

Z/lZ l← Z/l2Z l← Z/l3Z l← Z/l4Z l← · · · , which (by using
the isomorphism lZ/ld+1Z ∼= Z/ldZ via dividing
representatives by l) is equivalent to our inverse system
Z/lZ π← Z/l2Z π← Z/l3Z π← Z/l4Z π← · · · for Zl .

Hence, by selecting consistent choices of generators for the
ld -power roots of unity (i.e., generators ζ1, ζ2, . . . , ζd , . . . with
ζ ld+1 = ζd), which is equivalent to selecting a topological
generator of µl∞ , we may view the Weil pairing as taking its
values in Zl .

It remains to show that the inverse-limit structure of Zl is
consistent with the inverse-limit structure of the Tate module.



The Weil Pairing, XIX

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and l be a prime with l 6= char(k).
Then the Weil pairings eld : E [ld ]× E [ld ]→ µld extend to a
pairing e : Tl [E ]× Tl [E ]→ lim←−dµld

∼= Zl .

This l-adic Weil pairing is bilinear, alternating, nondegenerate,
Galois-equivariant, and the dual of an isogeny behaves as an
adjoint.

Proof:

The Weil pairings eld are compatible with the inverse limit
lim←−dµld , since by the compatibility and bilinearity properties

we have eld+1(P,Q)l = eld ([l ]P,Q)l = el([l ]P, [l ]Q).

The other properties follow by taking the inverse limit of the
properties we showed earlier.
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Proving The Weil Conjectures For Elliptic Curves, I

The l-adic Weil pairing provides the final ingredient for proving the
Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves)

Let E be an elliptic curve defined over the finite field Fq of
characteristic p and let ϕ be the qth-power Frobenius map. Then
the following hold:

1. For any prime l 6= p, if ψl is the image of ϕ under the l-adic
Galois representation ρl : Gal(k/F )→ Aut[Tl(E )], then
det(ψl) = degϕ and tr(ψl) = 1 + deg(ϕ)− deg(1− ϕ).

2. The determinant and trace of ψl are integers that are are
independent of l , and the characteristic polynomial
det(T − ψl) = T 2 − trψlT + detψl has two
complex-conjugate roots of absolute value

√
q.



Proving The Weil Conjectures For Elliptic Curves, II

The l-adic Weil pairing provides the final ingredient for proving the
Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves, continued)

Let E be an elliptic curve defined over the finite field Fq of
characteristic p and let ϕ be the qth-power Frobenius map. Then
the following hold:

3. For any n ≥ 1, #E (Fqn) = qn + 1− αn − βn for some
complex conjugates α and β of absolute value

√
q.

4. The zeta function ζC (T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
for some

complex conjugates α and β of absolute value
√

q. As an
immediate consequence, the Weil conjectures hold for E .



Proving The Weil Conjectures For Elliptic Curves, III

1. For any prime l 6= p, if ψl is the image of ϕ under the l-adic
Galois representation ρl : Gal(k/F )→ Aut[Tl(E )], then
det(ψl) = degϕ and tr(ψl) = 1 + deg(ϕ)− deg(1− ϕ).

Proof:

Choose a Zl -basis {v ,w} for Tl(E ): then the matrix
associated to ψl with respect to this basis is some 2× 2 matrix
[ a b
c d ], meaning that ψl(v) = av + cw and ψl(w) = bv + dw .

Using the l-adic Weil pairing we then have
e(v ,w)degϕ = e([degϕ]v ,w) = e((ϕ̂◦ϕ)v ,w) = e(ϕv , ϕw) =
e(av + cw , bv + dw) = e(v ,w)ad−bc = e(v ,w)detψl using the
bilinearity, adjoint, and alternating properties. But now since
e is nondegenerate, we must have degϕ = detψl .

In the same way, deg(1− ϕ) = det(1− ψ). Finally,
tr(ψl) = 1 + | a b

c d | − |
1−a −b
−c 1−d | = 1 + deg(ϕ)− deg(1− ϕ).



Proving The Weil Conjectures For Elliptic Curves, III
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Proving The Weil Conjectures For Elliptic Curves, IV

2. The determinant and trace of ψl are integers that are are
independent of l , and the characteristic polynomial
det(T − ψl) = T 2 − trψlT + detψl has two
complex-conjugate roots of absolute value

√
q.

Proof:

The first part is immediate from (1), since degϕ and
deg(1− ϕ) are both fixed integers.

Now, for any rational number m/n, we have
det(m/n − ψl) = det(m − nψl)/n2 = deg(m − nϕ)/n2 ≥ 0
since isogenies have nonnegative degree.

Hence by continuity, the characteristic polynomial det(T −ψl)
is nonnegative on R, so it cannot have distinct real roots:
thus its roots α and β are complex conjugates (possibly
equal), and since their product is degϕ = q, each has
absolute value

√
q as claimed.
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Proving The Weil Conjectures For Elliptic Curves, V

3. For any n ≥ 1, #E (Fqn) = qn + 1− αn − βn for some
complex conjugates α and β of absolute value

√
q.

Proof:

As we noted in our earlier discussion of the Weil conjectures,
P ∈ E (Fqn) if and only if ϕn(P) = P if and only if
P ∈ ker(1− ϕn).

Then since (1− ϕn)∗ω = ω the map 1− ϕn is separable, so
#E (Fqn) = # ker(1− ϕn) = deg(1− ϕn).

Now since ϕn is the qnth-power Frobenius map, applying (1)
to it yields
deg(1− ϕn) = 1 + deg(ϕn)− tr(ψn

l ) = 1 + qn − αn − βn for
some complex conjugates α and β of absolute value

√
q.



Proving The Weil Conjectures For Elliptic Curves, V

3. For any n ≥ 1, #E (Fqn) = qn + 1− αn − βn for some
complex conjugates α and β of absolute value

√
q.

Proof:

As we noted in our earlier discussion of the Weil conjectures,
P ∈ E (Fqn) if and only if ϕn(P) = P if and only if
P ∈ ker(1− ϕn).

Then since (1− ϕn)∗ω = ω the map 1− ϕn is separable, so
#E (Fqn) = # ker(1− ϕn) = deg(1− ϕn).

Now since ϕn is the qnth-power Frobenius map, applying (1)
to it yields
deg(1− ϕn) = 1 + deg(ϕn)− tr(ψn

l ) = 1 + qn − αn − βn for
some complex conjugates α and β of absolute value

√
q.



Proving The Weil Conjectures For Elliptic Curves, VI

4. The zeta function ζC (T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
for some

complex conjugates α and β of absolute value
√

q. As an
immediate consequence, the Weil conjectures hold for E .

Proof:

By definition and (2), we have ln ζC (T )

=
∞∑
n=1

#E (Fqn)
T n

n

=
∞∑
n=1

(1n + qn − αn − βn)
T n

n

= − ln(1− T )− ln(1− qT ) + ln(1− αT ) + ln(1− βT ).

Exponentiating yields ζC (T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
.



Proving The Weil Conjectures For Elliptic Curves, VI
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.



Summary

We introduced the Weil pairing and established many of its
properties.

We used the properties of the Weil pairing to prove the Weil
conjectures for elliptic curves.

Next lecture: The endomorphism ring.


