Math 7359 (Elliptic Curves and Modular Forms)

Lecture #17 of 24 \sim November 6, 2023

The Weil Pairing and the Weil Conjectures (Again)

- The Weil Pairing
- Properties of the Weil Pairing
- **Proof of the Weil Conjectures for Elliptic Curves**

Recall

Recall the Tate module:

Definition

Let E be an elliptic curve and I be a prime. The *I*-adic Tate module of E is the \mathbb{Z}_l -module $T_l(E) = \varprojlim_d E[l^d].$

The elements of the Tate module consist of sequences of points $(P_1, P_2, P_3, P_4, \dots)$ such that $IP_{d+1} = P_d$ for each $d \geq 0$, where we think of $P_0 = Q$.

Recall

Recall the Tate module:

Definition

Let E be an elliptic curve and I be a prime. The *I*-adic Tate module of E is the \mathbb{Z}_l -module $T_l(E) = \varprojlim_d E[l^d].$

The elements of the Tate module consist of sequences of points $(P_1, P_2, P_3, P_4, \dots)$ such that $IP_{d+1} = P_d$ for each $d \geq 0$, where we think of $P_0 = Q$.

• When $l \neq \text{char}(k)$, when we apply the inverse limit construction starting with generators P and Q of $E[1]$, we obtain topological generators for $T_I(E)$ yielding a group isomorphism $\overline{T}_1(E) \cong \mathbb{Z}_1 \times \mathbb{Z}_1$.

The remaining ingredient for our plan in proving the Weil conjectures is to find an analogue of an inner product structure associated to the action of the Galois group on $\text{Aut}[T_{l}(E)]$.

- As with our construction of the Tate module, we will do this by constructing a pairing on the components $E[l^d]$ used in the inverse limit construction of $T_I(E)$.
- Indeed, for no additional cost, we can construct the pairing on $E[m]$.

The remaining ingredient for our plan in proving the Weil conjectures is to find an analogue of an inner product structure associated to the action of the Galois group on $\text{Aut}[T_1(E)]$.

- As with our construction of the Tate module, we will do this by constructing a pairing on the components $E[l^d]$ used in the inverse limit construction of $T_I(E)$.
- Indeed, for no additional cost, we can construct the pairing on $E[m]$.
- Fix a positive integer $m \ge 2$ not divisible by $p = \text{char}(k)$.
- Since we are being informal and lazy for now, we may as well choose a basis $\{P, Q\}$ of $E[m]$, yielding an isomorphism $E[m] \cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$.
- Then elements are of the form $aP + bQ$ for $a, b \in \mathbb{Z}/m\mathbb{Z}$.

Motivation for the Weil Pairing, II

A natural pairing with many convenient properties is

$$
\langle aP+bQ, cP+dQ \rangle = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \pmod{m}.
$$

• For instance, the pairing is bilinear, alternating, and nondegenerate, all of which are properties we would want for something analogous to an inner product.

Motivation for the Weil Pairing, II

A natural pairing with many convenient properties is

$$
\langle aP+bQ, cP+dQ \rangle = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \pmod{m}.
$$

- **•** For instance, the pairing is bilinear, alternating, and nondegenerate, all of which are properties we would want for something analogous to an inner product.
- \bullet Of course this pairing does not take values in a field unless m is prime, but we can easily deal with this shortcoming by instead using $\langle aP + bQ, cP + dQ \rangle = \zeta^{ad-bc}$ where $\zeta \in k$ is some primitive mth root of unity.
- However, this construction relies on several choices (the basis $\{P, Q\}$ and the mth root of unity ζ). In order to take an inverse limit, we want to give a more natural pairing that doesn't depend on particular choices of basis and generator for the group of *m*th roots of unity.

So let's try to do something more canonical.

- First, for any $Q \in E[m]$, since the divisor $m[Q] m[O]$ has degree 0 and the sum of points resolves to the identity on E , it is principal: say $m[Q] - m[O] = \text{div}(f_Q)$, for a function $f_Q \in k(C)$ unique up to scaling.
- We claim that the divisor $[m]^*Q [m]^*O$ is also principal.

So let's try to do something more canonical.

- First, for any $Q \in E[m]$, since the divisor $m[Q] m[O]$ has degree 0 and the sum of points resolves to the identity on E , it is principal: say $m[Q] - m[O] = \text{div}(f_Q)$, for a function $f_Q \in k(C)$ unique up to scaling.
- We claim that the divisor $[m]^*Q [m]^*O$ is also principal.
- To see this choose any $Q' \in [m]^{-1}Q$: then by definition we have $[m]^*Q - [m]^*O = \sum_{R \in E[m]}([Q'+R]-[R])$ which is also principal since it has degree 0 and the underlying sum of points is $\sum_{R\in E[m]}Q'=[m^2]Q'=[m]Q=O.$
- This means $[m]^*Q [m]^*O = \text{div}(g_Q)$ for some function g_Q that is unique up to scaling.

We have $\text{div}(f_Q) = m[Q] - m[O]$ and $\text{div}(g_Q) = [m]^*Q - [m]^*O$.

We have $\text{div}(f_Q) = m[Q] - m[O]$ and $\text{div}(g_Q) = [m]^*Q - [m]^*O$.

- Then $\mathrm{div} (g_Q^m) = \sum_{R \in E[m]} (m[Q'+R] m[R])$ and also $\text{div}(f_Q \circ [m]) = \sum_{R \in E[m]} (m[Q' + R] - m[R]).$
- Thus g_Q^m and $f_Q \circ [m]$ have the same divisor, meaning that they differ by a nonzero scalar factor (since the divisor of their ratio is zero, hence is constant).

Hence by rescaling f_Q , we may assume that $f_Q \circ [m] = g_Q^m$.

We have $\text{div}(f_Q) = m[Q] - m[O]$ and $\text{div}(g_Q) = [m]^*Q - [m]^*O$.

- Then $\mathrm{div} (g_Q^m) = \sum_{R \in E[m]} (m[Q'+R] m[R])$ and also $\text{div}(f_Q \circ [m]) = \sum_{R \in E[m]} (m[Q' + R] - m[R]).$
- Thus g_Q^m and $f_Q \circ [m]$ have the same divisor, meaning that they differ by a nonzero scalar factor (since the divisor of their ratio is zero, hence is constant).
- Hence by rescaling f_Q , we may assume that $f_Q \circ [m] = g_Q^m$.
- Now suppose we have some other point $P \in E[m]$.
- Then for any $X \in E$, we see that $g_Q(X + P)^m = f_Q([m]X + [m]P) = f_Q([m]X) = g_Q(X)^m$.
- Thus, as long as $g_Q(X)$ is not zero or ∞ , the ratio $g_{\mathcal{O}}(X + P)/g_{\mathcal{O}}(X)$ is some *m*th root of unity.

Exercise: Suppose $h \in k(E)$ is a rational function that takes only finitely many values on E . Show that h is constant. (Note as always that k is algebraically closed.)

- \bullet By the exercise, since $g_Q(X + Q)/g_Q(X) \in k(E)$ takes only finitely many values, it must in fact be constant, so it is independent of X .
- Furthermore, since g is defined uniquely up to a constant factor, the ratio $g_Q(X + P)/g_Q(X)$ is independent of the specific choice of g .
- Thus, we obtain a well-defined pairing $e_m(P,Q) = g_Q(X+P)/g_Q(X)$ from $E[m] \times E[m]$ to the multiplicative group of mth roots of unity $\mu_m = \{ \zeta \in k : \zeta^m = 1 \}$ in k.

This pairing is called the Weil pairing:

Definition

Let E/k be an elliptic curve and $m \geq 2$ be an integer not divisible by $p = \text{char}(k)$.

The <u>Weil pairing</u> $e_m : E[m] \times E[m] \rightarrow \mu_m$ is defined as follows: for any $P, Q \in E[m]$, choose any $g_Q \in k(C)$ such that $\mathrm{div} (g_Q) = [m]^* Q - [m]^* O$, and then define $e_m(P,Q) = g_Q(X+P)/g_Q(X)$ for any $X \in E$ such that the ratio is defined.

From our discussion above, the definition of $e_m(P,Q)$ is independent from the specific choice of the function g_P and from the choice of the point X where the ratio is evaluated.

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing)

Let E be an elliptic curve and $m > 2$ be an integer not divisible by $p = \text{char}(k)$, with $e_m : E[m] \times E[m] \rightarrow \mu_m$ the Weil pairing on E. Then the following hold:

- 1. (Bilinearity) We have $e_m(P_1+P_2,Q)=e_m(P_1,Q)e_m(P_2,Q)$ and $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.
- 2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P,Q) = e_m(Q,P)^{-1}$ for all $P,Q \in E[m]$.
- 3. (Nondegeneracy) If $e_m(P,Q)=1$ for all $P\in E[m]$ then $Q=Q$.
- 4. (Galois-equivariance) If E is defined over F, then for any $\sigma \in \mathrm{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)].$

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing, continued)

Let E be an elliptic curve and $m > 2$ be an integer not divisible by $p = \text{char}(k)$, with $e_m : E[m] \times E[m] \rightarrow \mu_m$ the Weil pairing on E. Then the following hold:

- 5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P,Q) = e_m([m']P,Q).$
- 6. (Surjectivity) For any mth root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.
- 7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

1. (Bilinearity 1) We have $e_m(P_1 + P_2, Q) = e_m(P_1, Q)e_m(P_2, Q).$

1. (Bilinearity 1) We have

$$
e_m(P_1 + P_2, Q) = e_m(P_1, Q)e_m(P_2, Q).
$$

• We have
$$
e_m(P_1 + P_2, Q) = \frac{g_Q(X + P_1 + P_2)}{g_Q(X)} =
$$

\n
$$
\frac{g_Q(X + P_1 + P_2)}{g_Q(X + P_2)} \cdot \frac{g_Q(X + P_2)}{g_Q(X)} = e_m(P_1, Q)e_m(P_2, Q) \text{ since}
$$
\n
$$
\frac{g_Q(X + P_1 + P_2)}{g_Q(X + P_2)} = \frac{g_Q(Y + P_1)}{g_Q(Y)} \text{ for } Y = X + P_2.
$$

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$. Proof:

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.

- Let $Q_3 = Q_1 + Q_2$ and take f_i, g_i with $\mathrm{div}(f_i) = m[Q_i] m[O]$ and $\mathrm{div}(g_i) = [m]^*Q_i - [m]^*O$ so that $f_i \circ [m] = g_i^m$ for each i.
- Since the divisor $[Q_3] [Q_2] [Q_1] + [O]$ has degree 0 and resolves to the identity, it is $div(h)$ for some h.

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.

Proof:

- Let $Q_3 = Q_1 + Q_2$ and take f_i, g_i with $\mathrm{div}(f_i) = m[Q_i] m[O]$ and $\mathrm{div}(g_i) = [m]^*Q_i - [m]^*O$ so that $f_i \circ [m] = g_i^m$ for each i.
- Since the divisor $[Q_3] [Q_2] [Q_1] + [O]$ has degree 0 and resolves to the identity, it is $div(h)$ for some h.
- Then $\mathrm{div}(f_3) \mathrm{div}(f_1f_2) = m \, \mathrm{div}(h)$, so $f_3 = c f_1 f_2 h^m$ for some scalar c . Composing with $[m]$ gives $g_3^m = f_3 \circ [m]$ $= (c f_1 f_2 h^m) \circ [m] = c (f_1 \circ [m]) (f_2 \circ [m]) (h \circ [m])^m =$ $cg_1^mg_2^m(h\circ [m])^m$ so $g_3=c'g_1g_2(h\circ [m])$ for some $c'.$

• Now we have

$$
e_m(P, Q_1 + Q_2) = \frac{g_3(X+P)}{g_3(X)} = \frac{c'g_1(X+P)g_2(X+P)h([m]X+[m]P)}{c'g_1(X)g_2(X)h([m]X)} = \frac{g_1(X+P)}{g_1(X)} \frac{g_2(X+P)}{g_2(X)} = e_m(P, Q_1)e_m(P, Q_2), \text{ where}
$$

$$
h([m]X + [m]P) = h([m]X) \text{ since } P \in E[m].
$$

The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P,Q) = e_m(Q,P)^{-1}$ for all $P,Q \in E[m]$.

• Take
$$
f, g
$$
 with $\text{div}(f) = m[P] - m[O]$ and
\n $\text{div}(g) = [m]^*P - [m]^*O$ with $g^m = f \circ [m]$.

The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P,Q) = e_m(Q,P)^{-1}$ for all $P,Q \in E[m]$.

- Take f, g with $\text{div}(f) = m[P] m[O]$ and $\mathrm{div}(g) = [m]^*P - [m]^*O$ with $g^m = f \circ [m].$
- Now for each k, let τ_{-kP} : $E \rightarrow E$ be the translation map $\tau_{-k}P(X) = X - kP$ and also take $f_k = f \circ \tau_{-k}P$.
- Then div(f $\circ \tau_{-k} = m[(1+k)P] m[k]$ since composing with τ_{-k} simply translates zeroes and poles by kP.
- Then $\text{div}(f_0f_1 \cdots f_{m-1}) = 0$ since the divisor sum telescopes, meaning that the product $f_0f_1 \cdots f_{m-1}$ is constant.
- Then for $g_k = g \circ \tau_{-k}P'$ for any P' with $[m]P' = P$, we see that $(g_0g_1\cdots g_{m-1})^m=(f_0f_1\cdots f_{m-1})\circ [m]$ is constant whence $g_0g_1\cdots g_{m-1}$ is constant.

The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P,Q) = e_m(Q,P)^{-1}$ for all $P,Q \in E[m]$.

Proof (continued):

Then for $g_k = g \circ \tau_{-k}P'$ for any P' with $[m]P' = P$, we see that $(g_0g_1\cdots g_{m-1})^m=(f_0f_1\cdots f_{m-1})\circ [m]$ is constant whence $g_0g_1 \cdots g_{m-1}$ is constant.

The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P,Q) = e_m(Q,P)^{-1}$ for all $P,Q \in E[m]$.

Proof (continued):

Then for $g_k = g \circ \tau_{-k}P'$ for any P' with $[m]P' = P$, we see that $(g_0g_1\cdots g_{m-1})^m=(f_0f_1\cdots f_{m-1})\circ [m]$ is constant whence $g_0g_1 \cdots g_{m-1}$ is constant. This means $g(X)g(X+P')\cdots g(X+(m-1)P')$ $= g_0(X)g_1(X) \cdots g_{m-1}(X)$ $= g_0(X+P')g_1(X+P')\cdots g_{m-1}(X+P')$ $= g(X + P')g(X + 2P')\cdots g(X + mP')$ and so cancelling the common terms yields $g(X) = g(X + mP') = g(X + P)$, whence $e_m(P, P) = 1$. • For the second statement we have $1 = e_m(P + Q, P + Q) =$ $e_m(P, P)e_m(P, Q)e_m(Q, P)e_m(Q, Q) = e_m(P, Q)e_m(Q, P)$ using bilinearity.

The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If $e_m(P,Q)=1$ for all $P\in E[m]$ then $Q=Q$. Proof:

- Take f_Q , g_Q with $\text{div}(f_Q) = m[Q] m[O]$ and $\mathrm{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m].$
- Suppose $e_m(P,Q) = 1$ for all $P \in E[m]$, meaning that $g_{\Omega}(X + P) = g_{\Omega}(X)$ for all $P \in E[m]$.

The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If $e_m(P,Q)=1$ for all $P\in E[m]$ then $Q=Q$.

- Take f_Q , g_Q with $\text{div}(f_Q) = m[Q] m[Q]$ and $\mathrm{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m].$
- Suppose $e_m(P,Q) = 1$ for all $P \in E[m]$, meaning that $g_{\Omega}(X + P) = g_{\Omega}(X)$ for all $P \in E[m]$.
- This means $g_Q \circ \tau_P = g_Q$ for all translation maps τ_P with $P \in E[m]$. But as we have shown, these translation maps are the elements of the Galois group of the extension $k(E)/[m]^*k(E)$ via the map Ξ sending $P \mapsto \tau_P^*$.
- \bullet Hence g_{Ω} is Galois-invariant, so it is an element of the base field $[m]^*k(E)$, meaning $g_Q = h \circ [m]$ for some $h \in k(E)$.
- But now $f_Q \circ [m] = g_Q^m = h^m \circ [m]$ so $f_Q = h^m$.
- So div(f_Q) = mdiv(h) so div(h) = [Q] [O]. Then $[Q] [O]$ is principal so it resolves to the identity: thus $Q = Q$.

The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F , then for any $\sigma \in \text{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)].$

• Take
$$
f_Q
$$
, g_Q with $\text{div}(f_Q) = m[Q] - m[O]$ and $\text{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m]$.

The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F , then for any $\sigma \in \mathrm{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)].$

- Take f_Q, g_Q with $\mathrm{div}(f_Q) = m[Q] m[O]$ and $\mathrm{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m].$
- Then $\text{div}(\sigma f_Q) = m[\sigma Q] m[O]$ and $\mathrm{div}(\sigma \mathrm{g}_{Q}) = [m]^{\ast}\sigma Q - [m]^{\ast}O$ and $(\sigma \mathrm{g}_{Q})^{m} = (\sigma f_{Q}) \circ [m]$ since the Galois action carries through on divisors and functions, so we have $f_{\sigma Q} = \sigma f_Q$ and $g_{\sigma Q} = \sigma g_Q$.

• Then
$$
e_m(\sigma P, \sigma Q) = \frac{g_{\sigma Q}(X + \sigma P)}{g_{\sigma Q}(X)} = \frac{\sigma g_Q(\sigma^{-1}X + P)}{\sigma g_Q(\sigma^{-1}X)} = \sigma \left[\frac{g_Q(Y + P)}{g_Q(Y)} \right] = \sigma [e_m(P, Q)]
$$
 where $Y = \sigma^{-1}X$.

The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P,Q) = e_m([m']P,Q).$

Proof:

• Take f_Q , g_Q with $\text{div}(f_Q) = m[Q] - m[O]$ and $\mathrm{div}(\mathcal{g}_{Q}) = [m]^{\ast}Q - [m]^{\ast}O$ with $\mathcal{g}_{Q}^{m} = f_{Q} \circ [m].$

The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P,Q) = e_m([m']P,Q).$

- Take f_Q , g_Q with $\text{div}(f_Q) = m[Q] m[O]$ and $\mathrm{div}(\mathcal{g}_{Q}) = [m]^{\ast}Q - [m]^{\ast}O$ with $\mathcal{g}_{Q}^{m} = f_{Q} \circ [m].$
- Then $\mathrm{div}(f_Q^{m'})=mm'[Q]-mm'[O]$ and $(g_Q \circ [m'])^{mm'} = (f_Q \circ [m'])^{m'}.$
- Hence $e_{mm'}(P,Q) = \frac{(g \circ [m']) (X + P)}{(g \circ [m']) (X + P)}$ $\frac{e(m) y(x + 1)}{(g \circ [m'])(X)} =$ $g([m']X + [m']P)$ $\frac{f(x + \lfloor m \rfloor)}{g(\lfloor m' \rfloor)} = e_m(\lfloor m' \rfloor P, Q).$

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any mth root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any mth root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

- By (1) and (2), the image of $e_m : E[m] \times E[m] \rightarrow \mu_m$ is a subgroup of μ_m .
- Suppose the image has order d/m . Then for all P and Q we have $e_m(P,Q)^d=1$, which by (1) says that $e_m(P,[d]Q)=1$.
- By non-degeneracy, this implies $[d]Q = Q$ for all $Q \in E[m]$. which can only happen when $d = m$. Hence e_m is onto.

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any mth root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

Proof:

- By (1) and (2), the image of $e_m : E[m] \times E[m] \rightarrow \mu_m$ is a subgroup of μ_m .
- Suppose the image has order d/m . Then for all P and Q we have $e_m(P,Q)^d=1$, which by (1) says that $e_m(P,[d]Q)=1$.
- \bullet By non-degeneracy, this implies $[d]Q = O$ for all $Q \in E[m]$, which can only happen when $d = m$. Hence e_m is onto.

Exercise: Suppose E is defined over F and $E[m] \subseteq E(F)$. Show that F contains the m th roots of unity.

Exercise: Suppose E is defined over $\mathbb Q$ and $p > 2$ is a prime. Show that the *p*-torsion subgroup of $E(\mathbb{Q})$ is either cyclic or trivial.

The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

- Take f_Q, g_Q with $\mathrm{div}(f_Q) = m[Q] m[O]$ and $\mathrm{div}(\mathcal{g}_{Q}) = [m]^{\ast}Q - [m]^{\ast}O$ with $\mathcal{g}_{Q}^{m} = f_{Q} \circ [m].$
- First, we want to construct $f_{\hat{\varphi}(Q)}$ and $g_{\hat{\varphi}(Q)}$.

The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

- Take f_Q , g_Q with $\text{div}(f_Q) = m[Q] m[O]$ and $\mathrm{div}(\mathcal{g}_{Q}) = [m]^{\ast}Q - [m]^{\ast}O$ with $\mathcal{g}_{Q}^{m} = f_{Q} \circ [m].$
- First, we want to construct $f_{\hat{\varphi}(Q)}$ and $g_{\hat{\varphi}(Q)}$.
- Observe that $\varphi^*[\overline{Q}] \varphi^*[\overline{O}] [\hat{\varphi}(Q)] + [\overline{O}] \in \text{Div}(E_1)$ is principal on E_1 since it has degree 0 and the sum of points resolves to zero, since $\hat{\varphi}(Q)$ is defined to be the sum $\sum_{\mathcal{Q}'\in\varphi^{-1}(\mathcal{Q})} \mathcal{Q}' - \sum_{R\in\varphi^{-1}(0)} R$ and these are exactly the points in the sum for $\varphi^*[Q]$ and $\varphi^*[O]$ respectively.
- So choose h with $\text{div}(h) = \varphi^*[Q] \varphi^*[O] [\hat{\varphi}(Q)] + [O].$

The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q).$

Proof (continued):

Take f_Q, g_Q with $\text{div}(f_Q) = m[Q] - m[O]$ and $g_Q^m = f_Q \circ [m]$ and $\mathrm{div}(h)=\varphi^*[\mathsf{Q}]-\varphi^*[\mathsf{O}]-[\hat{\varphi}(\mathsf{Q})]+[\mathsf{O}].$

The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q).$

Proof (continued):

- Take f_Q, g_Q with $\text{div}(f_Q) = m[Q] m[O]$ and $g_Q^m = f_Q \circ [m]$ and $\mathrm{div}(h)=\varphi^*[\mathsf{Q}]-\varphi^*[\mathsf{O}]-[\hat{\varphi}(\mathsf{Q})]+[\mathsf{O}].$
- Now, we have $\mathrm{div}(f_Q \circ \varphi) = \varphi^* \mathrm{div}(f_Q) = m \varphi^* [Q] m \varphi^* [O]$ by properties of φ^* , and so $\mathrm{div}\left[\frac{f_Q \circ \varphi}{h^m}\right]$ $\left\lbrack \frac{\alpha\circ\varphi}{h^{m}}\right\rbrack=m[\hat{\varphi}(\mathcal{Q})]-m[\mathcal{O}],$ meaning that we may take $f_{\hat{\varphi}(Q)} = \frac{f_Q \circ \varphi}{h^m}$.
- To find a corresponding $g_{\hat{\varphi}(Q)}$ we can observe that $f_{\hat{\varphi}(Q)}\circ [m]=\frac{f_Q\circ \varphi}{h^m}\circ [m]=\frac{f_Q\circ [m]\circ \varphi}{h^m\circ [m]}=$ $g_Q^m \circ \varphi$ $\frac{\mathcal{B}_{Q}^{m}\circ\varphi}{h^{m}\circ[m]}=\bigg(\frac{\mathcal{B}Q\circ\varphi}{h\circ[m]}$ $h \circ [m]$ \setminus^m so we may take $g_{\hat{\varphi}(Q)} = \frac{g_Q \circ \varphi}{h \circ [m]}$ $\frac{6Q}{h \circ [m]}$.

The Weil Pairing, XVI: Wait, Is XVI Actually Correct?

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q\in E_2[m]$, we have $e_m^{(1)}(P,\hat{\varphi}(Q))=e_m^{(2)}(\varphi(P),Q).$

Proof (the grand finale):

We have $f_{\hat{\varphi}(Q)} = \frac{f_Q \circ \varphi}{b m}$ $\frac{Q^{\circlearrowleft}\varphi}{h^m}$ and $g_{\hat{\varphi}(Q)} = \frac{g_Q \circ \varphi}{h \circ [m]}$ $\frac{6Q-r}{h \circ [m]}$. Then $e_m^{(1)}(P, \hat{\varphi}(Q)) = \frac{\mathcal{E}_{\hat{\varphi}(Q)}(X + P)}{\sigma_{\hat{\varphi}(X)}}$ $g_{\hat{\varphi}(Q)}(X)$ $=\frac{(g_Q\circ\varphi)(X+P)/(h\circ[m])(X+P)}{(\varphi\circ\psi)(X+(h\circ[m])(X+P))}$ $(g_Q \circ \varphi)(X)/(h \circ [m])(X)$ $=\frac{\mathcal{g}_{Q}(\varphi(X)+\varphi(P))}{\mathcal{g}_{Q}(\varphi(X))}\cdot\frac{h(mX)}{h(mX+n)}$ $h(mX + mP)$ $=\frac{g_Q(Y+\varphi(P))}{\varphi(Q)}$ $\frac{Y + \varphi(P))}{g_Q(Y)} = e_m^{(2)}(\varphi(P), Q)$ where $Y = \varphi(X)$.

Now that we have given a more natural construction of the Weil pairing on $E[m]$, we can extend this pairing to the Tate module by taking inverse limits.

Now that we have given a more natural construction of the Weil pairing on $E[m]$, we can extend this pairing to the Tate module by taking inverse limits.

- Explicitly, for a prime $l \neq \text{char}(k)$, we have a Weil pairing $e_{d} : E[l^d] \times E[l^d] \rightarrow \mu_{l^d}.$
- The Tate module is formed using the inverse system $E[1] \stackrel{[1]}{\leftarrow} E[1^2] \stackrel{[1]}{\leftarrow} E[1^3] \stackrel{[1]}{\leftarrow} E[1^4] \stackrel{[1]}{\leftarrow} \cdots$
- The corresponding inverse system on *l*-power roots of unity is $\mu_I \stackrel{I}{\leftarrow} \mu_{I^2} \stackrel{I}{\leftarrow} \mu_{I^3} \stackrel{I}{\leftarrow} \mu_{I^4} \stackrel{I}{\leftarrow} \cdots,$

where the map l : $\mu_{l^{d+1}} \rightarrow \mu_{l^{d}}$ is the /th-power map.

• Those certainly look fairly consistent!

The Weil Pairing, XVIII: I'm Fine If You Are

But what does the inverse limit of the groups μ_{I^d} look like?

- By choosing a specific root of unity as generator and making consistent choices the inverse system becomes $\mathbb{Z}/I\mathbb{Z} \stackrel{I}{\leftarrow} \mathbb{Z}/I^2\mathbb{Z} \stackrel{I}{\leftarrow} \mathbb{Z}/I^4\mathbb{Z} \stackrel{I}{\leftarrow} \cdots$, which (by using the isomorphism *IZ/I^{d+1}Z* \cong $\mathbb{Z}/\mathit{l}^{d}\mathbb{Z}$ via dividing representatives by l) is equivalent to our inverse system $\mathbb{Z}/I\mathbb{Z} \stackrel{\pi}{\leftarrow} \mathbb{Z}/I^2\mathbb{Z} \stackrel{\pi}{\leftarrow} \mathbb{Z}/I^3\mathbb{Z} \stackrel{\pi}{\leftarrow} \mathbb{Z}/I^4\mathbb{Z} \stackrel{\pi}{\leftarrow} \cdots$ for \mathbb{Z}_I .
- Hence, by selecting consistent choices of generators for the I^d -power roots of unity (i.e., generators $\zeta_1, \zeta_2, \ldots, \zeta_d, \ldots$ with $\zeta_{d+1}^I=\zeta_d)$, which is equivalent to selecting a topological generator of μ_{l} \approx , we may view the Weil pairing as taking its values in \mathbb{Z}_l .

It remains to show that the inverse-limit structure of \mathbb{Z}_l is consistent with the inverse-limit structure of the Tate module.

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and I be a prime with $l \neq \text{char}(k)$. Then the Weil pairings $e_{\mathfrak{l}^d}:E[{\mathfrak{l}}^d]\times E[{\mathfrak{l}}^d]\to \mu_{\mathfrak{l}^d}$ extend to a pairing $e: T_I[E] \times T_I[E] \to \varprojlim_d \mu_{I^d} \cong \mathbb{Z}_I$.

This I-adic Weil pairing is bilinear, alternating, nondegenerate, Galois-equivariant, and the dual of an isogeny behaves as an adjoint.

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and I be a prime with $l \neq \text{char}(k)$. Then the Weil pairings $e_{\mathfrak{l}^d}:E[{\mathfrak{l}}^d]\times E[{\mathfrak{l}}^d]\to \mu_{\mathfrak{l}^d}$ extend to a pairing $e: T_I[E] \times T_I[E] \to \varprojlim_d \mu_{I^d} \cong \mathbb{Z}_I$.

This I-adic Weil pairing is bilinear, alternating, nondegenerate, Galois-equivariant, and the dual of an isogeny behaves as an adjoint.

- The Weil pairings e_{I^d} are compatible with the inverse limit $\overline{\lim_{d\mu}}_{d^d}$, since by the compatibility and bilinearity properties we have $e_{\mathcal{I}^{d+1}}(P,Q)^{\mathcal{I}}=e_{\mathcal{I}^{d}}([\mathcal{I}]P,Q)^{\mathcal{I}}=e_{\mathcal{I}}([\mathcal{I}]P,[\mathcal{I}]Q).$
- The other properties follow by taking the inverse limit of the properties we showed earlier.

Proving The Weil Conjectures For Elliptic Curves, I

The l-adic Weil pairing provides the final ingredient for proving the Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves)

Let E be an elliptic curve defined over the finite field \mathbb{F}_q of characteristic p and let φ be the qth-power Frobenius map. Then the following hold:

- 1. For any prime $l\neq p$, if ψ_l is the image of φ under the l-adic Galois representation $\rho_I: \operatorname{Gal}(k/F) \to \operatorname{Aut}[T_I(E)],$ then $\det(\psi_I) = \deg \varphi$ and $\text{tr}(\psi_I) = 1 + \deg(\varphi) - \deg(1 - \varphi)$.
- 2. The determinant and trace of ψ_1 are integers that are are independent of l, and the characteristic polynomial $\det(\mathcal{T}-\psi_I)=\mathcal{T}^2-\mathrm{tr}\psi_I\mathcal{T}+\det\psi_I$ has two complex-conjugate roots of absolute value \sqrt{q} .

The l-adic Weil pairing provides the final ingredient for proving the Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves, continued)

Let E be an elliptic curve defined over the finite field \mathbb{F}_q of characteristic p and let φ be the gth-power Frobenius map. Then the following hold:

- 3. For any $n \geq 1$, $\#E(\mathbb{F}_{q^n}) = q^n + 1 \alpha^n \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .
- 4. The zeta function $\zeta_{\mathcal{C}}(\mathcal{T}) = \dfrac{(1-\alpha\,\mathcal{T})(1-\beta\,\mathcal{T})}{(1-\mathcal{T})(1-q\,\mathcal{T})}$ for some complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

Proving The Weil Conjectures For Elliptic Curves, III

1. For any prime $l\neq p$, if ψ_l is the image of φ under the *l*-adic Galois representation $\rho_I: \operatorname{Gal}(k/F) \to \operatorname{Aut}[{\mathcal T}_I(E)],$ then $\det(\psi_l) = \deg \varphi$ and $\text{tr}(\psi_l) = 1 + \deg(\varphi) - \deg(1 - \varphi)$.

Proving The Weil Conjectures For Elliptic Curves, III

1. For any prime $l\neq p$, if ψ_l is the image of φ under the *l*-adic Galois representation $\rho_I: \operatorname{Gal}(k/F) \to \operatorname{Aut}[{\mathcal T}_I(E)],$ then $\det(\psi_l) = \deg \varphi$ and $\text{tr}(\psi_l) = 1 + \deg(\varphi) - \deg(1 - \varphi)$.

- Choose a \mathbb{Z}_l -basis $\{v,w\}$ for $T_l(E)$: then the matrix associated to ψ_l with respect to this basis is some 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, meaning that $\psi_I(v) = av + cw$ and $\psi_I(w) = bv + dw$.
- Using the *I*-adic Weil pairing we then have $e(v, w)^{\deg \varphi} = e([\deg \varphi]v, w) = e((\hat{\varphi} \circ \varphi)v, w) = e(\varphi v, \varphi w) =$ $e(av + cw, bv + dw) = e(v, w)^{ad-bc} = e(v, w)^{\det \psi_l}$ using the bilinearity, adjoint, and alternating properties. But now since *e* is nondegenerate, we must have deg $\varphi = \det \psi_l$.
- In the same way, $deg(1 \varphi) = det(1 \psi)$. Finally, $\mathrm{tr}(\psi_I)=1+|\begin{smallmatrix} a & b \ c & d \end{smallmatrix}| - |\begin{smallmatrix} 1-a & -b \ -c & 1-d \end{smallmatrix}| = 1+ \mathsf{deg}(\varphi)-\mathsf{deg}(1-\varphi).$

Proving The Weil Conjectures For Elliptic Curves, IV

2. The determinant and trace of ψ_l are integers that are are independent of l, and the characteristic polynomial $\det(\, \mathcal{T} - \psi_I) = \, \mathcal{T}^2 - {\rm tr} \psi_I \, \mathcal{T} + \det \psi_I$ has two complex-conjugate roots of absolute value \sqrt{q} .

Proving The Weil Conjectures For Elliptic Curves, IV

2. The determinant and trace of ψ_l are integers that are are independent of l, and the characteristic polynomial $\det(\, \mathcal{T} - \psi_I) = \, \mathcal{T}^2 - {\rm tr} \psi_I \, \mathcal{T} + \det \psi_I$ has two complex-conjugate roots of absolute value \sqrt{q} .

- The first part is immediate from (1), since deg φ and $deg(1 - \varphi)$ are both fixed integers.
- Now, for any rational number m/n , we have $\det(m/n-\psi_I)=\det(m-n\psi_I)/n^2=\deg(m-n\varphi)/n^2\geq 0$ since isogenies have nonnegative degree.
- Hence by continuity, the characteristic polynomial det($T \psi_l$) is nonnegative on $\mathbb R$, so it cannot have distinct real roots: thus its roots α and β are complex conjugates (possibly equal), and since their product is deg $\varphi = q$, each has equar), and since their product
absolute value \sqrt{q} as claimed.

3. For any $n \geq 1$, $\#E(\mathbb{F}_{q^n}) = q^n + 1 - \alpha^n - \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .

3. For any $n \geq 1$, $\#E(\mathbb{F}_{q^n}) = q^n + 1 - \alpha^n - \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .

Proof:

- As we noted in our earlier discussion of the Weil conjectures, $P \in E(\overline{\mathbb{F}_{q^n}})$ if and only if $\varphi^n(P) = P$ if and only if $P \in \text{ker}(1 - \varphi^n)$.
- Then since $(1 \varphi^n)^* \omega = \omega$ the map $1 \varphi^n$ is separable, so $\#E(\mathbb{F}_{q^n}) = \# \ker(1 - \varphi^n) = \deg(1 - \varphi^n).$
- Now since φ^n is the q^n th-power Frobenius map, applying (1) to it yields

 $\mathsf{deg}(1-\varphi^n) = 1 + \mathsf{deg}(\varphi^n) - \mathsf{tr}(\psi_l^n) = 1 + \mathsf{q}^n - \alpha^n - \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .

Proving The Weil Conjectures For Elliptic Curves, VI

4. The zeta function $\zeta_{\mathcal{C}}(\mathcal{T}) = \dfrac{(1-\alpha\,\mathcal{T})(1-\beta\,\mathcal{T})}{(1-\mathcal{T})(1-q\,\mathcal{T})}$ for some $(1 - 7)(1 - 97)$
complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

Proving The Weil Conjectures For Elliptic Curves, VI

4. The zeta function $\zeta_{\mathcal{C}}(\mathcal{T}) = \dfrac{(1-\alpha\,\mathcal{T})(1-\beta\,\mathcal{T})}{(1-\mathcal{T})(1-q\,\mathcal{T})}$ for some $(1 - 7)(1 - 97)$
complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

\n- By definition and (2), we have
$$
\ln \zeta_C(\mathcal{T})
$$
\n
$$
= \sum_{n=1}^{\infty} \#E(\mathbb{F}_{q^n}) \frac{\mathcal{T}^n}{n}
$$
\n
$$
= \sum_{n=1}^{\infty} (1^n + q^n - \alpha^n - \beta^n) \frac{\mathcal{T}^n}{n}
$$
\n
$$
= -\ln(1 - \mathcal{T}) - \ln(1 - q\mathcal{T}) + \ln(1 - \alpha\mathcal{T}) + \ln(1 - \beta\mathcal{T}).
$$
\n
\n- Exponentiating yields $\zeta_C(\mathcal{T}) = \frac{(1 - \alpha\mathcal{T})(1 - \beta\mathcal{T})}{(1 - \mathcal{T})(1 - q\mathcal{T})}$.
\n

We introduced the Weil pairing and established many of its properties.

We used the properties of the Weil pairing to prove the Weil conjectures for elliptic curves.

Next lecture: The endomorphism ring.