Math 7359 (Elliptic Curves and Modular Forms)

Lecture #17 of 24 \sim November 6, 2023

The Weil Pairing and the Weil Conjectures (Again)

- The Weil Pairing
- Properties of the Weil Pairing
- Proof of the Weil Conjectures for Elliptic Curves

Recall

Recall the Tate module:

Definition

Let *E* be an elliptic curve and *l* be a prime. The *l*-adic Tate module of *E* is the \mathbb{Z}_l -module $T_l(E) = \lim_{d \to d} E[l^d]$.

The elements of the Tate module consist of sequences of points $(P_1, P_2, P_3, P_4, ...)$ such that $IP_{d+1} = P_d$ for each $d \ge 0$, where we think of $P_0 = O$.

Recall the Tate module:

Definition

Let *E* be an elliptic curve and *l* be a prime. The *l*-adic Tate module of *E* is the \mathbb{Z}_l -module $T_l(E) = \lim_{d \to d} E[l^d]$.

The elements of the Tate module consist of sequences of points $(P_1, P_2, P_3, P_4, ...)$ such that $IP_{d+1} = P_d$ for each $d \ge 0$, where we think of $P_0 = O$.

When *I* ≠ char(*k*), when we apply the inverse limit construction starting with generators *P* and *Q* of *E*[*I*], we obtain topological generators for *T_I*(*E*) yielding a group isomorphism *T_I*(*E*) ≅ Z_{*I*} × Z_{*I*}.

The remaining ingredient for our plan in proving the Weil conjectures is to find an analogue of an inner product structure associated to the action of the Galois group on $\operatorname{Aut}[T_I(E)]$.

- As with our construction of the Tate module, we will do this by constructing a pairing on the components $E[I^d]$ used in the inverse limit construction of $T_I(E)$.
- Indeed, for no additional cost, we can construct the pairing on E[m].

The remaining ingredient for our plan in proving the Weil conjectures is to find an analogue of an inner product structure associated to the action of the Galois group on $\operatorname{Aut}[T_l(E)]$.

- As with our construction of the Tate module, we will do this by constructing a pairing on the components $E[I^d]$ used in the inverse limit construction of $T_I(E)$.
- Indeed, for no additional cost, we can construct the pairing on E[m].
- Fix a positive integer $m \ge 2$ not divisible by p = char(k).
- Since we are being informal and lazy for now, we may as well choose a basis {P, Q} of E[m], yielding an isomorphism E[m] ≅ (ℤ/mℤ) × (ℤ/mℤ).
- Then elements are of the form aP + bQ for $a, b \in \mathbb{Z}/m\mathbb{Z}$.

Motivation for the Weil Pairing, II

A natural pairing with many convenient properties is

$$\langle aP + bQ, cP + dQ \rangle = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \pmod{m}.$$

• For instance, the pairing is bilinear, alternating, and nondegenerate, all of which are properties we would want for something analogous to an inner product.

Motivation for the Weil Pairing, II

A natural pairing with many convenient properties is

$$\langle aP + bQ, cP + dQ \rangle = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \pmod{m}.$$

- For instance, the pairing is bilinear, alternating, and nondegenerate, all of which are properties we would want for something analogous to an inner product.
- Of course this pairing does not take values in a field unless m is prime, but we can easily deal with this shortcoming by instead using (aP + bQ, cP + dQ) = ζ^{ad-bc} where ζ ∈ k is some primitive mth root of unity.
- However, this construction relies on several choices (the basis {P, Q} and the mth root of unity ζ). In order to take an inverse limit, we want to give a more natural pairing that doesn't depend on particular choices of basis and generator for the group of mth roots of unity.

So let's try to do something more canonical.

- First, for any Q ∈ E[m], since the divisor m[Q] m[O] has degree 0 and the sum of points resolves to the identity on E, it is principal: say m[Q] m[O] = div(f_Q), for a function f_Q ∈ k(C) unique up to scaling.
- We claim that the divisor $[m]^*Q [m]^*O$ is also principal.

So let's try to do something more canonical.

- First, for any Q ∈ E[m], since the divisor m[Q] m[O] has degree 0 and the sum of points resolves to the identity on E, it is principal: say m[Q] m[O] = div(f_Q), for a function f_Q ∈ k(C) unique up to scaling.
- We claim that the divisor $[m]^*Q [m]^*O$ is also principal.
- To see this choose any Q' ∈ [m]⁻¹Q: then by definition we have [m]*Q [m]*O = ∑_{R∈E[m]}([Q' + R] [R]) which is also principal since it has degree 0 and the underlying sum of points is ∑_{R∈E[m]}Q' = [m²]Q' = [m]Q = O.
- This means [m]*Q [m]*O = div(g_Q) for some function g_Q that is unique up to scaling.

We have $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$.

We have $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$.

- Then $\operatorname{div}(g_Q^m) = \sum_{R \in E[m]} (m[Q' + R] m[R])$ and also $\operatorname{div}(f_Q \circ [m]) = \sum_{R \in E[m]} (m[Q' + R] m[R]).$
- Thus g_Q^m and $f_Q \circ [m]$ have the same divisor, meaning that they differ by a nonzero scalar factor (since the divisor of their ratio is zero, hence is constant).

• Hence by rescaling f_Q , we may assume that $f_Q \circ [m] = g_Q^m$.

We have $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$.

- Then $\operatorname{div}(g_Q^m) = \sum_{R \in E[m]} (m[Q' + R] m[R])$ and also $\operatorname{div}(f_Q \circ [m]) = \sum_{R \in E[m]} (m[Q' + R] m[R]).$
- Thus g_Q^m and $f_Q \circ [m]$ have the same divisor, meaning that they differ by a nonzero scalar factor (since the divisor of their ratio is zero, hence is constant).
- Hence by rescaling f_Q , we may assume that $f_Q \circ [m] = g_Q^m$.
- Now suppose we have some other point $P \in E[m]$.
- Then for any $X \in E$, we see that $g_Q(X + P)^m = f_Q([m]X + [m]P) = f_Q([m]X) = g_Q(X)^m.$
- Thus, as long as g_Q(X) is not zero or ∞, the ratio g_Q(X + P)/g_Q(X) is some mth root of unity.

<u>Exercise</u>: Suppose $h \in k(E)$ is a rational function that takes only finitely many values on E. Show that h is constant. (Note as always that k is algebraically closed.)

- By the exercise, since g_Q(X + Q)/g_Q(X) ∈ k(E) takes only finitely many values, it must in fact be constant, so it is independent of X.
- Furthermore, since g is defined uniquely up to a constant factor, the ratio $g_Q(X + P)/g_Q(X)$ is independent of the specific choice of g.
- Thus, we obtain a well-defined pairing
 e_m(P, Q) = g_Q(X + P)/g_Q(X) from E[m] × E[m] to the
 multiplicative group of mth roots of unity
 μ_m = {ζ ∈ k : ζ^m = 1} in k.

This pairing is called the Weil pairing:

Definition

Let E/k be an elliptic curve and $m \ge 2$ be an integer not divisible by p = char(k).

The <u>Weil pairing</u> $e_m : E[m] \times E[m] \rightarrow \mu_m$ is defined as follows: for any $P, Q \in E[m]$, choose any $g_Q \in k(C)$ such that $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$, and then define $e_m(P, Q) = g_Q(X + P)/g_Q(X)$ for any $X \in E$ such that the ratio is defined.

From our discussion above, the definition of $e_m(P, Q)$ is independent from the specific choice of the function g_P and from the choice of the point X where the ratio is evaluated. And now, briskly into the properties:

Proposition (Properties of the Weil Pairing)

Let E be an elliptic curve and $m \ge 2$ be an integer not divisible by $p = \operatorname{char}(k)$, with $e_m : E[m] \times E[m] \to \mu_m$ the Weil pairing on E. Then the following hold:

- 1. (Bilinearity) We have $e_m(P_1 + P_2, Q) = e_m(P_1, Q)e_m(P_2, Q)$ and $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.
- 2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P, Q) = e_m(Q, P)^{-1}$ for all $P, Q \in E[m]$.
- 3. (Nondegeneracy) If $e_m(P, Q) = 1$ for all $P \in E[m]$ then Q = O.
- 4. (Galois-equivariance) If E is defined over F, then for any $\sigma \in \operatorname{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)]$.

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing, continued)

Let E be an elliptic curve and $m \ge 2$ be an integer not divisible by p = char(k), with $e_m : E[m] \times E[m] \rightarrow \mu_m$ the Weil pairing on E. Then the following hold:

- 5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P,Q) = e_m([m']P,Q)$.
- 6. (Surjectivity) For any mth root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.
- 7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

1. (Bilinearity 1) We have $e_m(P_1 + P_2, Q) = e_m(P_1, Q)e_m(P_2, Q).$

1. (Bilinearity 1) We have

$$e_m(P_1 + P_2, Q) = e_m(P_1, Q)e_m(P_2, Q).$$

• We have
$$e_m(P_1 + P_2, Q) = \frac{g_Q(X + P_1 + P_2)}{g_Q(X)} =$$

 $\frac{g_Q(X + P_1 + P_2)}{g_Q(X + P_2)} \cdot \frac{g_Q(X + P_2)}{g_Q(X)} = e_m(P_1, Q)e_m(P_2, Q)$ since
 $\frac{g_Q(X + P_1 + P_2)}{g_Q(X + P_1)} = \frac{g_Q(Y + P_1)}{g_Q(Y)}$ for $Y = X + P_2$.

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$. <u>Proof</u>:

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.

- Let $Q_3 = Q_1 + Q_2$ and take f_i, g_i with $\operatorname{div}(f_i) = m[Q_i] m[O]$ and $\operatorname{div}(g_i) = [m]^*Q_i - [m]^*O$ so that $f_i \circ [m] = g_i^m$ for each i.
- Since the divisor $[Q_3] [Q_2] [Q_1] + [O]$ has degree 0 and resolves to the identity, it is $\operatorname{div}(h)$ for some h.

The Weil Pairing, IV: Wasn't the Last One IV?

1. (Bilinearity 2) $e_m(P, Q_1 + Q_2) = e_m(P, Q_1)e_m(P, Q_2)$.

Proof:

- Let $Q_3 = Q_1 + Q_2$ and take f_i, g_i with $\operatorname{div}(f_i) = m[Q_i] m[O]$ and $\operatorname{div}(g_i) = [m]^*Q_i - [m]^*O$ so that $f_i \circ [m] = g_i^m$ for each i.
- Since the divisor [Q₃] [Q₂] [Q₁] + [O] has degree 0 and resolves to the identity, it is div(h) for some h.
- Then $\operatorname{div}(f_3) \operatorname{div}(f_1f_2) = m \operatorname{div}(h)$, so $f_3 = cf_1f_2h^m$ for some scalar c. Composing with [m] gives $g_3^m = f_3 \circ [m]$ = $(cf_1f_2h^m) \circ [m] = c(f_1 \circ [m])(f_2 \circ [m])(h \circ [m])^m = cg_1^m g_2^m (h \circ [m])^m$ so $g_3 = c'g_1g_2(h \circ [m])$ for some c'.

Now we have

 $\begin{aligned} e_m(P,Q_1+Q_2) &= \frac{g_3(X+P)}{g_3(X)} = \frac{c'g_1(X+P)g_2(X+P)h([m]X+[m]P)}{c'g_1(X)g_2(X)h([m]X)} = \\ \frac{g_1(X+P)}{g_1(X)} \frac{g_2(X+P)}{g_2(X)} &= e_m(P,Q_1)e_m(P,Q_2), \text{ where} \\ h([m]X+[m]P) &= h([m]X) \text{ since } P \in E[m]. \end{aligned}$

The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P, Q) = e_m(Q, P)^{-1}$ for all $P, Q \in E[m]$.

• Take
$$f, g$$
 with $\operatorname{div}(f) = m[P] - m[O]$ and $\operatorname{div}(g) = [m]^*P - [m]^*O$ with $g^m = f \circ [m]$.

The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P, Q) = e_m(Q, P)^{-1}$ for all $P, Q \in E[m]$.

- Take f, g with $\operatorname{div}(f) = m[P] m[O]$ and $\operatorname{div}(g) = [m]^*P [m]^*O$ with $g^m = f \circ [m]$.
- Now for each k, let $\tau_{-kP} : E \to E$ be the translation map $\tau_{-kP}(X) = X kP$ and also take $f_k = f \circ \tau_{-kP}$.
- Then div(f ∘ τ_{-kP}) = m[(1 + k)P] m[kP] since composing with τ_{-kP} simply translates zeroes and poles by kP.
- Then $\operatorname{div}(f_0 f_1 \cdots f_{m-1}) = 0$ since the divisor sum telescopes, meaning that the product $f_0 f_1 \cdots f_{m-1}$ is constant.
- Then for $g_k = g \circ \tau_{-kP'}$ for any P' with [m]P' = P, we see that $(g_0g_1\cdots g_{m-1})^m = (f_0f_1\cdots f_{m-1})\circ [m]$ is constant whence $g_0g_1\cdots g_{m-1}$ is constant.

The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P, Q) = e_m(Q, P)^{-1}$ for all $P, Q \in E[m]$.

<u>Proof</u> (continued):

Then for g_k = g ∘ τ_{-kP'} for any P' with [m]P' = P, we see that (g₀g₁ ··· g_{m-1})^m = (f₀f₁ ··· f_{m-1}) ∘ [m] is constant whence g₀g₁ ··· g_{m-1} is constant.

The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have $e_m(P, P) = 1$ for all $P \in E[m]$, or equivalently, $e_m(P, Q) = e_m(Q, P)^{-1}$ for all $P, Q \in E[m]$.

<u>Proof</u> (continued):

• Then for $g_k = g \circ \tau_{-kP'}$ for any P' with [m]P' = P, we see that $(g_0g_1\cdots g_{m-1})^m = (f_0f_1\cdots f_{m-1})\circ [m]$ is constant whence $g_0g_1 \cdots g_{m-1}$ is constant. This means $g(X)g(X+P')\cdots g(X+(m-1)P')$ $=g_0(X)g_1(X)\cdots g_{m-1}(X)$ $= g_0(X + P')g_1(X + P') \cdots g_{m-1}(X + P')$ $= g(X + P')g(X + 2P') \cdots g(X + mP')$ and so cancelling the common terms yields g(X) = g(X + mP') = g(X + P), whence $e_m(P, P) = 1$. • For the second statement we have $1 = e_m(P+Q, P+Q) =$ $e_m(P, P)e_m(P, Q)e_m(Q, P)e_m(Q, Q) = e_m(P, Q)e_m(Q, P)$ using bilinearity.

The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If $e_m(P, Q) = 1$ for all $P \in E[m]$ then Q = O. <u>Proof</u>:

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q [m]^*O$ with $g_Q^m = f_Q \circ [m]$.
- Suppose $e_m(P, Q) = 1$ for all $P \in E[m]$, meaning that $g_Q(X + P) = g_Q(X)$ for all $P \in E[m]$.

The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If $e_m(P, Q) = 1$ for all $P \in E[m]$ then Q = O. <u>Proof</u>:

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q [m]^*O$ with $g_Q^m = f_Q \circ [m]$.
- Suppose $e_m(P, Q) = 1$ for all $P \in E[m]$, meaning that $g_Q(X + P) = g_Q(X)$ for all $P \in E[m]$.
- This means g_Q τ_P = g_Q for all translation maps τ_P with P ∈ E[m]. But as we have shown, these translation maps are the elements of the Galois group of the extension k(E)/[m]*k(E) via the map Ξ sending P ↦ τ_P*.
- Hence g_Q is Galois-invariant, so it is an element of the base field [m]*k(E), meaning g_Q = h ∘ [m] for some h ∈ k(E).
- But now $f_Q \circ [m] = g_Q^m = h^m \circ [m]$ so $f_Q = h^m$.
- So $\operatorname{div}(f_Q) = m \operatorname{div}(h)$ so $\operatorname{div}(h) = [Q] [O]$. Then [Q] [O] is principal so it resolves to the identity: thus Q = O.

The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If *E* is defined over *F*, then for any $\sigma \in \text{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)]$.

Proof:

• Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m]$.

The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If *E* is defined over *F*, then for any $\sigma \in \text{Gal}(k/F)$ we have $e_m(\sigma P, \sigma Q) = \sigma[e_m(P, Q)]$.

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q [m]^*O$ with $g_Q^m = f_Q \circ [m]$.
- Then $\operatorname{div}(\sigma f_Q) = m[\sigma Q] m[O]$ and $\operatorname{div}(\sigma g_Q) = [m]^* \sigma Q - [m]^* O$ and $(\sigma g_Q)^m = (\sigma f_Q) \circ [m]$ since the Galois action carries through on divisors and functions, so we have $f_{\sigma Q} = \sigma f_Q$ and $g_{\sigma Q} = \sigma g_Q$.

• Then
$$e_m(\sigma P, \sigma Q) = \frac{g_{\sigma Q}(X + \sigma P)}{g_{\sigma Q}(X)} = \frac{\sigma g_Q(\sigma^{-1}X + P)}{\sigma g_Q(\sigma^{-1}X)} = \sigma\left[\frac{g_Q(Y + P)}{g_Q(Y)}\right] = \sigma[e_m(P, Q)]$$
 where $Y = \sigma^{-1}X$.

The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P, Q) = e_m([m']P, Q)$.

Proof:

• Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m]$.

The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any $P \in E[mm']$ and $Q \in E[m]$ we have $e_{mm'}(P, Q) = e_m([m']P, Q)$.

Proof:

• Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q - [m]^*O$ with $g_Q^m = f_Q \circ [m]$.

• Then
$$\operatorname{div}(f_Q^{m'}) = mm'[Q] - mm'[O]$$
 and
 $(g_Q \circ [m'])^{mm'} = (f_Q \circ [m'])^{m'}.$

• Hence
$$e_{mm'}(P,Q) = \frac{(g \circ [m'])(X+P)}{(g \circ [m'])(X)} = \frac{g([m']X + [m']P)}{g([m']X)} = e_m([m']P,Q).$$

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any *m*th root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any *m*th root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

- By (1) and (2), the image of $e_m : E[m] \times E[m] \rightarrow \mu_m$ is a subgroup of μ_m .
- Suppose the image has order d|m. Then for all P and Q we have e_m(P, Q)^d = 1, which by (1) says that e_m(P, [d]Q) = 1.
- By non-degeneracy, this implies [d]Q = O for all $Q \in E[m]$, which can only happen when d = m. Hence e_m is onto.

The Weil Pairing, VIII: I Guess So, Apparently

6. (Surjectivity) For any *m*th root of unity ζ_m , there exist $P, Q \in E[m]$ with $e_m(P, Q) = \zeta_m$.

Proof:

- By (1) and (2), the image of $e_m : E[m] \times E[m] \rightarrow \mu_m$ is a subgroup of μ_m .
- Suppose the image has order d|m. Then for all P and Q we have e_m(P, Q)^d = 1, which by (1) says that e_m(P, [d]Q) = 1.
- By non-degeneracy, this implies [d]Q = O for all $Q \in E[m]$, which can only happen when d = m. Hence e_m is onto.

<u>Exercise</u>: Suppose *E* is defined over *F* and $E[m] \subseteq E(F)$. Show that *F* contains the *m*th roots of unity.

<u>Exercise</u>: Suppose *E* is defined over \mathbb{Q} and p > 2 is a prime. Show that the *p*-torsion subgroup of $E(\mathbb{Q})$ is either cyclic or trivial.

The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q [m]^*O$ with $g_Q^m = f_Q \circ [m]$.
- First, we want to construct $f_{\hat{\varphi}(Q)}$ and $g_{\hat{\varphi}(Q)}$.

The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$ where $e_m^{(i)}$ is the Weil pairing on E_i .

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $\operatorname{div}(g_Q) = [m]^*Q [m]^*O$ with $g_Q^m = f_Q \circ [m]$.
- First, we want to construct $f_{\hat{\varphi}(Q)}$ and $g_{\hat{\varphi}(Q)}$.
- Observe that $\varphi^*[Q] \varphi^*[O] [\hat{\varphi}(Q)] + [O] \in \operatorname{Div}(E_1)$ is principal on E_1 since it has degree 0 and the sum of points resolves to zero, since $\hat{\varphi}(Q)$ is defined to be the sum $\sum_{Q' \in \varphi^{-1}(Q)} Q' \sum_{R \in \varphi^{-1}(0)} R$ and these are exactly the points in the sum for $\varphi^*[Q]$ and $\varphi^*[O]$ respectively.
- So choose h with $\operatorname{div}(h) = \varphi^*[Q] \varphi^*[O] [\hat{\varphi}(Q)] + [O]$.

The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$.

<u>Proof</u> (continued):

• Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] - m[O]$ and $g_Q^m = f_Q \circ [m]$ and $\operatorname{div}(h) = \varphi^*[Q] - \varphi^*[O] - [\hat{\varphi}(Q)] + [O]$.

The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$.

<u>Proof</u> (continued):

- Take f_Q, g_Q with $\operatorname{div}(f_Q) = m[Q] m[O]$ and $g_Q^m = f_Q \circ [m]$ and $\operatorname{div}(h) = \varphi^*[Q] - \varphi^*[O] - [\hat{\varphi}(Q)] + [O]$.
- Now, we have div(f_Q ∘ φ) = φ*div(f_Q) = mφ*[Q] mφ*[O] by properties of φ*, and so div [f_Q∘φ/h^m] = m[φ̂(Q)] - m[O], meaning that we may take f_{φ̂(Q)} = f_Q∘φ/h^m.
- To find a corresponding $g_{\hat{\varphi}(Q)}$ we can observe that $f_{\hat{\varphi}(Q)} \circ [m] = \frac{f_Q \circ \varphi}{h^m} \circ [m] = \frac{f_Q \circ [m] \circ \varphi}{h^m \circ [m]} = \frac{g_Q^m \circ \varphi}{h^m \circ [m]} = \left(\frac{g_Q \circ \varphi}{h \circ [m]}\right)^m$ so we may take $g_{\hat{\varphi}(Q)} = \frac{g_Q \circ \varphi}{h \circ [m]}$.

The Weil Pairing, XVI: Wait, Is XVI Actually Correct?

7. (Adjoints) For any isogeny $\varphi : E_1 \to E_2$ and any $P \in E_1[m]$ and $Q \in E_2[m]$, we have $e_m^{(1)}(P, \hat{\varphi}(Q)) = e_m^{(2)}(\varphi(P), Q)$. Proof (the grand finale):

• We have $f_{\hat{\varphi}(Q)} = \frac{f_Q \circ \varphi}{h^m}$ and $g_{\hat{\varphi}(Q)} = \frac{g_Q \circ \varphi}{h \circ [m]}$. • Then $e_m^{(1)}(P, \hat{\varphi}(Q)) = \frac{g_{\hat{\varphi}(Q)}(X+P)}{g_{\hat{\omega}(Q)}(X)}$ $=\frac{(g_Q\circ\varphi)(X+P)/(h\circ[m])(X+P)}{(g_Q\circ\varphi)(X)/(h\circ[m])(X)}$ $=\frac{g_Q(\varphi(X)+\varphi(P))}{g_Q(\varphi(X))}\cdot\frac{h(mX)}{h(mX+mP)}$ $=\frac{g_Q(Y+\varphi(P))}{g_Q(Y)}=e_m^{(2)}(\varphi(P),Q) \text{ where } Y=\varphi(X).$ Now that we have given a more natural construction of the Weil pairing on E[m], we can extend this pairing to the Tate module by taking inverse limits.

Now that we have given a more natural construction of the Weil pairing on E[m], we can extend this pairing to the Tate module by taking inverse limits.

- Explicitly, for a prime $l \neq \operatorname{char}(k)$, we have a Weil pairing $e_{I^d} : E[I^d] \times E[I^d] \rightarrow \mu_{I^d}$.
- The Tate module is formed using the inverse system $E[I] \stackrel{[I]}{\leftarrow} E[I^2] \stackrel{[I]}{\leftarrow} E[I^3] \stackrel{[I]}{\leftarrow} E[I^4] \stackrel{[I]}{\leftarrow} \cdots$.
- The corresponding inverse system on *I*-power roots of unity is $\mu_{I} \stackrel{l}{\leftarrow} \mu_{I^{2}} \stackrel{l}{\leftarrow} \mu_{I^{3}} \stackrel{l}{\leftarrow} \mu_{I^{4}} \stackrel{l}{\leftarrow} \cdots$, where the map $I : \mu_{I^{d+1}} \to \mu_{I^{d}}$ is the *I*th-power map.
- Those certainly look fairly consistent!

The Weil Pairing, XVIII: I'm Fine If You Are

But what does the inverse limit of the groups μ_{I^d} look like?

- Hence, by selecting consistent choices of generators for the I^d -power roots of unity (i.e., generators $\zeta_1, \zeta_2, \ldots, \zeta_d, \ldots$ with $\zeta_{d+1}^I = \zeta_d$), which is equivalent to selecting a topological generator of $\mu_{I^{\infty}}$, we may view the Weil pairing as taking its values in \mathbb{Z}_I .

It remains to show that the inverse-limit structure of \mathbb{Z}_l is consistent with the inverse-limit structure of the Tate module.

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and I be a prime with $I \neq char(k)$. Then the Weil pairings $e_{I^d} : E[I^d] \times E[I^d] \rightarrow \mu_{I^d}$ extend to a pairing $e : T_I[E] \times T_I[E] \rightarrow \varprojlim_d \mu_{I^d} \cong \mathbb{Z}_I$.

This <u>I-adic Weil pairing</u> is bilinear, alternating, nondegenerate, Galois-equivariant, and the dual of an isogeny behaves as an adjoint.

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and I be a prime with $I \neq \operatorname{char}(k)$. Then the Weil pairings $e_{I^d} : E[I^d] \times E[I^d] \to \mu_{I^d}$ extend to a pairing $e : T_I[E] \times T_I[E] \to \varprojlim_d \mu_{I^d} \cong \mathbb{Z}_I$.

This <u>I-adic Weil pairing</u> is bilinear, alternating, nondegenerate, Galois-equivariant, and the dual of an isogeny behaves as an adjoint.

- The Weil pairings e_{l^d} are compatible with the inverse limit $\varprojlim_{d} \mu_{l^d}$, since by the compatibility and bilinearity properties we have $e_{l^{d+1}}(P, Q)^l = e_{l^d}([l]P, Q)^l = e_l([l]P, [l]Q)$.
- The other properties follow by taking the inverse limit of the properties we showed earlier.

Proving The Weil Conjectures For Elliptic Curves, I

The *I*-adic Weil pairing provides the final ingredient for proving the Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves)

Let E be an elliptic curve defined over the finite field \mathbb{F}_q of characteristic p and let φ be the qth-power Frobenius map. Then the following hold:

- For any prime I ≠ p, if ψ_l is the image of φ under the l-adic Galois representation ρ_l : Gal(k/F) → Aut[T_l(E)], then det(ψ_l) = deg φ and tr(ψ_l) = 1 + deg(φ) - deg(1 - φ).
- 2. The determinant and trace of ψ_l are integers that are are independent of *l*, and the characteristic polynomial $\det(T - \psi_l) = T^2 - \operatorname{tr} \psi_l T + \det \psi_l$ has two complex-conjugate roots of absolute value \sqrt{q} .

The *I*-adic Weil pairing provides the final ingredient for proving the Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves, continued)

Let E be an elliptic curve defined over the finite field \mathbb{F}_q of characteristic p and let φ be the qth-power Frobenius map. Then the following hold:

- 3. For any $n \ge 1$, $\#E(\mathbb{F}_{q^n}) = q^n + 1 \alpha^n \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .
- 4. The zeta function $\zeta_{C}(T) = \frac{(1 \alpha T)(1 \beta T)}{(1 T)(1 qT)}$ for some complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

Proving The Weil Conjectures For Elliptic Curves, III

1. For any prime $l \neq p$, if ψ_l is the image of φ under the *l*-adic Galois representation $\rho_l : \operatorname{Gal}(k/F) \to \operatorname{Aut}[T_l(E)]$, then $\det(\psi_l) = \deg \varphi$ and $\operatorname{tr}(\psi_l) = 1 + \deg(\varphi) - \deg(1 - \varphi)$.

<u>Proof</u>:

Proving The Weil Conjectures For Elliptic Curves, III

For any prime *I* ≠ *p*, if ψ_l is the image of φ under the *I*-adic Galois representation ρ_l : Gal(k/F) → Aut[*T_l*(E)], then det(ψ_l) = deg φ and tr(ψ_l) = 1 + deg(φ) - deg(1 - φ).

- Choose a Z_l-basis {v, w} for T_l(E): then the matrix associated to ψ_l with respect to this basis is some 2 × 2 matrix [^a/_c ^b/_d], meaning that ψ_l(v) = av + cw and ψ_l(w) = bv + dw.
- Using the *l*-adic Weil pairing we then have
 e(v, w)^{deg φ} = e([deg φ]v, w) = e((φ̂ ∘ φ)v, w) = e(φv, φw) =
 e(av + cw, bv + dw) = e(v, w)^{ad-bc} = e(v, w)^{det ψ_l} using the
 bilinearity, adjoint, and alternating properties. But now since
 e is nondegenerate, we must have deg φ = det ψ_l.
- In the same way, $\deg(1-\varphi) = \det(1-\psi)$. Finally, $\operatorname{tr}(\psi_l) = 1 + |\begin{smallmatrix}a&b\\c&d\end{smallmatrix}| - |\begin{smallmatrix}1-a&-b\\-c&1-d\end{smallmatrix}| = 1 + \deg(\varphi) - \deg(1-\varphi).$

Proving The Weil Conjectures For Elliptic Curves, IV

2. The determinant and trace of ψ_l are integers that are are independent of l, and the characteristic polynomial $\det(T - \psi_l) = T^2 - \operatorname{tr} \psi_l T + \det \psi_l$ has two complex-conjugate roots of absolute value \sqrt{q} .

Proving The Weil Conjectures For Elliptic Curves, IV

2. The determinant and trace of ψ_l are integers that are are independent of *l*, and the characteristic polynomial $\det(T - \psi_l) = T^2 - \operatorname{tr} \psi_l T + \det \psi_l$ has two complex-conjugate roots of absolute value \sqrt{q} .

- The first part is immediate from (1), since deg φ and deg (1φ) are both fixed integers.
- Now, for any rational number m/n, we have $\det(m/n - \psi_l) = \det(m - n\psi_l)/n^2 = \deg(m - n\varphi)/n^2 \ge 0$ since isogenies have nonnegative degree.
- Hence by continuity, the characteristic polynomial det(T ψ_I) is nonnegative on ℝ, so it cannot have distinct real roots: thus its roots α and β are complex conjugates (possibly equal), and since their product is deg φ = q, each has absolute value √q as claimed.

3. For any $n \ge 1$, $\#E(\mathbb{F}_{q^n}) = q^n + 1 - \alpha^n - \beta^n$ for some complex conjugates α and β of absolute value \sqrt{q} .

For any n ≥ 1, #E(F_{qⁿ}) = qⁿ + 1 − αⁿ − βⁿ for some complex conjugates α and β of absolute value √q.

Proof:

- As we noted in our earlier discussion of the Weil conjectures, $P \in E(\overline{\mathbb{F}_{q^n}})$ if and only if $\varphi^n(P) = P$ if and only if $P \in \ker(1 - \varphi^n)$.
- Then since $(1 \varphi^n)^* \omega = \omega$ the map $1 \varphi^n$ is separable, so $\#E(\mathbb{F}_{q^n}) = \# \ker(1 \varphi^n) = \deg(1 \varphi^n).$
- Now since φⁿ is the qⁿth-power Frobenius map, applying (1) to it yields

 $\deg(1-\varphi^n) = 1 + \deg(\varphi^n) - \operatorname{tr}(\psi_l^n) = 1 + q^n - \alpha^n - \beta^n \text{ for some complex conjugates } \alpha \text{ and } \beta \text{ of absolute value } \sqrt{q}.$

Proving The Weil Conjectures For Elliptic Curves, VI

4. The zeta function $\zeta_C(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}$ for some complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

Proving The Weil Conjectures For Elliptic Curves, VI

4. The zeta function $\zeta_C(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}$ for some complex conjugates α and β of absolute value \sqrt{q} . As an immediate consequence, the Weil conjectures hold for E.

• By definition and (2), we have
$$\ln \zeta_C(T)$$

$$= \sum_{n=1}^{\infty} \#E(\mathbb{F}_{q^n}) \frac{T^n}{n}$$

$$= \sum_{n=1}^{\infty} (1^n + q^n - \alpha^n - \beta^n) \frac{T^n}{n}$$

$$= -\ln(1 - T) - \ln(1 - qT) + \ln(1 - \alpha T) + \ln(1 - \beta T).$$
• Exponentiating yields $\zeta_C(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}.$

We introduced the Weil pairing and established many of its properties.

We used the properties of the Weil pairing to prove the Weil conjectures for elliptic curves.

Next lecture: The endomorphism ring.