Math 7359 (Elliptic Curves and Modular

Forms)

Lecture #17 of 24 ~ November 6, 2023

The Weil Pairing and the Weil Conjectures (Again)
@ The Weil Pairing
@ Properties of the Weil Pairing

@ Proof of the Weil Conjectures for Elliptic Curves



Recall

Recall the Tate module:

Definition
Let E be an elliptic curve and | be a prime. The [-adic Tate
module of E is the Z;-module T;(E) = I'LndE[ld].

The elements of the Tate module consist of sequences of points
(P1, P2, P3, Py,...) such that IPy.1 = P4 for each d > 0, where
we think of Py = O.



Recall

Recall the Tate module:

Definition

Let E be an elliptic curve and | be a prime. The [-adic Tate
module of E is the Z;-module T;(E) = I'LndE[ld].

The elements of the Tate module consist of sequences of points

(P1, P2, P3, Py,...) such that IPy.1 = P4 for each d > 0, where
we think of Py = O.

@ When / # char(k), when we apply the inverse limit
construction starting with generators P and Q of E[/], we
obtain topological generators for T;(E) yielding a group
isomorphism T;(E) = Z; x 7.



Motivation for the Weil Pairing, |

The remaining ingredient for our plan in proving the Weil
conjectures is to find an analogue of an inner product structure
associated to the action of the Galois group on Aut[T(E)].

@ As with our construction of the Tate module, we will do this

by constructing a pairing on the components E[/9] used in the
inverse limit construction of T;(E).

@ Indeed, for no additional cost, we can construct the pairing on
E[m].



Motivation for the Weil Pairing, |

The remaining ingredient for our plan in proving the Weil
conjectures is to find an analogue of an inner product structure
associated to the action of the Galois group on Aut[T(E)].

@ As with our construction of the Tate module, we will do this
by constructing a pairing on the components E[/9] used in the
inverse limit construction of T;(E).

@ Indeed, for no additional cost, we can construct the pairing on
E[m].

e Fix a positive integer m > 2 not divisible by p = char(k).

@ Since we are being informal and lazy for now, we may as well
choose a basis {P, Q} of E[m], yielding an isomorphism
E[m]| = (Z/mZ) x (Z/mZ).

@ Then elements are of the form aP + bQ for a,b € Z/mZ.



Motivation for the Weil Pairing, I

A natural pairing with many convenient properties is

(aP + bQ, cP + dQ) = 2 2 = ad — bc (mod m).

@ For instance, the pairing is bilinear, alternating, and
nondegenerate, all of which are properties we would want for
something analogous to an inner product.




Motivation for the Weil Pairing, I

A natural pairing with many convenient properties is

(aP + bQ, cP + dQ) = 2 2 = ad — bc (mod m).

@ For instance, the pairing is bilinear, alternating, and
nondegenerate, all of which are properties we would want for
something analogous to an inner product.

@ Of course this pairing does not take values in a field unless m
is prime, but we can easily deal with this shortcoming by
instead using (aP + bQ, cP + dQ) = (295¢ where ¢ € k is
some primitive mth root of unity.

@ However, this construction relies on several choices (the basis
{P, @} and the mth root of unity ¢). In order to take an
inverse limit, we want to give a more natural pairing that
doesn’t depend on particular choices of basis and generator
for the group of mth roots of unity.



Motivation for the Weil Pairing, Il

So let's try to do something more canonical.

e First, for any Q € E[m], since the divisor m[Q] — m[O] has
degree 0 and the sum of points resolves to the identity on E,
it is principal: say m[Q] — m[O] = div(fg), for a function
fo € k(C) unique up to scaling.

o We claim that the divisor [m]*Q — [m]* O is also principal.



Motivation for the Weil Pairing, Il

So let's try to do something more canonical.

e First, for any Q € E[m], since the divisor m[Q] — m[O] has
degree 0 and the sum of points resolves to the identity on E,
it is principal: say m[Q] — m[O] = div(fg), for a function
fo € k(C) unique up to scaling.

o We claim that the divisor [m]*Q — [m]* O is also principal.

@ To see this choose any Q' € [m]_lQ: then by definition we
have [m]*Q — [m]"O = X geg(m([Q" + R] — [R]) which is
also principal since it has degree 0 and the underlying sum of
points is Y- ge g @ = [M’]Q = [m]Q = O.

@ This means [m]*Q — [m]*O = div(gq) for some function gg
that is unique up to scaling.



Motivation for the Weil Pairing, 1V

We have div(fg) = m[Q] — m[O] and div(gg) = [m]*Q — [m]*O.



Motivation for the Weil Pairing, 1V

We have div(fg) = m[Q] — m[O] and div(gg) = [m]*Q — [m]*O.
o Then div(gd) = > regym(MIQ" + R] — m[R]) and also
div(fo o [m]) = > re(m(m[Q" + R] — m[R]).
® Thus gg and fg o [m] have the same divisor, meaning that

they differ by a nonzero scalar factor (since the divisor of their
ratio is zero, hence is constant).

@ Hence by rescaling fg, we may assume that fg o [m] = g



Motivation for the Weil Pairing, 1V

We have div(fg) = m[Q] — m[O] and div(gg) = [m]*Q — [m]*O.

Then div(gd) = > greg[m(m[Q + R] — m[R]) and also
div(fg o [m]) = > rep[m (Mm@ + R] — m[R]).

Thus g3 and fq o [m] have the same divisor, meaning that
they differ by a nonzero scalar factor (since the divisor of their
ratio is zero, hence is constant).

Hence by rescaling fo, we may assume that fg o [m] = gg.
Now suppose we have some other point P € E[m].

Then for any X € E, we see that

8Q(X + P)™ = fo([m]X + [m]P) = fo([m]X) = go(X)™.
Thus, as long as gg(X) is not zero or oo, the ratio

go(X + P)/gq(X) is some mth root of unity.



Motivation for the Weil Pairing, V

Exercise: Suppose h € k(E) is a rational function that takes only
finitely many values on E. Show that h is constant. (Note as
always that k is algebraically closed.)

@ By the exercise, since go(X + Q)/gq(X) € k(E) takes only
finitely many values, it must in fact be constant, so it is
independent of X.

@ Furthermore, since g is defined uniquely up to a constant
factor, the ratio go(X + P)/gq(X) is independent of the
specific choice of g.

@ Thus, we obtain a well-defined pairing
em(P, Q) = go(X + P)/gq(X) from E[m] x E[m] to the
multiplicative group of mth roots of unity
um=4{C € k:{™=1}in k.



The Weill Pairing, |

This pairing is called the Weil pairing:

Let E/k be an elliptic curve and m > 2 be an integer not divisible
by p = char(k).

The Weil pairing em, : E[m] x E[m] — pm, is defined as follows: for
any P, Q € E[m], choose any gq € k(C) such that

div(gq) = [m]*Q — [m]* O, and then define

em(P, Q) = go(X + P)/gq(X) for any X € E such that the ratio
is defined.

From our discussion above, the definition of e, (P, Q) is
independent from the specific choice of the function gp and from
the choice of the point X where the ratio is evaluated.



The Weil Pairing, |l

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing)
Let E be an elliptic curve and m > 2 be an integer not divisible by
p = char(k), with ep, : E[m] x E[m] — pn, the Weil pairing on E.
Then the following hold:
1. (Bilinearity) We have ey (P1 + P2, Q) = em(P1, Q)em(P2, Q)
and em(P, Q1 + QZ) = em(P; Ql)em(P7 Q2)
2. (Alternating) We have e, (P, P) =1 for all P € E[m], or
equivalently, e,,(P, Q) = en(Q, P)~! for all P,Q € E[m].
3. (Nondegeneracy) If em(P, Q)=1 for all P€ E[m] then Q=O.

4. (Galois-equivariance) If E is defined over F, then for any
o € Gal(k/F) we have en(cP,0Q) = olem(P, Q)].




The Weil Pairing, Il

And now, briskly into the properties:

Proposition (Properties of the Weil Pairing, continued)
Let E be an elliptic curve and m > 2 be an integer not divisible by
p = char(k), with ey, : E[m] x E[m] — pm, the Weil pairing on E.
Then the following hold:
5. (Compatibility) For any P € E[mm'] and Q € E[m] we have
emm (P, Q) = em([mM']P, Q).
6. (Surjectivity) For any mth root of unity (p,, there exist
P, Q € E[m] with en(P, Q) = (m-
7. (Adjoints) For any isogeny ¢ : Ey — Ey and any P € E1[m]
and Q € Ex[m], we have eV (P, 3(Q)) = 2 (¢(P), Q)
where e\l) is the Weil pairing on E;.




The Weil Pairing, IV

1. (Bilinearity 1) We have
em(Pl + P27 Q) — em(Ph Q)em(P27 Q)

Proof:



The Weil Pairing, IV

1. (Bilinearity 1) We have
em(Pl + P27 Q) — em(Ph Q)em(P27 Q)

Proof:

X+ P+ P
e We have em(P1+p27Q):gQ( + P11+ 2):

PP gatx s ) S0

8Q 1 2) 8Q 2) ]

gQ(X + P2) ’ gQ(X) - em(P17 Q)em(P27 Q) since

8e(X+ P+ P2)  go(Y+P1)
8o(X + P2) go(Y)

for Y =X + P».




The Weil Pairing, IV: Wasn't the Last One V7

1. (Bilinearity 2) em(P, Q1 + Q2) = em(P, Q1)em(P, @2).

Proof:



The Weil Pairing, IV: Wasn't the Last One V7

1. (Bilinearity 2) em(P, Q1 + Q2) = em(P, Q1)em(P, @2).

Proof:
o Let Q3 = Q1+ @ and take f;, g; with div(f;) = m[Q;] — m[O]
and div(gj) = [m]* Qi — [m]* O so that f;o[m] = g/" for each i.
@ Since the divisor [Q3] — [@Q2] — [@1] + [O] has degree 0 and
resolves to the identity, it is div(h) for some h.



The Weil Pairing, IV: Wasn't the Last One V7

L. (Bilinearity 2) em(P, Q1 + Q2) = em(P, Q1)em(P, Q2).
Proof:

o Let @3 = Q1+ @ and take f;, g; with div(f;) = m[Q,] — m[O]
and div(gj) = [m]* Qi — [m]* O so that f;o[m] = g/" for each i.

@ Since the divisor [Q3] — [@Q2] — [@1] + [O] has degree 0 and
resolves to the identity, it is div(h) for some h.

@ Then div(f3) — div(fif2) = mdiv(h), so f3 = cffLh™ for some
scalar c. Composing with [m] gives gf" = f3 o [m]
= (chih™) o [m] = c(fy o [m])(f2 © [m])(h o [m])™ =
cgi"gy (ho [m])™ so g3 = c’g1g2(h o [m]) for some ¢’.

@ Now we have

X+P c'g1(X+P)ga(X+P)h([mX+[m]P
em(P, Q1+ Q) = ng(3 X)) = <&l cgl)(g)2<()g2(X)) é[[m]]X) I=®) —

glg(ﬁ;f) ng(Q)E;;J) = em(P, Q1)em(P, Q2), where

h([m]X + [m]P) = h([m]X) since P € E[m].




The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have en(P, P) =1 for all P € E[m], or
equivalently, e, (P, Q) = em(Q, P)~! for all P,Q € E[m].

Proof:

e Take f, g with div(f) = m[P] — m[O] and
div(g) = [m]*P — [m]*O with g™ = f o [m].



The Weil Pairing, IV: No, We're Not Doing This Again

2. (Alternating) We have en(P, P) =1 for all P € E[m], or

equivalently, e, (P, Q) = em(Q, P)~! for all P,Q € E[m].
Proof

e Take f, g with div(f) = m[P] — m[O] and
div(g) = [m]*P — [m]*O with g™ = f o [m].

@ Now for each k, let 7_xp : E — E be the translation map
T_kp(X) = X — kP and also take fy = f o 7_p.

@ Then div(f o 7_xp) = m[(1 + k)P] — m[kP] since composing
with 7_xp simply translates zeroes and poles by kP.

e Then div(fyfy - - - fn—1) = 0 since the divisor sum telescopes,
meaning that the product ff; - - - f,_1 is constant.

@ Then for gx = g o 7_ps for any P’ with [m]P" = P, we see

that (gog1 - - gm—1)" = (fofi - - - fm—1) o [m] is constant
whence gpgi - - - gn—1 is constant.



The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have e, (P, P) =1 for all P € E[m], or
equivalently, e, (P, Q) = en(Q, P)~! for all P,Q € E[m].
Proof (continued):
@ Then for gx = g o 7_yps for any P" with [m]P' = P, we see
that (gog1 -~ &m-1)" = (fofi -+ - fm—1) o [m] is constant
whence gogi - - - gm—1 is constant.



The Weil Pairing, VI: Wait, Where's V?

2. (Alternating) We have e, (P, P) =1 for all P € E[m], or

equivalently, e, (P, Q) = en(Q, P)~! for all P,Q € E[m].
Proof (continued):

@ Then for gx = g o 7_yps for any P" with [m]P' = P, we see
that (gog1 -~ &m-1)" = (fofi -+ - fm—1) o [m] is constant
whence gpgi - - - &n—1 is constant. This means
g(X)g(X + P) -+ g(X + (m — 1)P')
= 8o(X)g1(X) - - - gm-1(X)
=g X+ P)g(X+P) - gma(X+P)
=g(X+ P)Hg(X+2P")---g(X+ mP)
and so cancelling the common terms yields
g(X) = g(X + mP") = g(X + P), whence en(P,P) = 1.

@ For the second statement we have 1 = e,,(P+ Q,P+ Q) =
em(P, P)em(P, Q)em(Q, P)em(Q, Q) = em(P, Q)em(Q, P)

using bilinearity.



The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If e, (P, Q)=1 for all P€ E[m] then Q=0.

Proof:
e Take fg, gg with div(fg) = m[Q] — m[O] and
div(gq) = [m]*Q — [m]*O with g@ = fq o [m].
@ Suppose en(P, Q) =1 for all P € E[m], meaning that
8(X + P) = go(X) for all P € E[m].



The Weil Pairing, V: Oh, Okay

3. (Nondegeneracy) If e, (P, Q)=1 for all P€ E[m] then Q=0.
Proof:

e Take fg, gg with div(fg) = m[Q] — m[O] and
div(gq) = [m]*@ — [m]* O with g& = fq o [m].

@ Suppose en(P, Q) =1 for all P € E[m], meaning that
8(X + P) = go(X) for all P € E[m].

@ This means gg o 7p = gq for all translation maps 7p with
P € E[m]. But as we have shown, these translation maps are
the elements of the Galois group of the extension
k(E)/[m]*k(E) via the map = sending P — 7p.

@ Hence gq is Galois-invariant, so it is an element of the base
field [m]*k(E), meaning go = h o [m] for some h € k(E).

o But now fg o [m] = g3 = h™ o [m] so fq = h".

e So div(fg) = mdiv(h) so div(h) = [Q] — [O]. Then [Q] —[O]
is principal so it resolves to the identity: thus @ = O.



The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F, then for any
o € Gal(k/F) we have ey(cP,0Q) = olem(P, Q)].
Proof:
o Take fg,gq with div(fg) = m[Q] — m[O] and
div(gg) = [m]*Q — [m]* O with gg =fqo [m].



The Weil Pairing, VI: But Now You Did VI Twice

4. (Galois-equivariance) If E is defined over F, then for any
o € Gal(k/F) we have en(cP,0Q) = aglem(P, Q)].

Proof:

o Take fg,gq with div(fg) = m[Q] — m[O] and
div(gg) = [m]*Q — [m]* O with gg =fqo [m].

@ Then div(cfg) = m[c Q] — m[O] and
div(ogg) = [m]*cQ — [m]*O and (0gq)™ = (ofg) o [m] since
the Galois action carries through on divisors and functions, so
we have f,q = ofg and g,Q = 0gq.

-1
o Then en(oP,0Q) = &q(X +0P) _ o8l ﬁ* P)_
8-Q(X) ogq(o~1X)

M =0ole where =g 1
a[ 20(Y) ] [em(P, Q)] where Y X.




The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any P € E[mm’] and Q € E[m] we have
emm' (P, Q) = em([M']P, Q).
Proof:
o Take fg, g with div(fg) = m[Q] — m[O] and
div(gg) = [m]*Q — [m]* O with gl =fgo [m].



The Weil Pairing, VII: We're Just Ignoring Double VI?

5. (Compatibility) For any P € E[mm’] and Q € E[m] we have

emm (P, Q) = em([m']P, Q).
Proof:

o Take fg, g with div(fg) = m[Q] — m[O] and
div(gq) = [m]* @ — [m]*O with g@ = fq o [m].

@ Then div(fé’”) = mm'[Q] — mm'[O] and
(go o [m)™" = (fg o [m)™"

@ Hence ey (P, Q) = (g o [M])(X + P) =

e om0
gum m =en([m )
gmpx)  mtmin@




The Weil Pairing, VIII: | Guess So, Apparently

6. (Surjectivity) For any mth root of unity (s, there exist
P, Q € E[m] with en(P, Q) = (m.

Proof:



The Weil Pairing, VIII: | Guess So, Apparently

6. (Surjectivity) For any mth root of unity (s, there exist

P, Q € E[m] with en(P, Q) = (m.
Proof:

e By (1) and (2), the image of ey, : E[m] X E[m] — pim is a
subgroup of ttp,.

@ Suppose the image has order d|m. Then for all P and Q we
have e, (P, @)Y = 1, which by (1) says that e,(P, [d]Q) = 1.

e By non-degeneracy, this implies [d]Q = O for all Q € E[m],
which can only happen when d = m. Hence ¢, is onto.




The Weil Pairing, VIII: | Guess So, Apparently

6. (Surjectivity) For any mth root of unity (s, there exist

P, Q € E[m] with en(P, Q) = (m.
Proof:

e By (1) and (2), the image of ey, : E[m] X E[m] — pim is a
subgroup of ttp,.

@ Suppose the image has order d|m. Then for all P and Q we
have e, (P, @)Y = 1, which by (1) says that e,(P, [d]Q) = 1.

e By non-degeneracy, this implies [d]Q = O for all Q € E[m],
which can only happen when d = m. Hence ¢, is onto.

Exercise: Suppose E is defined over F and E[m] C E(F). Show
that F contains the mth roots of unity.

Exercise: Suppose E is defined over Q and p > 2 is a prime. Show
that the p-torsion subgroup of E(Q) is either cyclic or trivial.



The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny ¢ : E; — E; and any P € Ej[m]
and Q € Ep[m], we have el (P, 3(Q)) = e (¢(P), Q)
where e,(,;) is the Weil pairing on E;.

Proof:

o Take fg, g with div(fg) = m[Q] — m[O] and
div(gq) = [m]*@Q — [m]*O with g@ = fq o [m].

e First, we want to construct f5Q) and gy(q)-



The Weil Pairing, VI: Oh No, Not A Third One

7. (Adjoints) For any isogeny ¢ : E; — E; and any P € Ej[m]
and Q € Ex[m], we have el (P, 3(Q)) = e (¢(P), Q)
where e,(,';) is the Weil pairing on E;.

Proof:

e Take fg, g with div(fgp) = m[Q] — m[O] and
div(gg) = [m]*Q — [m]* O with g4 =fqo [m].

e First, we want to construct f5Q) and gy(q)-

@ Observe that ¢*[Q] — ¢*[0] — [¢(Q)] + [O] € Div(E) is
principal on Ej since it has degree 0 and the sum of points
resolves to zero, since @(Q) is defined to be the sum
> @ep-1(Q) Q — 2Rrep—1(0) R and these are exactly the
points in the sum for ¢*[Q] and ¢*[O] respectively.

@ So choose h with div(h) = ¢*[Q] — ¢*[O] — [¢(Q)] + [O].



The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny ¢ : E; — E; and any P € E;[m]
and Q € Ex[m], we have e (P, 3(Q)) = e (4(P), Q).
Proof (continued):
o Take fq,gq with div(fg) = m[Q] — m[O] and g7 = fq o [m]
and div(h) = ¢*[Q] — ¢*[0] — [¢(Q)] + [O].



The Weil Pairing, IV: Okay, Now This Is Just Silly

7. (Adjoints) For any isogeny go E; — E; and any P € E;[m)]
and Q € E5[m], we have eX)(P, 3(Q)) = &) (¢(P), Q).
Proof (continued):
o Take fq,gq with div(fg) = m[Q] — m[O] and g7 = fq o [m]
and div(h) = ¢*[Q] — ¢*[0] — [4(Q)] + [O].
e Now, we have div(fg o p) = p*div(fg) = mp*[Q] — my*[O]
by properties of ¢*, and so div [f‘;ﬁo} = m[$(Q)] — m[O],

meaning that we may take f@(Q) = L,’,?f-

@ To find a corresponding gy(q) we can observe that

o[m] = wi om = f@olmlop _ &gy _(gow>'"
~ hmo[m]  hmo[m] \ ho[m]

so we may take gz(q) =



The Weil Pairing, XVI: Wait, Is XVI Actually Correct?

7. (Adjoints) For any isogeny cp E; — E; and any P € Ej[m]
and Q € Ex[m], we have e2) (P, 3(Q)) = %) (¢(P), Q).
Proof (the grand finale):

oy
ho[m]

o We have f5q) = b ? and 8p(Q) =

8(Q)(X + P)

82(@)(X)
(ho[m])(X + P)

/
é(ho [m)(X)

o Then ey )( o(Q
_ (8o ¢)(X +P)
(gq ° ¢)(X)

_ 8e(p(X) + ¢(P) h(mX
go(o(X) h(mX + mP)

)
_M_e@) where Y =
=gy = o (#(P). Q) where ¥ = p(X).

) =




The Weil Pairing, XVII: Let's Just Say This Is Right

Now that we have given a more natural construction of the Weil
pairing on E[m], we can extend this pairing to the Tate module by
taking inverse limits.



The Weil Pairing, XVII: Let's Just Say This Is Right

Now that we have given a more natural construction of the Weil
pairing on E[m], we can extend this pairing to the Tate module by
taking inverse limits.

e Explicitly, for a prime / # char(k), we have a Weil pairing
e : E[19] x E[19] = puya.
@ The Tate module is formed using the inverse system
! I I I
e ey B e B 2.
@ The corresponding inverse system on /-power roots of unity is
I I I I
I T R
where the map / : pjar1 — pa is the [th-power map.

@ Those certainly look fairly consistent!



The Weil Pairing, XVIII: I'm Fine If You Are

But what does the inverse limit of the groups ;4 look like?

@ By choosing a specific root of unity as generator and making
consistent choices the inverse system becomes

212 2)Pz 7Bz L 7)fz <L - which (by using
the isomorphism 1Z/19117 = 7,/197 via dividing
representatives by /) is equivalent to our inverse system
7N E 2 )P E TP & TP E - for 7.

Hence, by selecting consistent choices of generators for the
I9-power roots of unity (i.e., generators (1,(2,...,(q,... with
C(’,H = (y4), which is equivalent to selecting a topological
generator of pij, we may view the Weil pairing as taking its
values in Z;.

It remains to show that the inverse-limit structure of Z; is
consistent with the inverse-limit structure of the Tate module.



The Weil Pairing, XIX

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and | be a prime with | # char(k).
Then the Weil pairings eja : E[I9] x E[I9] — 4 extend to a
pairing e : T|[E] x T|[E] — I(iLnd,u,d ~ 7.

This [-adic Weil pairing is bilinear, alternating, nondegenerate,
Galois-equivariant, and the dual of an isogeny behaves as an
adjoint.

Proof:



The Weil Pairing, XIX

Proposition (Weil Pairing on Tate Module)

Let E/k be an elliptic curve and | be a prime with | # char(k).
Then the Weil pairings eja : E[I9] x E[I9] — 4 extend to a
pairing e : T|[E] x T|[E] — I(iﬂmd,u,d ~ 7.

This [-adic Weil pairing is bilinear, alternating, nondegenerate,
Galois-equivariant, and the dual of an isogeny behaves as an
adjoint.

Proof:
@ The Weil pairings e« are compatible with the inverse limit
Q@du,d, since by the compatibility and bilinearity properties
we have eu:1(P, Q) = eu([|P, Q) = &/([N]P, [ Q).
@ The other properties follow by taking the inverse limit of the
properties we showed earlier.
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The /-adic Weil pairing provides the final ingredient for proving the
Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves)

Let E be an elliptic curve defined over the finite field F, of
characteristic p and let ¢ be the qth-power Frobenius map. Then
the following hold:

1. For any prime | £ p, if 1 is the image of @ under the [-adic
Galois representation p; : Gal(k/F) — Aut[T;(E)], then
det(¢))) = deg ¢ and tr(v)) = 1 + deg(yp) — deg(1 — ¢).

2. The determinant and trace of i are integers that are are
independent of |, and the characteristic polynomial
det(T — 1) = T? — trep; T + det 1)y has two
complex-conjugate roots of absolute value \/q.
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The /-adic Weil pairing provides the final ingredient for proving the
Weil conjectures for elliptic curves:

Theorem (Weil Conjectures for Elliptic Curves, continued)

Let E be an elliptic curve defined over the finite field F, of

characteristic p and let p be the qth-power Frobenius map. Then
the following hold:

3. Foranyn>1, #E(Fq)=q"+1—a" — " for some
complex conjugates o and (3 of absolute value |/q.
(1—aT)(1-pT)
(L-T)(1—qT)
complex conjugates a and (3 of absolute value \/q. As an
immediate consequence, the Weil conjectures hold for E.

4. The zeta function (c(T) = for some
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1. For any prime | # p, if ¢, is the image of ¢ under the /-adic
Galois representation p; : Gal(k/F) — Aut[T;(E)], then
det();) = deg v and tr(¢)) = 1 + deg(p) — deg(1 — ¢).

Proof:
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1. For any prime | # p, if ¢, is the image of ¢ under the /-adic
Galois representation p; : Gal(k/F) — Aut[T;(E)], then
det();) = deg v and tr(¢)) = 1 + deg(p) — deg(1 — ¢).

Proof:

@ Choose a Z-basis {v,w} for T;(E): then the matrix

associated to 1); with respect to this basis is some 2 x 2 matrix
2 b1, meaning that ¢(v) = av + cw and ¢;(w) = bv + dw.

@ Using the /-adic Weil pairing we then have
e(v, w)i8¢ = e([deg v, w) = e((Pop)v, w) = e(pv,pw) =
e(av + cw, bv + dw) = e(v, w)?=b¢ = e(v, w)4et ¥ using the
bilinearity, adjoint, and alternating properties. But now since
e is nondegenerate, we must have deg ¢ = det ;.

@ In the same way, deg(1 — ) = det(1 — ¢). Finally,
tr(v) = 1+ [25] = 172 2% = 1+ deg() — deg(1 — ¢).
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2. The determinant and trace of v, are integers that are are
independent of /, and the characteristic polynomial
det(T — ;) = T2 — tryy T + det 4 has two
complex-conjugate roots of absolute value ,/q.

Proof:
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2. The determinant and trace of v, are integers that are are
independent of /, and the characteristic polynomial
det(T — ;) = T2 — tryy T + det 4 has two
complex-conjugate roots of absolute value ,/q.

Proof:

@ The first part is immediate from (1), since deg ¢ and
deg(1 — ) are both fixed integers.

e Now, for any rational number m/n, we have
det(m/n — 1) = det(m — mp;)/n? = deg(m — ny)/n*> >0
since isogenies have nonnegative degree.

@ Hence by continuity, the characteristic polynomial det(T — 1))
is nonnegative on R, so it cannot have distinct real roots:
thus its roots o and 3 are complex conjugates (possibly
equal), and since their product is deg ¢ = g, each has
absolute value /g as claimed.
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3. Forany n>1, #E(Fqn) =q"+1—a" — 3" for some
complex conjugates o and [ of absolute value /q.

Proof:
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3. Forany n>1, #E(Fqn) =q"+1—a" — 3" for some

complex conjugates o and [ of absolute value /q.
Proof:

@ As we noted in our earlier discussion of the Weil conjectures,
P € E(Fgn) if and only if ¢"(P) = P if and only if
P € ker(1 — ¢").

@ Then since (1 — ¢")*w =w the map 1 — ¢
#E(Fqgn) = #ker(1 — ¢") = deg(1 — ¢").

@ Now since ¢" is the g"th-power Frobenius map, applying (1)
to it yields
deg(l — ¢") = 1+ deg(¢") — tr(y)]) =1+ q" —a" — 3" for
some complex conjugates o and 3 of absolute value /q.

" is separable, so
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(1—aT)(1-8T)
(L1-=T)1—qT)
complex conjugates a and 3 of absolute value /q. As an
immediate consequence, the Weil conjectures hold for E.

for some

4. The zeta function (c(T) =

Proof:



Proving The Weil Conjectures For Elliptic Curves, VI

(1—aT)(1-8T)
(L1-=T)1—qT)
complex conjugates a and 3 of absolute value /q. As an
immediate consequence, the Weil conjectures hold for E.

for some

4. The zeta function (c(T) =

Proof:
@ By definition and (2), we have In(c(T)
o) TN
= Z #E(Fq”)
n=1
=Yg —a - )L
_ "_:|1n(1 —T)=In(1=qgT)+In(1—aT)+In(1-BT).
e Exponentiating yields (¢(T) = (21 T))((l _qBT?



Summary

We introduced the Weil pairing and established many of its
properties.

We used the properties of the Weil pairing to prove the Weil
conjectures for elliptic curves.

Next lecture: The endomorphism ring.



