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Recall, I

Recall first our results on the m-torsion subgroup of an elliptic
curve.

Theorem (The m-Torsion Subgroup)

Let m be a nonzero integer and E be an elliptic curve over k.

9. If char(k) does not divide m then the m-torsion subgroup
E [m] is isomorphic to (Z/mZ)× (Z/mZ).

10. If char(k) = p, then either E [pd ] = {O} for all d ≥ 1, or
E [pd ] is isomorphic to Z/pdZ for all d ≥ 1.



Hasse Bound Discussion, I

Recall also our proof of the Hasse bound last time:

Theorem (Points on Elliptic Curves over Fq)

Let q = pd be a prime power and let E/Fq be an elliptic curve
defined over Fq.

1. The degree map deg : Hom(E1,E2)→ Z is a positive-definite
quadratic form.

2. The Frobenius map ϕ = Frobq has the property that 1− ϕ is
separable.

3. (Hasse Bound) The number of points on E (Fq) satisfies
|#E (Fq)− q − 1| ≤ 2

√
q.

Exercise: Verify the Hasse bound for E : y2 = x3 + 4x + 1 over
F3, F5, F7, F11, and F13 (optionally, also over F9, F25, and F27).
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Hasse Bound Discussion, II

We can give some intuition for why we might expect an inequality
like the Hasse bound to hold.

Assuming characteristic not equal to 2 for simplicity, consider
a Weierstrass equation y2 = p(x) for E .

For each of the q possible finite values of x , there are either 2,
1, or 0 possible values of y , according to whether x is a
nonzero square, zero, or a nonsquare.

Since the squaring map x 7→ x2 is a homomorphism with
kernel {±1} in Fq, there are (q − 1)/2 nonzero squares and
(q − 1)/2 nonsquares, so the expected number of values of y
for any given x is equal to 1.

Since there are q possible x , the expected number of finite
points (x , y) is q, so together with the point at ∞, this gives
an expected q + 1 points on E (Fq).
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Hasse Bound Discussion, III

We can also recast the Hasse bound in terms of a character sum.

Explicitly, let χ denote the quadratic character on Fq (it is 0
on 0, 1 on squares, and −1 on nonsquares), and let E have a
Weierstrass equation y2 = x3 + Ax + B.

Then since the number of solutions to y2 = c is 1 + χ(c),
summing over the possible values of x shows that
#E (Fq) = q + 1 +

∑
x∈Fq

χ(x3 + Ax + B).

The Hasse bound then represents the improvement on the
character sum estimate |

∑
x∈Fq

χ(x3 + Ax + B)| from the
trivial bound q to the asymptotically far better 2

√
q.

This kind “square-root cancellation” as it is known to analytic
number theorists is a fairly typical strong estimate on
character sums of this type.

We can also give some statistical motivation for why this estimate
on the deviation is somewhat reasonable.
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Hasse Bound Discussion, IV

Exercise: Suppose X is the sum of q Bernoulli random variables
each of which takes the values 0 and 2 each with probability 1/2.
Show that the standard deviation of X is

√
q.

If we approximate the point-count on E as the sum of q
independent coin flips each of which yields 0 or 2 points, then
by the exercise above, the standard deviation in the total
number of points would be

√
q.

The Hasse bound thus says our count will always be within 2
standard deviations of its mean q + 1.

Of course, this is only a heuristic, since the actual variables
themselves are not independent, but it’s useful for seeing why
the results come out near

√
q.



Zeta Functions, I

Perhaps surprisingly, the error estimate in the Hasse bound is
actually tied to much deeper results related to the Riemann
hypothesis for algebraic varieties, via the Weil conjectures.

To explain how, we first define the zeta function of a variety.

Definition

Let q be a prime power and V be a smooth projective variety
defined over the field Fq. For each n ≥ 1, define an = #V (Fqn) to
be the number of points of V that lie in the extension field Fqn .

Then the zeta function of V is defined to be the power series

ζV (T ) = exp

[ ∞∑
n=1

an
T n

n

]
.



Zeta Functions, II

Note ζV (T ) = exp

[ ∞∑
n=1

an
T n

n

]
for an = #V (Fqn).

Example: Find the zeta function for V = P1.

We have an = qn + 1 for each n.

Thus ζP1(T ) = exp(
∑∞

n=1

(qT )n

n
+
∑∞

n=1
T n

n ) =

exp(− ln(1− qT )− ln(1− T )) =
1

(1− qT )(1− T )
using the

usual series expansion − ln(1− T ) =
∑∞

n=1
T n

n .
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Zeta Functions, III

Exercise: Find ζV (T ) for V = Pn and for P1 × P1.

It is not especially clear from this definition why exactly we call

ζV (T ) = exp

[ ∞∑
n=1

#V (Fqn)
T n

n

]
the the zeta function of V .

Some obvious questions:

Why does it have an exponential in it?

What does it have to do with other zeta functions?

Why divide by n instead of just using
∑

anT n like in a normal
generating function?
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Zeta Functions, IV

Let me try to explain why this actually deserves to be called a zeta
function using some motivation for when V = C is a curve:

Proposition (Sum Formula for Zeta Function)

Suppose C is a smooth projective curve defined over Fq and let bn
be the number of effective divisors D ≥ 0 of degree n in the divisor
group DivFq(C ).

Then the zeta function ζC (T ) equals
∑∞

n=0 bnT n.

Recall some facts about divisors defined over Fq:

The degree of a point P ∈ C (Fq) is defined to be the degree
of the field extension Fq(P)/Fq.

The divisor over Fq associated to a point P is the sum
div(P) =

∑
σ∈Gal(Fq(P)/Fq)

σ(P), which has degree deg(P).
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Zeta Functions, V

Proposition: ζC (T ) equals
∑∞

n=0 bnT n where bn is the number of
effective divisors of degree n in DivFq(C ).

Proof (part 1):

Note that any effective divisor D ≥ 0 in DivFq(C ) is of the
form

∑
P∈C(Fq)

nPdiv(P) for nonnegative integers nP , and the

degree of this divisor is
∑

P∈C(Fq)
nP deg(P).

So by the usual properties of generating functions, we have∑∞
n=0 bnT n =

∏
P∈C(Fq)

(1 + T degP + T 2 degP + · · · )
=

∏
P∈C(Fq)

(1− T degP)−1 as a formal power series.

Why? Formally multiply out the middle product. Each divisor∑
P∈C(Fq)

nPdiv(P) of total degree n yields one term T n.
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Zeta Functions, VI

Proof (part 2):

So we have
∑∞

n=0 bnT n =
∏

P∈C(Fq)
(1− T degP)−1.

Then ln[
∑∞

n=0 bnT n] = −
∑

P∈C(Fq)
ln(1− T degP)

=
∑

P∈C(Fq)

∑∞
k=1

T k deg P

k , whose coefficient of T n is the sum∑
P∈C(Fq) : k deg(P)=n

1
k =

∑
P∈C(Fq) : deg(P)|n

deg(P)
n .

When we “glue” all of the deg(P) Galois-conjugate points
σ(P) together, this evaluates to
1

n
#{P ∈ C (Fq) : deg(P)|n} =

1

n
#C (Fqn) =

an
n

, where the

first equality follows from the fact that an element of Fq lies
in Fqn if and only if its degree divides n.

Thus, ln(
∑∞

n=0 bnT n) =
∑∞

n=0 an
T n

n . Exponentiate.
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Zeta Functions, VII

Now we can explain the analogy for why the zeta function is called
a zeta function.

From the sum formula, we have

ζV (T ) =
∑∞

n=0 bnT n =
∑

D≥0 T deg(D) =
∑

D≥0
1

N(D)s

where N(D) = q− deg(D) and T = q−s .
This latter expression is the analogue of the Riemann zeta

function’s definition ζ(s) =
∑

n≥1
1

ns
.

The idea is that effective divisors on C are the natural analogue of
the positive integers, and that the norm function N(D) gives the
proper “size” of a divisor.

Also, the points in C (Fq) are the analogues of the primes
showing up in the Euler product ζ(s) =

∏
p(1− p−s)−1,

analogous to the Euler product ζC (T ) =
∏

P(1− q−s degP)−1

worked out in the proposition.
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The Weil Conjectures, I

Theorem (Weil Conjectures)

Let V be a smooth projective variety of dimension n defined over
Fq with associated zeta function ζC (T ). Then:

1. (Rationality) ζC (T ) is a rational function of T . Specifically,

ζC (T ) =
∏2n

i=0 pi (T )(−1)
i+1

=
p1(T )p3(T ) · · · p2n−1(T )

p0(T )p2(T ) · · · p2n(T )
for

appropriate polynomials pi (T ) ∈ 1 + TZ[T ], where
p0(T ) = 1− T , p2n(T ) = 1− qnT , and
pi (T ) =

∏
j(1− αi ,jT ) for some αi ,j ∈ C.

2. (Functional Equation / Poincaré Duality) The zeta function
has a functional equation ζC (q−nT−1) = ±qnE/2TE ζC (T ),
where E = 2− 2g is the Euler characteristic of V . In
particular, the map α 7→ qn/α maps the zeroes of pi to the
zeroes of p2n−i .



The Weil Conjectures, II

Theorem (Weil Conjectures, Continued)

Let V be a smooth projective variety of dimension n defined over
Fq with associated zeta function ζC (T ). Then:

3. (Riemann Hypothesis) With

ζC (T ) =
∏2n

i=0 pi (T )(−1)
i+1

=
p1(T )p3(T ) · · · p2n−1(T )

p0(T )p2(T ) · · · p2n(T )
, for

each i , j , the inverse zeroes αi ,j of pi have |αi ,j | = qi/2.
Equivalently, with T = q−s , all of the zeroes of pk(T ) lie on
the line Re(s) = k/2.

4. (Betti Numbers) If V is the reduction modulo p̃ = char(Fq)
of a smooth variety X defined over an algebraic number field,
then the degree of pi is the ith Betti number of the space
X (C) of complex points on X .



The Weil Conjectures, III

The Weil conjectures have a long history. Here is a brief summary
of some of it:

In the early 1800s, Gauss identified some components of these
general results in particular examples for certain curves, in the
context of counting points on elliptic curves modulo p.

In 1924, Artin conjectured the general results for curves and
Hasse independently proved the results for elliptic curves.

In 1949, Weil formulated the general statement of the Weil
conjectures (he had previously established Artin’s conjectured
statements in the case of curves).

Establishing the Weil conjectures in full took the development
of about 20 more years of algebraic geometry machinery:
Dwork proved (1) in 1960, while Grothendieck proved (1), (2),
and (4) in the 1960s, and Deligne finished (3) in 1973.



The Weil Conjectures, IV

In the specific case n = 1 (i.e., for curves), the Weil conjectures
read as follows:

1. ζC (T ) =
LC (T )

(1− T )(1− qT )
for some polynomial

LC (T ) =
∏

j(1− αjT ).

2. For ξC (T ) = T g−1ζC (T ), we have ξC (q−1T−1) = ξC (T ).

3. The roots of LC all have |αj | = q−1/2.

4. The degree of LC is 2g .

Exercise: Verify the Weil conjectures for C = P1.

Exercise: Show that for elliptic curves, the Weil conjectures are

equivalent to the statement that ζC (T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
where α and β are complex conjugates of absolute value

√
q.
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The Weil Conjectures, V

Let’s unwind the statement that ζC (T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
where α and β are complex conjugates of absolute value

√
q.

Suppose for the moment the statement above is true.

Then ln ζC (T )
= − ln(1− T )− ln(1− qT ) + ln(1− αT ) + ln(1− βT )

=
∑∞

n=1

1n + qn − αn − βn

n
T n, and so we have

#E (Fqn) = 1 + qn − αn − βn for some complex conjugates α
and β of absolute value

√
q.

Notice that when n = 1, this says #E (Fq) = 1 + q − α− β
where α and β are complex conjugates of absolute value

√
q,

meaning that |#E (Fq)− q − 1| = 2|Re(α)| ≤ 2
√

q: precisely
the statement of the Hasse bound!
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The Weil Conjectures, VI

So, how could we try to prove the Weil conjectures? As with the
proof of the Hasse bound, we need to convert things to a
statement about the qth-power Frobenius map ϕ.

First, we observe that P ∈ Fq lies in Fqn if and only if P is
fixed by ϕn if and only if P ∈ ker(1− ϕn).

Thus, #E (Fqn) = # ker(1− ϕn) = deg(1− ϕn) since 1− ϕn

is separable by the same argument used in (2) of the Hasse
bound proof.

From properties of duals, we have

[deg(1− ϕn)] = ̂(1− ϕn) ◦ (1− ϕn) = (1− ϕ̂n) ◦ (1− ϕn)
= [1]− ϕn − ϕ̂n + ϕ̂n ◦ ϕn = [1]− ϕn − ϕ̂n + [qn].

This is fairly close to the result we want: we would just need
to show that ϕn + ϕ̂n = [αn + βn] where α and β are complex
conjugates of absolute value

√
q.
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The Weil Conjectures, VII

So how could we show that ϕn + ϕ̂n = [αn + βn] where α and β
are complex conjugates of absolute value

√
q?

Let’s play a game
of “pretend these objects are things we understand better”:

Specifically, let’s pretend ϕ is a linear transformation on a
complex vector space and that ϕ̂ is its adjoint with respect to
an inner product.

Then the sum ϕn + ϕ̂n would represent the trace tr(ϕn) of
the linear transformation ϕn, which by basic linear algebra
equals the sum of the nth powers of the eigenvalues of ϕ.

So we would obtain a statement of the desired form if ϕ had
exactly 2 eigenvalues (i.e., if ϕ were an operator on a
2-dimensional vector space) that were complex conjugates of
absolute value

√
q.
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Specifically, let’s pretend ϕ is a linear transformation on a
complex vector space and that ϕ̂ is its adjoint with respect to
an inner product.

Then the sum ϕn + ϕ̂n would represent the trace tr(ϕn) of
the linear transformation ϕn, which by basic linear algebra
equals the sum of the nth powers of the eigenvalues of ϕ.

So we would obtain a statement of the desired form if ϕ had
exactly 2 eigenvalues (i.e., if ϕ were an operator on a
2-dimensional vector space) that were complex conjugates of
absolute value
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Tate Module Preamble, I

Of course, our little game of pretend isn’t remotely legitimate. But
let’s see if we can use the core idea to get close enough to give a
real proof.

Although ϕ is a linear transformation, it acts on the field Fq

of characteristic p.

In order to make statements about eigenvalues that are
complex numbers, we would need to have an action of ϕ on
something in characteristic 0.

So let’s now discuss how to construct an object in
characteristic 0 on which ϕ has a natural 2-dimensional
representation.

In fact, for no extra charge, we will construct this object on which
Galois automorphisms (like the Frobenius map) and isogenies (like
the Frobenius map) both act quite naturally.



Tate Module Preamble, I

Of course, our little game of pretend isn’t remotely legitimate. But
let’s see if we can use the core idea to get close enough to give a
real proof.

Although ϕ is a linear transformation, it acts on the field Fq

of characteristic p.

In order to make statements about eigenvalues that are
complex numbers, we would need to have an action of ϕ on
something in characteristic 0.

So let’s now discuss how to construct an object in
characteristic 0 on which ϕ has a natural 2-dimensional
representation.

In fact, for no extra charge, we will construct this object on which
Galois automorphisms (like the Frobenius map) and isogenies (like
the Frobenius map) both act quite naturally.



Tate Module Preamble, II

So let E be an elliptic curve defined over the field F with algebraic
closure k as usual, and let σ ∈ G = Gal(k/F ) be any
automorphism in the Galois group.

Since E is defined over F , σ maps points of E to other points
of E , and indeed σ is a group homomorphism from E to E
since the addition law of points in F is defined over F as well.

For any P ∈ E [m], we have [m]σ(P) = σ([m]P) = σ(O) = O,
and so G acts on E [m].

Since for any integer m not divisible by p = char(Fq), the
m-torsion subgroup E [m] is isomorphic to (Z/mZ)× (Z/mZ),
this means G has a group action on (Z/mZ)× (Z/mZ),
which is to say, we have a representation
G → Aut[(Z/mZ)× (Z/mZ)] ∼= GL2(Z/mZ).
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Tate Module Preamble, III

This is a 2-dimensional representation of the Galois group, which is
at least in the right direction for what we want, but we really need
a representation in characteristic 0, not characteristic m.

To do that, we can exploit the fact that we have
representations for all integers m, not just individual ones.

Since by the Chinese remainder theorem, the action of the
representation is completely determined by the action on the
prime-power torsion groups, it’s enough to instead study the
behavior on the l-power torsion subgroups E [ld ] for l 6= p,
which are isomorphic to (Z/ldZ)× (Z/ldZ).

We may glue the l-power torsion groups E [ld ] together in a
natural way using inverse limits using the fairly simple
observation that if P is an ld -torsion point, then [l ]P is an
ld−1-torsion point.
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Inverse Limits, I

In order to motivate this, let’s warm up with a simpler example:
constructing the ring Zl of l-adic integers.

Consider the inverse system
Z/lZ π← Z/l2Z π← Z/l3Z π← Z/l4Z π← · · · of rings with
projection maps π : Z/ld+1Z→ Z/ldZ given by the natural
projection (i.e., reduction modulo ld).

The elements of the inverse limit Zl of this system are tuples
(b1, b2, b3, b4, . . . ) such that π(bd+1) = bd for each d , which
is to say, bd+1 ≡ bd (mod ld).

If we take the unique representative for each bi with
0 ≤ bi < l i , then we have bd+1 = bd + ad ld for some unique
integer ad+1 ∈ {0, 1, 2, . . . , l − 1}.
So we can think of the elements as infinite base-l expansions
a0 + a1l + a2l2 + a3l3 + · · · for appropriate digits
ai ∈ {0, 1, . . . , l − 1}.
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Inverse Limits, II

Then Zl is a ring via componentwise addition and
multiplication since the projections π are all ring
homomorphisms. (The resulting ring operations are simply
that of base-l arithmetic on the resulting digits.)

In particular, note that Zl has characteristic zero.

Indeed, Zl also inherits a metric space topology (the l-adic
topology) from the natural l-adic valuation vl(

∑
ai l

i ) given
by the minimal power i with ai 6= 0. (Intuitively, two points
are close together under this topology when their expansions
agree for many terms.)

We also mention that there is another standard way to construct
Zl : namely, as the completion of Z under the l-adic metric. (See
HW4.)



Inverse Limits, III

We may use a very similar inverse limit construction on the torsion
groups E [ld ].

Consider the inverse system

E [l ]
[l ]← E [l2]

[l ]← E [l3]
[l ]← E [l4]

[l ]← · · · of groups whose
elements are tuples (P1,P2,P3,P4, . . . ) with Pd ∈ E [ld ] and
where [l ]Pd+1 = Pd .

One may think of these tuples as being obtained by starting
with the identity O and then successively choosing inverse
images P1, P2, P3, P4, ... under the multiplication-by-l map.

Since all of the maps are group homomorphisms, the set of
such tuples is a group under componentwise addition: it is the
inverse limit lim←−dE [ld ].

Indeed, since each E [ld ] is a (Z/ldZ)-module, the inverse
limit actually carries a Zl -module structure, and hence also
inherits the l-adic topology.
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The Tate Module, I

The inverse limit we just constructed is called the Tate module:

Definition

Let E be an elliptic curve and l be a prime. The l-adic Tate
module of E is the Zl -module Tl(E ) = lim←−dE [ld ].

To emphasize, the elements of the Tate module consist of
sequences of points (P1,P2,P3,P4, . . . ) such that lPd+1 = Pd for
each d ≥ 0, where we think of P0 = O.

When l 6= char(k), when we apply the inverse limit
construction starting with generators P and Q of E [l ], we
obtain topological generators for Tl(E ) yielding a group
isomorphism Tl(E ) ∼= Zl × Zl .

When l = char(k) we instead have Tl(E ) ∼= Zl or 0,
according to whether E [ld ] ∼= Z/ldZ or 0, respectively.
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The Tate Module, II

Now, returning to our discussion, if E is defined over F and
σ ∈ Gal(k/F ), then σ acts naturally on the Tate module via
σ(P1,P2,P3, . . . ) = (σP1, σP2, σP3, . . . )

Since this action is clearly a group action, it yields a
representation of Gal(k/F ) on Aut[Tl(E )].

In fact, since the Galois group acts continuously on each
component E [ld ] of the inverse limit (rather trivially, since it
is a profinite group and they are all discrete groups), the
Galois action is also continuous.
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The Tate Module, III

Definition

Let E be an elliptic curve defined over the field F with algebraic
closure k, and let l 6= char(k) be a prime.

The l-adic Galois representation associated to E is the map
ρl : Gal(k/F )→ Aut[Tl(E )] defined by
ρl(σ)(P1,P2,P3, . . . ) = (σP1, σP2, σP3, . . . ).

Since l 6= char(k) we know that Tl(E ) is isomorphic to
Zl × Zl , so Aut[Tl(E )] is isomorphic to
Aut(Zl × Zl) ∼= GL2(Zl).
Now, Zl is not a field, but it is an integral domain, so it
embeds in its field of fractions Ql = Zl [l

−1], and so by
embedding GL2(Zl) inside GL2(Ql), we obtain a
2-dimensional representation of Gal(k/L) over a field of
characteristic zero. (At last, progress!)
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The Tate Module, IV

Since isogenies also commute with the multiplication-by-l maps,
they also act on Tate modules.

Explicitly, suppose ϕ : E1 → E2 is an isogeny. Then since
ϕ ◦ [l ] = [l ] ◦ ϕ, the action of ϕ induces a natural map of
Zl -modules ϕl : Tl(E1)→ Tl(E2) via
ϕl(P1,P2,P3, . . . ) = (ϕ(P1), ϕ(P2), ϕ(P3), . . . ).

Since the componentwise action is clearly additive in the
isogeny ϕ, we obtain a group homomorphism
Ψ : Hom(E1,E2)→ Hom(Tl(E1),Tl(E2)).

Exercise: Show that when E1 = E = E2, the action
Ψ : End(E )→ End(Tl(E )) with Ψ(ϕ) mapping
(P1,P2,P3, . . . ) ∈ Tl(E ) to (ϕ(P1), ϕ(P2), ϕ(P3), . . . ) ∈ Tl(E ) is
a ring homomorphism.



The Tate Module, V

Indeed, when Tl(E1) 6= 0, which we know occurs whenever
l 6= char(k), this homomorphism Ψ : End(E )→ End(Tl(E )) is
injective.

To see this suppose that ϕ ∈ ker(Ψ) so that ϕ(Tl(E1)) = 0,
which is equivalent to saying that E [ld ] ∈ kerϕ for all d . In
particular, kerϕ is infinite: but as we showed, nonzero
isogenies have a finite kernel, and so we must have ϕ = 0.

In fact, a much stronger statement is actually true:

Proposition (Isogeny Action on Tate Modules)

The natural map Hom(E1,E2)⊗ Zl → Hom(Tl(E1),Tl(E2))
defined by mapping ϕ⊗ 1 7→ ϕl and then extending Zl -linearly, is
injective.
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Summary

We introduced dual isogenies and established many of their
properties.

We used dual isogenies to establish the Hasse bound.

Next lecture: The Weil conjectures, the Tate module.


