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Dual Isogenies, I

Our goal now is to show that “being isogenous” is an equivalence
relation on elliptic curves.

Since being isogenous is reflexive and transitive as we have
already noted, it remains to show that every nonzero isogeny
ϕ : E1 → E2 induces some other nonzero isogeny ϕ̂ : E2 → E1.

To see that this “dual isogeny” exists, we exploit the
contravariant nature of the map ϕ∗ : Div(E2)→ Div(E1).

Specifically, because ϕ∗ scales degrees by degϕ, as we showed
earlier, it maps Div0(E2) into Div0(E1), and therefore it
descends onto a well-defined map ϕ∗ : Pic0(E2)→ Pic0(E1).

But as we also showed, the group operation in Pic0(E ) is
isomorphic to the group law on E (namely, via the map
sending a point P ∈ E to the divisor class [P]− [O]), and so
by composing these isomorphisms appropriately, we obtain a
group homomorphism ϕ̂ : E2 → E1.
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Dual Isogenies, II

To see that this “dual isogeny” exists, we exploit the contravariant
nature of the map ϕ∗ : Div(E2)→ Div(E1).

Specifically, because ϕ∗ scales degrees by degϕ, as we showed
earlier, it maps Div0(E2) into Div0(E1), and therefore it
descends onto a well-defined map ϕ∗ : Pic0(E2)→ Pic0(E1).

But as we also showed, the group operation in Pic0(E ) is
isomorphic to the group law on E (namely, via the map
sending a point P ∈ E to the divisor class [P]− [O]), and so
by composing these isomorphisms appropriately, we obtain a
group homomorphism ϕ̂ : E2 → E1.

Of course, it is not at all obvious that this group homomorphism ϕ̂
is actually an isogeny, since there are very many possible
homomorphisms between the point groups, most of which will not
be defined by rational functions.



Dual Isogenies, III

Let’s work out exactly what this map does to a point Q ∈ E2:

First, we map Q to the divisor class [Q]− [O].

Then we apply ϕ∗ and (3) to obtain

degi ϕ
(∑

P∈ϕ−1(Q)[P]−
∑

R∈ϕ−1(O)[R]
)

.

Finally we must resolve this sum to write it in the form
[S ]− [O]: the result is then S .

By our results from equivalence of divisors, we can just sum
everything using the group law: this yields

S = degi ϕ
(∑

P∈ϕ−1(Q) P −
∑

R∈ϕ−1(O) R
)

.

Since ϕ−1(Q) = {P + R : R ∈ ϕ−1(O)} for any fixed
P ∈ ϕ−1(Q), the difference is simply [degi ϕ ·#ϕ−1(Q)]P.
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Dual Isogenies, IV

So, to summarize, this map ϕ̂ : E2 → E1 maps a point Q ∈ E2 to
[degϕ]P where P is any point in ϕ−1(Q).

Note that this description of ϕ̂ is well posed: regardless of
which representative P ∈ ϕ−1(Q) is chosen, since the
difference between any of these representatives lies in
ϕ−1(O) = kerϕ.

Equivalently, this says ϕ̂(ϕ(P)) = [degϕ]P for all P ∈ E1,
meaning that the composition ϕ̂ ◦ ϕ is simply the
multiplication-by-[degϕ] map on E1.

The whole point of this calculation (aside from giving an explicit
description of what this map would look like) is that this last
description actually provides us with a way to prove that ϕ̂ actually
is an isogeny: we can use the universal property (9) of isogenies.
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Dual Isogenies, V

So, let’s go through the details:

Theorem (Existence of Dual Isogenies)

Let ϕ : E1 → E2 be a nonconstant isogeny.

1. If ϕ is separable, then there exists a unique isogeny
ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ is multiplication by degϕ on E1.

2. If char(k) = p > 0 and Frobp is the pth-power Frobenius
morphism Frobp : E → E (p), then there exists a unique

isogeny F̂robp : E (p) → E such that F̂robp ◦ Frobp is
multiplication by p = deg(Frobp) on E .

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1. This isogeny is called the dual isogeny
of ϕ.



Dual Isogenies, VI

1. If ϕ is separable, then there exists a unique isogeny
ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ is multiplication by degϕ on E1.

Proof:

Let ψ = [degϕ] be the multiplication-by-degϕ map on E1 and
E3 = E1. Then since # kerϕ = degϕ, by Lagrange’s theorem
we see that kerϕ ⊆ kerψ.

Now by the universal property (7) of separable isogenies, there
exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = ψ = [degϕ], as claimed.



Dual Isogenies, VI
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Dual Isogenies, VII

2. If char(k) = p > 0 and Frobp is the pth-power Frobenius
morphism Frobp : E → E (p), then there exists a unique

isogeny F̂robp : E (p) → E such that F̂robp ◦ Frobp is
multiplication by p = deg(Frobp) on E .

Proof:

Let ω be the invariant differential on E .

By property (13) of isogenies we see that [p]∗ω = pω = 0, so
[p] is not separable since it is not injective on differentials.

Hence by property (9) of isogenies, we may factor [p] as
[p] = α ◦ Frobq where q = degi [p] = pd for some integer
d ≥ 1 (note d ≥ 1 because [p] is not separable).

Then since Frobq = (Frobp)d we see that
[p] = α ◦ (Frobp)d−1 ◦ Frobp.

We can then take ϕ̂ = α ◦ (Frobp)d−1.
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Dual Isogenies, VIII

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1.

Discussion:

We emphasize here that this statement is equivalent to the
one we worked out earlier as motivation for the construction
for ϕ̂: namely, for any P ∈ C1, with Q = ϕ(P) we have
ϕ̂(Q) = [degϕ]P.

So the point of this result is to complete the claim made at
the end of that discussion: namely, that the map we
constructed using the action of ϕ∗ on divisor groups actually
gives rise to an isogeny from E2 to E1, not just a group
homomorphism.
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Dual Isogenies, VIII

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1.

Proof (existence):

By property (9) of isogenies, we may decompose
ϕ = α ◦ Frobq = α ◦ (Frobp)d where α is separable.

By (1) there exists an isogeny α̂ with α̂ ◦ α = [degα] and by

(2) there exists an isogeny F̂robp with

F̂robp ◦ Frobp = [degFrobp].

Then for ϕ̂ = (F̂robp)d ◦ α̂ we have ϕ̂ ◦ ϕ =

(F̂robp)d ◦ α̂ ◦α ◦ (Frobp)d = (F̂robp)d ◦ [degα] ◦ (Frobp)d =

[degα] ◦ (F̂robp)d ◦ (Frobp)d = [degα][degFrobp]d = [degϕ].
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Dual Isogenies, IX

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1.

Proof (uniqueness):

For uniqueness, suppose ϕ̃ ◦ ϕ = [degϕ] = ϕ̂ ◦ ϕ.

Then (ϕ̃− ϕ̂) ◦ ϕ = 0.

Taking degrees yields deg(ϕ̃− ϕ̂) degϕ = 0, so since
degϕ 6= 0 that means deg(ϕ̃− ϕ̂) = 0 whence ϕ̃ = ϕ̂.



More Dual Isogenies, I

We will now establish some additional properties of dual isogenies,
which will allow us in particular to understand the kernel of the
multiplication-by-m map on an elliptic curve E more explicitly.

Since the kernel of [m] is just the group of m-torsion points,
this will represent substantial progress in our understanding of
the group structure of E , since the torsion subgroup of E is
simply the union of the m-torsion subgroups for m ≥ 1.



Notational Interlude

So far, we have been writing and referring to [m] as “the
multiplication-by-m map”, and I haven’t heard any objections.

However, this is a mild abuse of notation, because the
multiplication-by-m map is different on each elliptic curve.

Morally, all of these maps behave exactly the same way, and
because isogenies are all group homomorphisms, it’s kosher to
view all of them as equivalent.

But just to be safe, do this
exercise, then explain why it justifies our abuse of notation:

Exercise: Show that for any integer m and any isogeny
ϕ : E1 → E2, we have [m]E2 ◦ ϕ = ϕ ◦ [m]E1 .

We have also been calling all of the Frobenius maps the same
name (though that’s even more justifiable because they’re all
literally the same function: the pth-power map). You should also
convince yourself that this is acceptable.
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More Dual Isogenies, I

Theorem (More With Dual Isogenies)

Let ϕ : E1 → E2 be a nonconstant isogeny and ϕ̂ : E2 → E1 be its
dual isogeny.

4. We have ϕ ◦ ϕ̂ = [degϕ] on E2.

5. For any isogenies ϕ : E1 → E2 and ψ : E2 → E3 we have

ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

7. For any nonzero integer m we have [̂m] = [m] and
deg[m] = m2.

8. We have deg ϕ̂ = degϕ and ˆ̂ϕ = ϕ.



More Dual Isogenies, II

4. We have ϕ ◦ ϕ̂ = [degϕ] on E2.

Proof:

Notice that ϕ̂ ◦ ϕ ◦ ϕ̂ = [degϕ] ◦ ϕ̂ = ϕ̂ ◦ [degϕ] by (3) and
the fact that the multiplication-by-m maps “commute” with
all isogenies per the exercise earlier.

Thus, ϕ̂ ◦ (ϕ ◦ ϕ̂− [degϕ]) = 0.

So by taking degrees as usual we see that since ϕ̂ 6= 0 we have
ϕ ◦ ϕ̂ = [degϕ].
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More Dual Isogenies, III

5. For any isogenies ϕ : E1 → E2 and ψ : E2 → E3 we have

ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

Proof:

Observe that (ϕ̂ ◦ ψ̂) ◦ (ψ ◦ ϕ) = ϕ̂ ◦ [ψ̂ ◦ ψ] ◦ ϕ =
ϕ̂ ◦ [degψ] ◦ ϕ = [degψ][degϕ] = [degψ ◦ ϕ].

Since the dual isogeny is unique by (3), we must have

ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.
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More Dual Isogenies, IV

6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

Discussion:

The proof of this result is rather involved.

Why? The difficulty is that the definition of the dual isogeny
ϕ̂ does not play especially nicely with addition.

Specifically, we have ϕ̂(Q) = [degϕ]P for any P ∈ ϕ−1Q,
while ψ̂(Q) = [degψ]P ′ for any P ′ ∈ ψ−1(Q) and

ψ̂ + ϕ(Q) = [deg(ϕ+ ψ)](P ′′) for any P ′′ ∈ (ϕ+ ψ)−1(Q).

There is no obvious relation between P, P ′, and P ′′, since
they are preimages of Q under three different isogenies.

So how could we possibly show that
[deg(ϕ+ ψ)](P ′′) = [degϕ]P + [degψ]P ′?
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More Dual Isogenies, V

6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

Discussion, more:

So how could we possibly show that
[deg(ϕ+ ψ)](P ′′) = [degϕ]P + [degψ]P ′?

One approach is to work instead with divisors, and show that
the difference between the two sides resolves to the identity
inside the Picard group.

Equivalently, we want to show that
[deg(ϕ+ ψ)](P ′′)− [degϕ]P − [degψ]P ′ + O is principal
inside Div(E1).

This is better because it’s the same as
(ϕ+ ψ)∗(Q)− ϕ∗(Q)− ψ∗(Q) + O, as a divisor.

To find an f for which this equals div(f ) we will use general
coordinates for P and Q, and then specialize.
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More Dual Isogenies, VI

6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

Proof (part 1):

If ϕ, ψ, or ϕ+ ψ is zero, the result is trivial, so assume all of
them are nonzero.

Let (x1, y1) and (x2, y2) be coordinates on E1.

Because ϕ, ψ, and ϕ+ ψ are all morphisms, ϕ(x1, y1),
ψ(x1, y1), and (ϕ+ ψ)(x1, y1) are all elements of the function
field E2(k(x1, y1)) of E2 over the field k(x1, y1).

Let D be the divisor
[(ϕ+ ψ)(x1, y1)]− [ϕ(x1, y1)]− [ψ(x1, y1)] + [O] on E2 over
k(x1, y1) – in other words, in Divk(x1,y1)(E2) – since it has
degree 0 and the point sum resolves to the identity, it is the
divisor of some function f ∈ k(x1, y1)(E2) = k(x1, y1, x2, y2).

Now we switch emphasis on the coordinates.
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6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

Proof (part 2):

div(f ) = [(ϕ+ ψ)(x1, y1)]− [ϕ(x1, y1)]− [ψ(x1, y1)] + [O] on
E2 over k(x1, y1).

Now consider div(f ) inside the divisor group Divk(x2,y2)(E2) –
i.e., with x2, y2 constant and x1, y1 the variables. Let us
compute the zeroes and poles (and their orders) of f .

If P ∈ E1(k(x2, y2)) is a point with ϕ(P) = (x2, y2), then
since D has the term −[ϕ(x1, y1)] in it, D has a pole at P of
order eϕ(P) by the definition of the ramification index.

In the same way, if Q has ψ(Q) = (x2, y2) then the term
−[ψ(x1, y1)] yields a pole of order eψ(Q) at Q.

Similarly, if R has (ϕ+ ψ)(R) = (x2, y2) then
[(ϕ+ ψ)(x1, y1)] gives a zero of order eϕ+ψ(R) at R.
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Similarly, if R has (ϕ+ ψ)(R) = (x2, y2) then
[(ϕ+ ψ)(x1, y1)] gives a zero of order eϕ+ψ(R) at R.



More Dual Isogenies, VIII

6. For any isogenies ϕ,ψ : E1 → E2 we have ψ̂ + ϕ = ϕ̂+ ψ̂.

Proof (finale):

So that means the divisor of f inside Divk(x2,y2)(E2) has the
form (ϕ+ ψ)∗[(x2, y2)]− ϕ∗[(x2, y2)]− ψ∗[(x2, y2)] +

∑
niPi

for some “constants” Pi ∈ E1(k).

Since this is the divisor of a function, the sum of all the points
resolves to the identity.

Since
∑

niPi is constant and does not depend on (x2, y2) this

means the sum (ϕ̂+ ψ)(x2, y2)− ϕ̂(x2, y2)− ψ̂(x2, y2) is a
constant.

Since it is the identity when (x2, y2) = O, it is always the
identity.
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More Dual Isogenies, IX

7. For any nonzero integer m we have [̂m] = [m] and
deg[m] = m2.

Proof:

We clearly have [̂1] = [1]. Then [̂m] = [m] for positive m
follows by a trivial induction from (6), and for negative m it

follows by noting that [̂−1] = [−1] and using (5).

For the degree of [m] we note that by definition of the dual

isogeny we have [deg[m]] = [̂m] ◦ [m] = [m] ◦ [m] = [m2], and
so deg[m] = m2.
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More Dual Isogenies, X

8. We have deg ϕ̂ = degϕ and ˆ̂ϕ = ϕ.

Proof:

For the first, taking degrees in [degϕ] = ϕ̂ ◦ ϕ and using (7)
yields (degϕ)2 = (deg ϕ̂)(degϕ).

Cancelling yields the desired deg ϕ̂ = degϕ.

For the second, observe by definition that
ˆ̂ϕ ◦ ϕ̂ = [deg ϕ̂] = [degϕ] = ϕ ◦ ϕ̂ on E1.

So since ϕ̂ is nonzero, the usual degree argument shows that
ˆ̂ϕ = ϕ.
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The m-Torsion Subgroup of E , I

Now we can properly study the m-torsion subgroup E [m], since it
is simply the kernel of the multiplication-by-m map [m]:

Theorem (The m-Torsion Subgroup)

Let m be a nonzero integer and E be an elliptic curve over k.

9. For any nonzero integer m, if char(k) does not divide m then
the m-torsion subgroup E [m] is isomorphic to
(Z/mZ)× (Z/mZ).

10. If char(k) = p, then either E [pd ] = {O} for all d ≥ 1, or
E [pd ] is isomorphic to Z/pdZ for all d ≥ 1.

So we see that, aside from some potential drop in the p-power
torsion in characteristic p (which is perhaps unsurprisingly caused
by inseparability), the m-torsion subgroup always has two
generators.



The m-Torsion Subgroup of E , II

9. For any nonzero integer m, if char(k) does not divide m then
the m-torsion subgroup E [m] is isomorphic to
(Z/mZ)× (Z/mZ).

Proof:

By (7), the degree of [m] is m2 and as we have previously
noted using the action on differentials, [m] is separable
whenever char(k) does not divide m.

Therefore, by our properties of isogenies, we see that
#E [m] = # ker[m] = deg[m] = m2.

The specific structural statement then follows essentially
immediately from the structure theorem for finite abelian
groups and the Chinese remainder theorem.



The m-Torsion Subgroup of E , II

9. For any nonzero integer m, if char(k) does not divide m then
the m-torsion subgroup E [m] is isomorphic to
(Z/mZ)× (Z/mZ).

Proof:

By (7), the degree of [m] is m2 and as we have previously
noted using the action on differentials, [m] is separable
whenever char(k) does not divide m.

Therefore, by our properties of isogenies, we see that
#E [m] = # ker[m] = deg[m] = m2.

The specific structural statement then follows essentially
immediately from the structure theorem for finite abelian
groups and the Chinese remainder theorem.



The m-Torsion Subgroup of E , III

9. For any nonzero integer m, if char(k) does not divide m then
the m-torsion subgroup E [m] is isomorphic to
(Z/mZ)× (Z/mZ).

Proof (continued):

Explicitly: for each prime p|m, the group E [p] is an
elementary abelian p-group of order p2, hence is isomorphic to
(Z/pZ)× (Z/pZ).

Then for each prime power pd |m, the group E [pd ] has at
most two components in its decomposition each of which has
order at most pd , but since E [pd ] has order p2d , that means
E [pd ] is isomorphic to (Z/pdZ)× (Z/pdZ).

Finally, E [m] is isomorphic to the product of its prime-power
torsion subgroups, and the product of these is isomorphic to
(Z/mZ)× (Z/mZ).
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Finally, E [m] is isomorphic to the product of its prime-power
torsion subgroups, and the product of these is isomorphic to
(Z/mZ)× (Z/mZ).



The m-Torsion Subgroup of E , IV

In characteristic zero, we can use the previous result to give an
explicit structure for the torsion subgroup Etor, which (we
emphasize again) is for the set of torsion points of E over the
algebraic closure:

Exercise: Show that when char(k) = 0, the group Etor of all
torsion points on E is isomorphic to (Q/Z)× (Q/Z). [Hint: Note
that Etor is the inverse limit of E [n!] as n→∞.]

We will return to this result later when we talk about elliptic curves
over C, where this result will become very geometrically natural.



The m-Torsion Subgroup of E , IV

In characteristic zero, we can use the previous result to give an
explicit structure for the torsion subgroup Etor, which (we
emphasize again) is for the set of torsion points of E over the
algebraic closure:

Exercise: Show that when char(k) = 0, the group Etor of all
torsion points on E is isomorphic to (Q/Z)× (Q/Z). [Hint: Note
that Etor is the inverse limit of E [n!] as n→∞.]

We will return to this result later when we talk about elliptic curves
over C, where this result will become very geometrically natural.



The m-Torsion Subgroup of E , V

10. If char(k) = p, then either E [pd ] = {O} for all d ≥ 1, or
E [pd ] is isomorphic to Z/pdZ for all d ≥ 1.

Proof:

As in (9) we know that deg[pd ] = p2d , but now since p|pd ,
the map [pd ] is inseparable.

If ϕ is the pth-power Frobenius map, then as we showed in
(2), ϕ̂ ◦ ϕ = [p], so (ϕ̂ ◦ ϕ)d = [pd ].

By our properties of isogenies, we have
#E [pd ] = # ker[pd ] = degs [pd ] = degs(ϕ̂ ◦ ϕ)d = degs(ϕ̂)d

because degs ϕ = 1 as ϕ is purely inseparable.

Now, since deg ϕ̂ = degϕ = p by (8), and degs ϕ̂ degi ϕ̂ = p,
we either have degs ϕ̂ = 1 or degs ϕ̂ = p.

In the first case #E [pd ] = 1 for all d , whence E [pd ] = {O}.
In the second case #E [pd ] = pd for all d . Then as in (9), we
see E [pd ] is isomorphic to Z/pdZ.
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The Hasse Bound, I

We can apply these results very fruitfully to establish some
structural statements about the group of points on an elliptic curve
over a finite field. We will need a few facts about quadratic forms.

Recall that if G is an abelian group, a function d : G → Z is a
quadratic form when

1. d(−g) = g for all g ∈ G , and
2. When the pairing 〈·, ·〉 : G × G → Z with
〈g , h〉 = 1

2 [d(g + h)− d(g)− d(h)] is bilinear (i.e., is
Z-linear in both g and h).

We also say that a quadratic form is positive-definite when
d(g) ≥ 0 for all g ∈ G , with equality if and only if g = 0.



The Hasse Bound, II

As might be expected, the Cauchy-Schwarz inequality holds for
positive-definite quadratic forms: 〈g , h〉2 ≤ d(g) d(h).

To prove this note that if d(g) = 0 the result is trivial, and for
d(g) > 0, for all integers a, b we have
a2d(g)− 2ab 〈g , h〉+ b2d(h) = 〈ag − bh, ag − bh〉 =
d(ag − bh) ≥ 0 by bilinearity and positive-definiteness.

Setting a = 〈g , h〉 and b = d(g) then yields
d(g)[d(g)2d(h)− 〈g , h〉2] ≥ 0, and so upon dividing by d(g)
we obtain the desired inequality.
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The Hasse Bound, III

Now we can apply these facts to the Frobenius map to count the
number of points on an elliptic curve over a finite field.

Theorem (Points on Elliptic Curves over Fq)

Let q = pd be a prime power and let E/Fq be an elliptic curve
defined over Fq.

1. The degree map deg : Hom(E1,E2)→ Z is a positive-definite
quadratic form.

2. The Frobenius map ϕ = Frobq has the property that 1− ϕ is
separable.

3. (Hasse Bound) The number of points on E (Fq) satisfies
|#E (Fq)− q − 1| ≤ 2

√
q.



The Hasse Bound, IV

1. The degree map deg : Hom(E1,E2)→ Z is a positive-definite
quadratic form.

Proof:

First, deg(−ϕ) = deg([−1]) deg(ϕ) = deg(ϕ).

Second, the associated pairing
〈ϕ,ψ〉 = deg(ϕ+ ψ)− deg(ϕ)− deg(ψ) is bilinear, because
[〈ϕ,ψ〉] = [deg(ϕ+ ψ)]− [deg(ϕ)]− [deg(ψ)]

= ϕ̂+ ψ ◦ (ϕ+ ψ)− ϕ̂ ◦ ϕ− ψ̂ ◦ ψ
= (ϕ̂+ ψ̂) ◦ (ϕ+ψ)− ϕ̂ ◦ϕ− ψ̂ ◦ψ = ψ̂ ◦ϕ+ ϕ̂+ψ using (6).

But now this last expression is linear in both ϕ and ψ by (6),
so the pairing is bilinear.

Finally, the degree map is clearly positive-definite since
deg(ϕ) ≥ 0 with equality if and only if ϕ = 0.
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The Hasse Bound, V

The degree map as a quadratic form on elliptic curves only having
multiplication-by-m maps is not very exciting: deg[m] = m2, so the
quadratic form is just q(x) = x2 (not too exciting).

Here’s a more interesting example:

Exercise: On the elliptic curve y2 = x3 − x with the isogeny
[i ](x , y) = (−x , iy) discussed previously, for ϕ = [a] + [b][i ] with
a, b ∈ Z, calculate ϕ̂. Use the result to find degϕ and compute
the associated quadratic form.

If you have any kind of sensible guess about what ϕ̂ is, you’re
almost certainly right.
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The Hasse Bound, VI

2. The Frobenius map ϕ = Frobq has the property that 1− ϕ is
separable.

Proof:

By light abuse of notation, we write 1− ϕ instead of [1]− ϕ,
since [1]− ϕ is much uglier to read.

Let ω be the invariant differential on E .

By additivity of inverse image maps on differentials, we have
(1− ϕ)∗ω = [1]∗ω − ϕ∗ω = ω since ϕ∗ω = 0 because ϕ is
inseparable hence is trivial on differentials).

But now since 1− ϕ is nontrivial on differentials, it is
separable.

Exercise: Show more generally that a + bϕ is separable if and only
if the characteristic p does not divide a.
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The Hasse Bound, VII

3. (Hasse Bound) The number of points on E (Fq) satisfies
|#E (Fq)− q − 1| ≤ 2

√
q.

Proof:

By basic Galois theory of finite fields, an element x ∈ Fq lies
in Fq if and only if xq = x , which is to say, if and only if it is
fixed by the qth-power Frobenius map ϕ.

So now if we choose a Weierstrass equation for E over Fq,
since E (q) = E since the coefficients lie in Fq by hypothesis,
we see a point [X : Y : Z ] ∈ E (Fq) if and only if
ϕ(X : Y : Z ) = [X : Y : Z ], which is equivalent to saying that
[X : Y : Z ] ∈ ker(1− ϕ).

Hence #E (Fq) = # ker(1− ϕ).

Let’s now study this quantity.
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The Hasse Bound, VIII

3. (Hasse Bound) The number of points on E (Fq) satisfies
|#E (Fq)− q − 1| ≤ 2

√
q.

Proof:

We have #E (Fq) = # ker(1− ϕ).

By (2), the map 1− ϕ is separable, so
# ker(1− ϕ) = deg(1− ϕ) by our results on isogenies.

By (1), since the degree map is a positive-definite quadratic
form, we may apply the Cauchy-Schwarz inequality to see that
〈1,−ϕ〉2 ≤ deg[1] deg(−ϕ) = q whence |〈1,−ϕ〉| ≤ √q.

Since 〈1,−ϕ〉 = 1
2 [deg(1− ϕ)− deg(−ϕ)− deg(1)] =

1
2 [deg(1− ϕ)− q − 1], applying the results above yields
|#E (Fq)− q − 1| ≤ 2

√
q, as claimed.



The Hasse Bound, VIII
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The Hasse Bound, IX

We can give some intuition for why we might expect an inequality
like the Hasse bound to hold.

Assuming characteristic not equal to 2 for simplicity, consider
a Weierstrass equation y2 = p(x) for E .

For each of the q possible finite values of x , there are either 2,
1, or 0 possible values of y , according to whether x is a
nonzero square, zero, or a nonsquare.

Since the squaring map x 7→ x2 is a homomorphism with
kernel {±1} in Fq, there are (q − 1)/2 nonzero squares and
(q − 1)/2 nonsquares, so the expected number of values of y
for any given x is equal to 1.

Since there are q possible x , the expected number of finite
points (x , y) is q, so together with the point at ∞, this gives
an expected q + 1 points on E (Fq).
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The Hasse Bound, X

We trivially have the inequality |#E (Fq)− q − 1| ≤ q since the
number of points is at least 1 and at most 2q + 1.

Hasse’s bound is therefore a strengthening of the error term
from this “trivial estimate” q to the estimate 2

√
q.

In fact we can give some statistical motivation for why this
estimate on the deviation is somewhat reasonable:

Exercise: Suppose X is the sum of q independent random variables
each of which takes the values 0 and 2 each with probability 1/2.
Show that the standard deviation of X is

√
q.



The Hasse Bound, XI

Exercise: Suppose X is the sum of q Bernoulli random variables
each of which takes the values 0 and 2 each with probability 1/2.
Show that the standard deviation of X is

√
q.

If we approximate the point-count on E as the sum of q
independent coin flips each of which yields 0 or 2 points, then
by the exercise above, the standard deviation in the total
number of points would be

√
q.

The Hasse bound thus says our count will always be within 2
standard deviations of the mean.

Of course, this is only a heuristic, since the actual variables
themselves are not independent, but it’s useful for seeing why
the results come out near

√
q.



Winding Down

Although the Hasse bound may seem to be a rather pedestrian
estimate on the number of points, it is actually quite deep.

The error estimate in the Hasse bound is actually (more or
less exactly) the Riemann hypothesis for elliptic curves.

More precisely, there is a series of conjectures made by Weil,
known as the Weil conjectures, which described various
algebro-geometric results about the zeta functions of algebraic
varieties over finite fields.

The conjectures themselves were proven by Weil, Dwork,
Grothendieck, and Deligne between the 1950s and 1970s.

I will give the statements next time, and we can then show all
of them hold for elliptic curves.



Summary

We introduced dual isogenies and established many of their
properties.

We used dual isogenies to establish the Hasse bound.

Next lecture: The Weil conjectures, the Tate module.


