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More Isogenies

Properties of Isogenies

Dual Isogenies



Recall, I

Recall the actions of ϕ∗ and ϕ∗:

Definition

Let ϕ : C1 → C2 be a nonconstant map of (smooth projective)
curves.

We define the inverse image map ϕ∗ : Div(C2)→ Div(C1) on
divisor groups by setting ϕ∗(Q) =

∑
P∈ϕ−1(Q) eϕ(P)P for all

Q ∈ C2 and extending linearly.

We also define the direct image map ϕ∗ : Div(C1)→ Div(C2) by
setting ϕ∗(P) = ϕ(P) for all P ∈ C1 and extending linearly.

Rather vacuously, both ϕ∗ and ϕ∗ are homomorphisms.



Recall, II

And recall the short version of Riemann-Hurwitz:

Theorem (Riemann-Hurwitz)

Let ϕ : C1 → C2 be a nonconstant separable morphism where C1

and C2 are smooth projective curves of respective genera g1 and g2.

Then 2g1 − 2 ≥ (degϕ)(2g2 − 2) +
∑

P∈C1
[eϕ(P)− 1] with

equality if and only if char(k) - eϕ(P) for any P ∈ C1.

And also isogenies:

Definition

Let (E1,O1) and (E2,O2) be two elliptic curves. An isogeny
ϕ : E1 → E2 is a morphism from E1 to E2 such that ϕ(O1) = O2.
If E1 and E2 are elliptic curves such that there exists a nonzero
isogeny between them, we say they are isogenous.



Properties of Isogenies, I

Now let’s prove some properties of isogenies using all of the results
about morphisms and ramification we have developed:

Proposition (Properties of Isogenies, Part 1)

Let ϕ : E1 → E2 be a nonzero isogeny. Then

1. The map ϕ is a group homomorphism from E1 to E2.

2. For all Q ∈ E2, #ϕ−1(Q) = degs ϕ. In particular,
kerϕ = ϕ−1(O) is a finite subgroup of E1.

3. For all P ∈ E1, the ramification index eϕ(P) = degi ϕ, the
inseparable degree of ϕ.

4. If ϕ is separable then ϕ is everywhere unramified and
# kerϕ = degϕ.



Properties of Isogenies, II

1. The map ϕ is a group homomorphism from E1 to E2.

Discussion:

Since isogenies are the natural maps in the category of elliptic
curves, and elliptic curves carry a natural group structure
(which as we have discussed can be described purely in terms
of the divisor group), the fact that isogenies are group
homomorphisms is quite reasonable.

Indeed, the reason we impose the additional condition that
isogenies map the identity of E1 to the identity of E2 is
precisely to ensure that isogenies are group homomorphisms.
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Properties of Isogenies, III

1. The map ϕ is a group homomorphism from E1 to E2.

Proof:

Let P,Q be points of C1 and O be the identity of C1.

Then by our earlier results, [P + Q]− [P]− [Q] + [O] is a
principal divisor on E1 as it has degree 0 and the underlying
sum of points resolves to the identity on E1.

For div(f ) = [P + Q]− [P]− [Q] + [O], we then have
div(ϕ∗f ) = ϕ∗div(f ) = [ϕ(P +Q)]−[ϕ(P)]−[ϕ(Q)]+[ϕ(O)],
so this latter divisor is principal on E2.

But that implies the resulting sum of points
ϕ(P + Q)− ϕ(P)− ϕ(Q) + ϕ(O) resolves to the identity on
E2, so since ϕ(O) is the identity on E2, we conclude
immediately that ϕ(P + Q) = ϕ(P) + ϕ(Q) as claimed.



Properties of Isogenies, III

1. The map ϕ is a group homomorphism from E1 to E2.

Proof:

Let P,Q be points of C1 and O be the identity of C1.

Then by our earlier results, [P + Q]− [P]− [Q] + [O] is a
principal divisor on E1 as it has degree 0 and the underlying
sum of points resolves to the identity on E1.

For div(f ) = [P + Q]− [P]− [Q] + [O], we then have
div(ϕ∗f ) = ϕ∗div(f ) = [ϕ(P +Q)]−[ϕ(P)]−[ϕ(Q)]+[ϕ(O)],
so this latter divisor is principal on E2.

But that implies the resulting sum of points
ϕ(P + Q)− ϕ(P)− ϕ(Q) + ϕ(O) resolves to the identity on
E2, so since ϕ(O) is the identity on E2, we conclude
immediately that ϕ(P + Q) = ϕ(P) + ϕ(Q) as claimed.



Properties of Isogenies, III, Again

1. The map ϕ is a group homomorphism from E1 to E2.

More Discussion:

The proof on the last slide might make it seem like there is
real content to the result, but in fact it’s really just
bookkeeping. Here’s a way that makes it clearer.

We have constructed group isomorphisms τ1 : E1 → Pic0(E1)
and τ2 : E2 → Pic0(E2) with τi (P) = [P]− [O] as divisor
classes.

Then ϕ∗ ◦ τ1 = τ2 ◦ ϕ essentially by definition and the fact
that ϕ(O) = O, so since ϕ∗ is a homomorphism on the Picard
groups (it’s certainly a homomorphism on the divisor groups,
and it preserves degree), ϕ = τ−12 ◦ ϕ∗ ◦ τ1 is a composition of
homomorphisms and thus also a homomorphism.
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Properties of Isogenies, III, Still?

2. For all Q ∈ E2, #ϕ−1(Q) = degs ϕ. In particular,
kerϕ = ϕ−1(O) is a finite subgroup of E1.

Exercise: Suppose that ϕ : G → H is a surjective group
homomorphism. Show that for any h ∈ H there is a bijection
between ϕ−1(h) and kerϕ.

Proof:

By our results on ramification we know that
#ϕ−1(Q) = degs ϕ for all but finitely many Q ∈ E2.

Since ϕ is a group homomorphism by (1) and surjective since
it is a nonzero morphism, applying the exercise above yields
both results immediately.
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Properties of Isogenies, III? Really?

3. For all P ∈ E1, the ramification index eϕ(P) = degi ϕ, the
inseparable degree of ϕ.

Proof:

First, let Q = ϕ(P) and take P ′ to be another point in
ϕ−1(Q), and also define R = P ′ − P.

Since the translation morphism τR : E → E defined by
ϕ(A) = A + R is an isomorphism and hence unramified, we
have ϕ(R) = O and so ϕ ◦ τR = ϕ.

Then eϕ(P) = eϕ◦τR (P) = eϕ(τR(P))eτR (P) = eϕ(P ′) by the
ramification composition formula. This means all points in
ϕ−1(P) have the same ramification index.

Then degs ϕ degi ϕ = degϕ =
∑

P∈ϕ−1(Q) eϕ(P) =

#ϕ−1(Q) · eϕ(P) = degs ϕ · eϕ(P), so we must have
eϕ(P) = degi ϕ as claimed.
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Properties of Isogenies, III? Apparently?

4. If ϕ is separable then ϕ is everywhere unramified and
# kerϕ = degϕ.

Proof:

By (3) we see immediately that if ϕ is separable, then
eϕ(P) = degi ϕ = 1 for all P, so ϕ is unramified.

The cardinality of the kernel is immediate from (2).

Exercise: Use Riemann-Hurwitz to prove directly that if
ϕ : E1 → E2 is a nonconstant separable morphism of elliptic curves
then ϕ is everywhere unramified.
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Galois Theory and Isogenies, I

More properties, involving Galois theory:

Proposition (Properties of Isogenies, continued)

Let ϕ : E1 → E2 be a nonzero isogeny. Then

5. The kernel kerϕ is isomorphic to the automorphism group of
the extension k(E1)/ϕ∗k(E2) via the map Ξ sending R 7→ τ∗R
where τR is the translation-by-R morphism.

6. If ϕ is separable then the extension k(E1)/ϕ∗k(E2) is a Galois
extension of degree # kerϕ.

7. Suppose that ϕ : E1 → E2 and ψ : E1 → E3 are nonconstant
isogenies and that ϕ is separable. If kerϕ ⊆ kerψ then there
exists a unique isogeny γ : E2 → E3 such that ψ = γ ◦ ϕ.

8. Suppose that Φ is a finite subgroup of the elliptic curve E.
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.



Properties of Isogenies, III? Yes, Still III.

5. The kernel kerϕ is isomorphic to the automorphism group of
the extension k(E1)/ϕ∗k(E2) via the map Ξ sending R 7→ τ∗R
where τR is the translation-by-R morphism.

Proof:

First, in the same way as noted in the proof of (3), for any
R ∈ kerϕ we have ϕ ◦ τR = ϕ, since
ϕ(x + R) = ϕ(x) + ϕ(R) = ϕ(x) since ϕ is a homomorphism.

Then for any f ∈ k(E2) we have τ∗R(ϕ∗f ) = (ϕ ◦ τR)∗f = ϕ∗f ,
and so τ∗R fixes k(E2). Therefore τ∗R is an automorphism of
the extension k(E1)/ϕ∗k(E2) so Ξ is well defined.

Next, for any R,S ∈ kerϕ since rather obviously
τR+S = τS ◦ τR , we have τ∗R+S = (τS ◦ τR)∗ = τ∗Rτ

∗
S so Ξ is a

homomorphism.
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Properties of Isogenies, III: Yes, III, Not IV

5. The kernel kerϕ is isomorphic to the automorphism group of
the extension k(E1)/ϕ∗k(E2) via the map Ξ sending R 7→ τ∗R
where τR is the translation-by-R morphism.

Proof (continued):

Third, if τ∗R fixes k(E1), then for any f ∈ k(E1) we have
f ◦ τR = f . Taking f to be a function with poles only at O
(which exist by Riemann-Roch since l(2O) = 2) we see that
f ◦ τR has poles only at −R, so R = O. Thus ker Ξ = {O} so
Ξ is injective.

Finally, by basic facts about field automorphisms, the
cardinality of Aut[k(E1)/ϕ∗k(E2)] is at most the separable
degree of the extension degs(ϕ), so by (2) and the fact that Ξ
is an injective homomorphism, we must have equality and Ξ is
an isomorphism.



Properties of Isogenies, III: Yes, III, Not IV
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Properties of Isogenies, III: Uh Huh, Still III

6. If ϕ is separable then the extension k(E1)/ϕ∗k(E2) is a Galois
extension of degree # kerϕ.

Proof:

By basic Galois theory, the cardinality of Aut[k(E1)/ϕ∗k(E2)]
equals the degree of the extension if and only if the extension
is Galois.

By (4) and (5) combined, this occurs, and the degree equals
degϕ = # kerϕ.
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Properties of Isogenies, III: How Is It Still III?

7. Suppose that ϕ : E1 → E2 and ψ : E1 → E3 are nonconstant
isogenies and that ϕ is separable. If kerϕ ⊆ kerψ then there
exists a unique isogeny γ : E2 → E3 such that ψ = γ ◦ ϕ.

Proof:

Since ϕ is separable, by (6) we know that k(E1)/ϕ∗k(E2) is
Galois of degree # kerϕ. Let the Galois group be G .

Since kerϕ ⊆ kerψ, every element of G fixes ψ∗k(E3), so
ϕ∗k(E2) is a field extension of ψ∗k(E3).

Since field extensions of function fields correspond to
morphisms of curves, there exists a unique morphism
γ : E2 → E3 such that ϕ∗(γ∗k(E3)) = ψ∗k(E3) which on the
level of morphisms is equivalent to saying that γ ◦ ϕ = ψ.

Finally, we have γ(O) = γ(ϕ(O)) = ψ(O) = O since ϕ and ψ
are isogenies, and so γ is an isogeny as well.
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Properties of Isogenies, III: Like, III The Tenth Maybe

8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Discussion:

Since ϕ is a surjective group homomorphism, the first
isomorphism theorem immediately implies that the group
structure of E ′ is that of the quotient group E/Φ, so since E ′

is unique here we often simply write E ′ = E/Φ.

Of course, we can certainly construct the quotient group as a
group by itself, but it is not immediately obvious why this
quotient should also carry the structure of an algebraic variety
(let alone why it should be another elliptic curve).

But in fact, one can show that the quotient of any smooth
projective curve by a finite group of automorphisms also
carries the structure of a variety.
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Properties of Isogenies, III: Come On, Now

8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Organization of Proof:

First we will construct a unique curve C and separable
morphism ϕ : E → C such that the function field of C is fixed
by the action of Φ, which is equivalent to saying that ϕ(Φ) is
a single point.

Then we will show ϕ is everywhere unramified.

Finally, we will apply Riemann-Hurwitz to show that C has
genus 1, and then finish by observing that
kerϕ = ϕ−1(O) = Φ.
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Properties of Isogenies, III: Seriously, III?

8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Proof:

As noted in (5), for each R ∈ Φ the translation-by-R map
τR(x) = x + R yields an automorphism τ∗R of k(E ); note it is
an automorphism since it has an inverse map τ∗−R .

By the fundamental theorem of Galois theory, if K is the fixed
field of the automorphism group Φ∗ = {τ∗R : R ∈ Φ}, then
k(E )/K is a Galois extension of degree #Φ∗ = #Φ.

In particular, K has transcendence degree 1 over k , so by our
equivalence of categories, there exists a unique (up to
isomorphism) smooth projective curve C/k and a unique
finite-degree morphism ϕ : E → C such that ϕ∗k(C ) = K .
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Properties of Isogenies, III: Forever Three

8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Proof (continued):

We have a curve C and morphism ϕ : E → C with
ϕ∗k(C ) = K , the fixed field of Φ∗ = {τ∗R : R ∈ Φ}.

Now, since k(E )/K is Galois hence separable, ϕ is separable.

For any P ∈ E and R ∈ Φ and f ∈ k(C ), we have
f (ϕ(P + R)) = f (ϕ(τR(P)) = (ϕ ◦ τR)∗f (P) = τ∗Rϕ

∗f (P) =
ϕ∗f (P) = f (ϕ(P)) because τ∗R fixes ϕ∗f .

Since this equality holds for all functions f , by choosing f to
be a function with poles only at one point (as in the argument
in (5) above) we see that ϕ(P + R) = ϕ(P).
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For any P ∈ E and R ∈ Φ and f ∈ k(C ), we have
f (ϕ(P + R)) = f (ϕ(τR(P)) = (ϕ ◦ τR)∗f (P) = τ∗Rϕ

∗f (P) =
ϕ∗f (P) = f (ϕ(P)) because τ∗R fixes ϕ∗f .

Since this equality holds for all functions f , by choosing f to
be a function with poles only at one point (as in the argument
in (5) above) we see that ϕ(P + R) = ϕ(P).
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8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Proof (continued more):

We have a curve C and morphism ϕ : E → C with
ϕ∗k(C ) = K , the fixed field of Φ∗ = {τ∗R : R ∈ Φ}.
We also know that ϕ(P + R) = ϕ(P) for all R ∈ Φ.

Therefore, for any Q = ϕ(P) on C , the set ϕ−1(Q) contains
the #Φ translates {Q + R : R ∈ Φ}.
But by our properties of ramification,
#ϕ−1(Q) ≤ degϕ = #Φ with equality iff Q is unramified.

Since this holds for all Q ∈ C , ϕ is everywhere unramified.
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8. Suppose that Φ is a finite subgroup of the elliptic curve E .
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.

Proof (continued even more):

We have a curve C and morphism ϕ : E → C with
ϕ∗k(C ) = K , the fixed field of Φ∗ = {τ∗R : R ∈ Φ}.
We also just showed ϕ is unramified.

Now, since ϕ is separable and unramified everywhere, by
Riemann-Hurwitz we have 2gE − 2 = (degϕ)(2gC − 2) + 0
and so since degϕ is positive and gE = 1, we must have
gC = 1 also.

Finally, if we define OC = ϕ(OE ), then ϕ is an isogeny, and
then as calculated above kerϕ equals {OE + R : R ∈ Φ} = Φ
since ϕ is unramified.
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And now a few more things:

Proposition (Properties of Isogenies, Part 3)

Let ϕ : E1 → E2 be a nonzero isogeny and ω be the invariant
differential on E1. Then

9. If char(k) = p and ϕ is not separable, then for q = degi ϕ and

Frobq : E1 → E
(q)
1 the qth-power Frobenius map, we have

ϕ = α ◦ Frobq where α : E
(q)
1 → E2 is a separable isogeny.

10. For any Q ∈ E1, if τQ : E1 → E1 is the translation-by-Q map
then τ∗Qω = ω.

11. We have [−1]∗ω = −ω.

12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

13. For any integer m we have [m]∗ω = mω. In particular, [m] is
separable if and only if char(k) - m.
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9. If char(k) = p and ϕ is not separable, then for q = degi ϕ and

Frobq : E1 → E
(q)
1 the qth-power Frobenius map, we have

ϕ = α ◦ Frobq where α : E
(q)
1 → E2 is a separable isogeny.

Discussion:

The point of this result is that if we want to understand an
inseparable isogeny, it’s enough just to understand the
separable piece α along with the Frobenius map Frobq.

Embedded in this result is the fact that the degree of the
qth-power Frobenius map Frob is q. This can also be
calculated directly by computing the relevant field extension.

Explicitly,
degFrobq = [k(E ) : k(E (q))] = [k(x , y) : k(xq, yq)], and
since [k(x , y) : k(x)] = 2 = [k(xq, yq) : k(xq)], the result
follows from the fact that k(x)/k(xq) = q.
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9. If char(k) = p and ϕ is not separable, then for q = degi ϕ and

Frobq : E1 → E
(q)
1 the qth-power Frobenius map, we have

ϕ = α ◦ Frobq where α : E
(q)
1 → E2 is a separable isogeny.

Proof:

Let K be the separable closure of ϕ∗k(E2) in k(E1).

By standard results about separable extensions over perfect
fields, k(E1)/K is purely inseparable of degree
q = degi ϕ = pd for some d with K = k(E1)q, while
K/ϕ∗k(E2) is separable of degree degs ϕ.

Then by definition, we see K = ϕ∗k(E
(q)
1 ).

Now convert the existence of the tower k(E1)/K/ϕ∗k(E2) to
statements about morphisms: it says ϕ = α ◦ Frobq where

α : E
(q)
1 → E2 corresponds to K/ϕ∗k(E2) and

Frobq : E1 → E
(q)
1 corresponds to k(E1)/ϕ∗k(E

(q)
1 ).
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10. For any Q ∈ E1, if τQ : E1 → E1 is the translation-by-Q map
then τ∗Qω = ω.

Proof:

We showed this earlier in our discussion of differentials (it is
why ω is called the invariant differential).

11. We have [−1]∗ω = −ω.

Proof:

Suppose E1 has general Weierstrass equation
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Then [−1](x , y) = (x ,−y − a1x − a3), so d [−1]∗x = dx .

Thus [−1]∗ω = [−1]∗
dx

2y + a1x + a3

=
dx

2(−y − a1x − a3) + a1x + a3
= −ω.
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 1):

If ϕ or ψ is the zero isogeny the result is trivial.

If ϕ+ ψ = 0 then ψ = [−1] ◦ ϕ and thus ψ∗ = ϕ∗ ◦ [−1]∗.

Then ϕ∗ω + ψ∗ω = ϕ∗ω + ϕ∗(−ω) = 0 by linearity and (11).

Now assume that none of ϕ,ψ, ϕ+ ψ is zero.

Take independent coordinates (x1, y1) and (x2, y2) and let
(x3, y3) = (x1, y1) + (x2, y2) via the group law, so that x3 and
y3 are rational functions of x1, y1, x2, y2.

What we will do is work out how to express the differential
ω3(x3, y3) in terms of ω1(x1, y1) and ω2(x2, y2).
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 2):

We have coordinates with (x3, y3) = (x1, y1) + (x2, y2) under
the group law. Let ωi (xi , yi ) be the associated invariant
differential dxi/(2yi + a1xi + a3) for each i = 1, 2, 3.

Writing x3 = f (x1, y1, x2, y2),1 the chain rule for differentials
yields dx3 = fx1dx1 + fy1dy1 + fx2dx2 + fy2dy2.

But since dx1 and dy1 are k(x1, y1)-multiples of ω(x1, y1) and
dx2, dy2 are k(x2, y2)-multiples of ω(x2, y2), we see that
ω(x3, y3) is a k(x1, y1, x2, y2)-linear combination of the
differentials ω(x1, y1) and ω(x2, y2).

1f = (
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

)2 + a1(
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

)− a2 − x1 − x2
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 3):

We have coordinates with (x3, y3) = (x1, y1) + (x2, y2) under
the group law. Let ωi (xi , yi ) be the associated invariant
differential dxi/(2yi + a1xi + a3) for each i = 1, 2, 3.

We just showed that we can express ω3(x3, y3) =
g(x1, y1, x2, y2)ω1(x1, y1) + h(x1, y1, x2, y2)ω2(x2, y2) for some
g , h ∈ k(x1, y1, x2, y2).

By working through the rather horrendous calculations
explicitly, one may show that in fact the coefficients g and h
are both just 1.

Instead of doing that, let’s give a more clever argument.
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 4):

We have coordinates with (x3, y3) = (x1, y1) + (x2, y2), and
ω3 = g(x1, y1, x2, y2)ω1 + h(x1, y1, x2, y2)ω2.

Choose any P ∈ E1 and evaluate x1 = x1(P) and y1 = y1(P):
then dx1 = 0 so ω1 = 0, and (x3, y3)=P+(x2, y2)=τP(x2, y2).

Thus ω3 = τ∗Pω2 = ω2 by translation-invariance from (10), so
the linear combination expression reads as
ω3 = h(x1(P), y1(P), x2, y2)ω3 whence h(x1(P), y1(P), x2, y2)
is identically 1 as a rational function in x2 and y2.

Since this is true for every point P ∈ C , in fact h is the
constant 1. Similarly, g = 1 as well.

So now we know that ω3(x3, y3) = ω1(x1, y1) + ω2(x2, y2).
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 5):

We have coordinates with (x3, y3) = (x1, y1) + (x2, y2).

We now know that ω3(x3, y3) = ω1(x1, y1) + ω2(x2, y2).

Now apply this result to the case where (x1, y1) = ϕ(x , y) and
(x2, y2) = ψ(x , y), so that (x3, y3) = (ϕ+ ψ)(x , y).

Compose with the differential ω to conclude that
(ω ◦ (ϕ+ ψ))(x , y) = (ω ◦ ϕ)(x , y) + (ω ◦ ψ)(x , y),
whence (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω, as desired.
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12. If ω is the invariant differential on E1 and ϕ, ψ are two
isogenies from E1 → E2, then (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Proof (part 5):

We have coordinates with (x3, y3) = (x1, y1) + (x2, y2).

We now know that ω3(x3, y3) = ω1(x1, y1) + ω2(x2, y2).

Now apply this result to the case where (x1, y1) = ϕ(x , y) and
(x2, y2) = ψ(x , y), so that (x3, y3) = (ϕ+ ψ)(x , y).

Compose with the differential ω to conclude that
(ω ◦ (ϕ+ ψ))(x , y) = (ω ◦ ϕ)(x , y) + (ω ◦ ψ)(x , y),
whence (ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω, as desired.
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13. For any integer m we have [m]∗ω = mω. In particular, [m] is
separable if and only if char(k) - m.

Proof:

For m ≥ 0, induct on m. The base case m = 0 is trivial.

For the inductive step observe that
[m + 1]∗ω = [m]∗ω + [1]∗ω = (m + 1)ω using (12) for
additivity and the obvious [1]∗ω = ω.

For negative m note that [m] = [−1] ◦ [−m] and apply the
result for positive m and (11).

The last statement follows immediately from the fact
discussed earlier that a morphism is separable iff it is nonzero
on differentials.
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Dual Isogenies, I

Our goal now is to show that “being isogenous” is an equivalence
relation on elliptic curves.

Since being isogenous is reflexive and transitive as we have
already noted, it remains to show that every nonzero isogeny
ϕ : E1 → E2 induces some other nonzero isogeny ϕ̂ : E2 → E1.

To see that this “dual isogeny” exists, we exploit the
contravariant nature of the map ϕ∗ : Div(E2)→ Div(E1).

Specifically, because ϕ∗ scales degrees by degϕ, as we showed
earlier, it maps Div0(E2) into Div0(E1), and therefore it
descends onto a well-defined map ϕ∗ : Pic0(E2)→ Pic0(E1).

But as we also showed, the group operation in Pic0(E ) is
isomorphic to the group law on E (namely, via the map
sending a point P ∈ E to the divisor class [P]− [O]), and so
by composing these isomorphisms appropriately, we obtain a
group homomorphism ϕ̂ : E2 → E1.
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Dual Isogenies, II

To see that this “dual isogeny” exists, we exploit the contravariant
nature of the map ϕ∗ : Div(E2)→ Div(E1).

Specifically, because ϕ∗ scales degrees by degϕ, as we showed
earlier, it maps Div0(E2) into Div0(E1), and therefore it
descends onto a well-defined map ϕ∗ : Pic0(E2)→ Pic0(E1).

But as we also showed, the group operation in Pic0(E ) is
isomorphic to the group law on E (namely, via the map
sending a point P ∈ E to the divisor class [P]− [O]), and so
by composing these isomorphisms appropriately, we obtain a
group homomorphism ϕ̂ : E2 → E1.

Of course, it is not at all obvious that this group homomorphism ϕ̂
is actually an isogeny, since there are very many possible
homomorphisms between the point groups, most of which will not
be defined by rational functions.



Dual Isogenies, III

Let’s work out exactly what this map does to a point Q ∈ E2:

First, we map Q to the divisor class [Q]− [O].

Then we apply ϕ∗ and (3) to obtain

degi ϕ
(∑

P∈ϕ−1(Q)[P]−
∑

R∈ϕ−1(O)[R]
)

.

Finally we must resolve this sum to write it in the form
[S ]− [O]: the result is then S .

By our results from equivalence of divisors, we can just sum
everything using the group law: this yields

S = degi ϕ
(∑

P∈ϕ−1(Q) P −
∑

R∈ϕ−1(O) R
)

.

Since ϕ−1(Q) = {P + R : R ∈ ϕ−1(O)} for any fixed
P ∈ ϕ−1(Q), the difference is simply [degi ϕ ·#ϕ−1(Q)]P.



Dual Isogenies, IV

So, to summarize, this map ϕ̂ : E2 → E1 maps a point Q ∈ E2 to
[degϕ]P where P is any point in ϕ−1(Q).

Note that this description of ϕ̂ is well posed: regardless of
which representative P ∈ ϕ−1(Q) is chosen, since the
difference between any of these representatives lies in
ϕ−1(O) = kerϕ.

Equivalently, this says ϕ̂(ϕ(P)) = [degϕ]P for all P ∈ E1,
meaning that the composition ϕ̂ ◦ ϕ is simply the
multiplication-by-[degϕ] map on E1.

The whole point of this calculation (aside from giving an explicit
description of what this map would look like) is that this last
description actually provides us with a way to prove that ϕ̂ actually
is an isogeny: we can use the universal property (9) of isogenies.



Dual Isogenies, IV
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Dual Isogenies, V

So, let’s go through the details:

Theorem (Existence of Dual Isogenies)

Let ϕ : E1 → E2 be a nonconstant isogeny.

1. If ϕ is separable, then there exists a unique isogeny
ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ is multiplication by degϕ on E1.

2. If char(k) = p > 0 and Frobp is the pth-power Frobenius
morphism Frobp : E → E (p), then there exists a unique

isogeny F̂robp : E (p) → E such that F̂robp ◦ Frobp is
multiplication by p = deg(Frobp) on E .

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1. This isogeny is called the dual isogeny
of ϕ.



Dual Isogenies, VI

1. If ϕ is separable, then there exists a unique isogeny
ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ is multiplication by degϕ on E1.

Proof:

Let ψ = [degϕ] be the multiplication-by-degϕ map on E1 and
E3 = E1. Then since # kerϕ = degϕ, by Lagrange’s theorem
we see that kerϕ ⊆ kerψ.

Now by the universal property (7) of separable isogenies, there
exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = ψ = [degϕ], as claimed.



Dual Isogenies, VI

1. If ϕ is separable, then there exists a unique isogeny
ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ is multiplication by degϕ on E1.

Proof:

Let ψ = [degϕ] be the multiplication-by-degϕ map on E1 and
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ϕ̂ ◦ ϕ = ψ = [degϕ], as claimed.



Dual Isogenies, VII

2. If char(k) = p > 0 and Frobp is the pth-power Frobenius
morphism Frobp : E → E (p), then there exists a unique

isogeny F̂robp : E (p) → E such that F̂robp ◦ Frobp is
multiplication by p = deg(Frobp) on E .

Proof:

Let ω be the invariant differential on E .

By property (13) of isogenies we see that [p]∗ω = pω = 0, so
[p] is not separable since it is not injective on differentials.

Hence by property (9) of isogenies, we may factor [p] as
[p] = α ◦ Frobq where q = degi [p] = pd for some integer
d ≥ 1 (note d ≥ 1 because [p] is not separable).

Then since Frobq = (Frobp)d we see that
[p] = α ◦ (Frobp)d−1 ◦ Frobp.

We can then take ϕ̂ = α ◦ (Frobp)d−1.



Dual Isogenies, VII
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morphism Frobp : E → E (p), then there exists a unique

isogeny F̂robp : E (p) → E such that F̂robp ◦ Frobp is
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d ≥ 1 (note d ≥ 1 because [p] is not separable).

Then since Frobq = (Frobp)d we see that
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Dual Isogenies, VIII

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1.

Proof (existence):

By property (9) of isogenies, we may decompose
ϕ = α ◦ Frobq = α ◦ (Frobp)d where α is separable.

By (1) there exists an isogeny α̂ with α̂ ◦ α = [degα] and by

(2) there exists an isogeny F̂robp with

F̂robp ◦ Frobp = [degFrobp].

Then for ϕ̂ = (F̂robp)d ◦ α̂ we have ϕ̂ ◦ ϕ =

(F̂robp)d ◦ α̂ ◦α ◦ (Frobp)d = (F̂robp)d ◦ [degα] ◦ (Frobp)d =

[degα] ◦ (F̂robp)d ◦ (Frobp)d = [degα][degFrobp]d = [degϕ].



Dual Isogenies, VIII
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Dual Isogenies, IX

3. There exists a unique isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [degϕ] on E1.

Proof (uniqueness):

For uniqueness, suppose ϕ̃ ◦ ϕ = [degϕ] = ϕ̂ ◦ ϕ.

Then (ϕ̃− ϕ̂) ◦ ϕ = 0.

Taking degrees yields deg(ϕ̃− ϕ̂) degϕ = 0, so since
degϕ 6= 0 that means deg(ϕ̃− ϕ̂) = 0 whence ϕ̃ = ϕ̂.



Dual Isogenies, X

We will now establish some additional properties of dual isogenies,
which will allow us in particular to understand the kernel of the
multiplication-by-m map on an elliptic curve E more explicitly.

Since the kernel of [m] is just the group of m-torsion points,
this will represent substantial progress in our understanding of
the group structure of E , since the torsion subgroup of E is
simply the union of the m-torsion subgroups for m ≥ 1.



Summary

We established an almost uncountably infinite number of
properties of isogenies.

We introduced dual isogenies.

Next lecture: Applications of dual isogenies, the Tate module.


