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Riemann-Hurwitz and Isogenies
@ The Riemann-Hurwitz Genus Theorem

@ Isogenies of Elliptic Curves



Recall, |

Suppose that ¢ : GG — (5 is a nonconstant morphism of curves.

Definition

The map ¢* : k(Cy) — k(Cy) is defined by ¢*f = f o ¢ for
f € k(Cy). The degree deg(yp) is defined to be the degree of the
extension k(Cy)/¢* k().

Definition

| \

For each P € C; we define the ramification index e,(P) to be
ordp(p*t,(p)), where t,py is a local uniformizer at ¢(P).

We say P € C; is unramified when e,(P) = 1 and otherwise P is
ramified.




Recall, 11

We have various other results:

Proposition (Properties of Ramification)

Let ¢ : C; — G be a nonconstant morphism of (smooth
projective) curves.

1. Forall Q € G, we have }_pc,-1(q) € (P) = deg .

2. A point Q € G, is unramified if and only if #¢01(Q) = deg ¢.

3. For all but finitely many @ € G, #¢ 1(Q) = deg, . As a
consequence, when  is separable, there are only finitely many
ramified points Q.

4. The ramification index is multiplicative under composition:

explicitly, if ¢ . C; — C3 is another nonconstant morphism
and P € C;, we have eyo,(P) = e,(P)ey(v(P)).




The Direct Image Map

When we think of k(C;) as a finite extension of ¢*k((2), we may
use the norm in this extension to construct a map
©x - k(Cl) — k(Cz)
e Explicitly, we define ¢, : k(C1) — k() via
x = (¢") 7 0 Ny /e k()
@ We will not bother being more explicit here, because our main

interest is in the actions of the maps ¢* and ¢, on divisors
and differentials, where we can give much nicer formulas.



Actions of ©* and o,, |

As usual we start with divisors:

Let ¢ : C; — G, be a nonconstant map of (smooth projective)
curves.

We define the inverse image map ¢* : Div(C;) — Div(Cy) on
divisor groups by setting ©*(Q) = 3 _pc,-1(q) € (P)P for all
Q € G, and extending linearly.

We also define the direct image map ¢, : Div(C;) — Div(G,) by
setting ¢.(P) = ¢(P) for all P € C; and extending linearly.

Rather vacuously, both ¢, and ¢* are homomorphisms.



Actions of ©* and o,, 2

Example: Let ¢ : P! — P! be the squaring map ¢(x) = x2. Find
©*(D) and .(D) for D = P4 + 2Py — Py.



Actions of ©* and y,, 2

Example: Let ¢ : P* — P! be the squaring map ¢(x) = x2. Find
©*(D) and @« (D) for D = Py + 2Py — Pw.

@ The value of ¢,.(D) is easier, since we just apply ¢ to all of
the points.
So we see that p.(D) = P1g + 2Py — P
For ©*(D) we need to compute the preimages of the various
points that appear in D.
We easily find o= 1(Ps) = {P2, P_2}, o }(Py) = Py, and

-1 _
¢ (Poo) = Pec.
As we worked out last time, the ramification index of ¢ at all
points of P! other than 0 and oo is 1, and at 0 and oo it is 2.
So, for D = P4 + 2Py — P, we have
(p*(D) =P+ P >+ 4Py — 2P.

(]



Actions of ©* and ¢, Three

The actions also extend naturally to differentials. We will only
need the action of *, but for completeness we also give p.

Definition

Let ¢ : C; — C be a nonconstant map of (smooth projective)
curves.

We define p* : Q(C) — Q(Cy) by setting

©*(f dx) = (¢*f) d(¢*x) for all f,x € k(C).

We define v, : Q(C1) — Q(C,) by setting

p«(g dy) = (¢+8) d(puy) for all g,y € k().




Actions of ©* and ¢, Three

The actions also extend naturally to differentials. We will only
need the action of *, but for completeness we also give p.

Let ¢ : C; — C be a nonconstant map of (smooth projective)
curves.

We define p* : Q(C) — Q(Cy) by setting

©*(f dx) = (¢*f) d(¢*x) for all f,x € k(C).

We define v, : Q(C1) — Q(C,) by setting

p«(g dy) = (¢+8) d(puy) for all g,y € k().

Example: Let o : P! — P! be the squaring map o(x) = x2.
@ Then for wy = (x + 2) dx we have
0" (w2) = (X% +2) d(x?) = (x? + 2) 2xdx.



Actions of ©* and ¢,, Quatre

And now for the properties:

Proposition (Properties of ¢, and ¢*)

Let ¢ : C; — C be a nonconstant map of (smooth projective)
curves. Then

1.

SYRC

For any D € Div((,), we have deg(¢*D) = (deg ¢)(deg D).

2. For any D € Div(Cy), we have deg(p.D) = deg D.
3.
4. If1p : Co — G3 is another map, then (v o @)* = p* 0 * and

For all D € Div((,) we have p.(¢*D) = (deg p)D.

(1 0 ©)x = 14 © s as maps on divisor groups.
For all nonzero f € k(C,) we have p*(div f) = div(p*f).

. For all nonzero g € k(Cy) we have p.(div g) = div(p.g).

The map o is separable if and only if o* : Q(G) — Q(Cy) is
injective (or equivalently, nonzero).




Actions of ©* and ¢,, Cinque

1. For any D € Div((,), we have deg(¢*D) = (deg ¢)(deg D).

Proof:
@ Recall property (1) of the ramification index: For all Q € G,
we have 3 pc -1(q) €p(P) = deg .



Actions of ©* and ¢,, Cinque

1. For any D € Div((,), we have deg(¢*D) = (deg ¢)(deg D).

Proof:
@ Recall property (1) of the ramification index: For all Q € G,
we have 3 pc -1(q) €p(P) = deg .
o For a single point Q we have *Q =3 pc.,1(q) € (P)P.
@ So deg(¢"Q) = > pe,-1(q) &(P) = deg ¢ by property (1).

@ Now sum over all points in D and apply linearity.

2. For any D € Div(Cy), we have deg(p.D) = deg D.

Proof:



Actions of ©* and ¢,, Cinque

1. For any D € Div((,), we have deg(¢*D) = (deg ¢)(deg D).

Proof:
@ Recall property (1) of the ramification index: For all Q € G,
we have 3 pc -1(q) €p(P) = deg .
o For a single point Q we have *Q =3 pc.,1(q) € (P)P.
@ So deg(¢"Q) = > pe,-1(q) &(P) = deg ¢ by property (1).

@ Now sum over all points in D and apply linearity.

2. For any D € Div(Cy), we have deg(p.D) = deg D.

Proof:
e Obvious, since if D =} p., npP then
0D =3 pcc, npp(P), whose degree is still Y p.c, np.



Actions of ©* and ¢,, Seis

3. For all D € Div(G,) we have ¢, (¢*D) = (deg ¢)D.

Proof:



Actions of ©* and ¢,, Seis

3. For all D € Div(G,) we have ¢, (¢*D) = (deg ¢)D.

Proof:

e For a single point @ we have
P«(¢*Q)
= 0« 2pep-1(Q) &(P)P
= Zpegrl((\)) e, (P)¢(P)
= [Xpep1(q) e (P)1Q
= (deg ¢) Q using property (1) again.
@ Now sum over all points in D and apply linearity.



Actions of ©* and ., Sieben

4. 1f ¢ : Co — Gz is another map, then (¢ o ¢)* = ¢* o 9* and
(1) 0 @)« = 14 0 @, as maps on divisor groups.

Proof:



Actions of ©* and ., Sieben

4. 1f ¢ : Co — Gz is another map, then (¢ o ¢)* = ¢* o 9* and

(1) 0 @)« = 14 0 @, as maps on divisor groups.
Proof:

e For a single point divisor R € C3 we have (¢ o )*R
= ZPE(zﬂocp)*lR epop(P)P
= ZPego—l(Q) [ZQew—l(R) ey (Q)]ex(P)P
= p** R using the ramification-in-towers property; now apply
linearity.

o Likewise, for a single point divisor P € (7 we have
(¢ 0 0)+ P =1(p(P)) = (1« 0 ©x)(P) rather trivially.



Actions of ©* and ., Kahdeksan

5. For all nonzero f € k() we have o*(div f) = div(p*f).




Actions of ©* and ., Kahdeksan

5. For all nonzero f € k() we have o*(div f) = div(p*f).

Exercise: For any nonzero f € k() and any P € (i, show that
ordp(p*f) = e,(P)ord,p)(f).

Proof:



Actions of ©* and ., Kahdeksan

5. For all nonzero f € k() we have o*(div f) = div(p*f).

Exercise: For any nonzero f € k() and any P € (i, show that
ordp(p*f) = e,(P)ord,p)(f).

Proof:

@ By the exercise we see that div(p*f)
— ZPGQ ordp(p*f)P
= 2 peq, Ordy(p)(f) - [e,(P)P]
= 2_qec, orde(f) - [Xpey1(q) e (PP
=2 gec, ordo(f) ¢*Q
= * ZQGCQ ordg(f)@
= ¢*(div f)
as claimed.



Actions of ©* and ,, Delapan

6. For all nonzero g € k(Cy) we have ¢, (divg) = div(p.g).

Discussion:



Actions of ©* and ,, Delapan

6. For all nonzero g € k(Cy) we have ¢, (divg) = div(p.g).

Discussion:

@ This property follows by general facts about the behavior of
norms in finite extensions of Dedekind domains.

@ It requires the definition of ¢, in terms of norms, and is hard
to motivate otherwise.
o As an outline, if (divg) = > p. ¢, ordp(g)P then p.(div g)

= ZPGQ ordp(g)¢(P)

= ZQGCQ[ng(P):Q ordp(g)]Q

= ZQGCZ ordg(p+g)]Q

where the last equality follows from the definition of ¢.g.



Actions of ©* and ¢,, Decem

7. The map ¢ is separable if and only if p* : Q(G) — Q(C1) is
injective (or equivalently, nonzero).

Proof:



Actions of ©* and ¢,, Decem

7. The map ¢ is separable if and only if p* : Q(G) — Q(C1) is
injective (or equivalently, nonzero).

Proof:

@ Recall y € k() has {dy} a basis for Q(() if and only if
k(C2)/k(y) is a finite-degree separable extension.

@ Choose such an element y.

e Applying ¢* shows that p*k(C2)/¢*k(y) is also a
finite-degree separable extension, and by definition of the
action of ¢*y = y o ¢ we see that ¢*k(y) = k(¢*y).

@ Then ¢* is injective <= d(¢*y) #0 < {d(¢*y)} is a
basis for k(1) <= k(C1)/k(¢*y) is separable <~
k(C1)/¢*k(Cy) is separable.

@ The last statement is the definition of separability for .



Riemann-Hurwitz, |

We can now establish the fundamental relationship between the
genera of curves related by a morphism.

Theorem (Riemann-Hurwitz)

Let ¢ : C; — G be a nonconstant separable morphism where C;
and C, are smooth projective curves of respective genera g1 and
g&. Let w € Q(C,) be any nonzero differential and define the
ramification divisor R = div(p*w) — ¢*(divw) € Div((y).

1. The ramification divisor R is independent of the choice of w.

2. We havedeg R > pcc [ep(P) — 1] with equality if and only
if the characteristic of k does not divide e,(P) for any P € C;.
(In particular, equality holds when the characteristic is zero.)

3. We have 2g1 — 2 = (deg »)(2g2 — 2) + deg R.

4. We have 2gy — 2 > (deg ¢)(282 — 2) + X" pe,[e,(P) — 1]
with equality if and only if char(k) { e, (P) for any P € C;.

v




Riemann-Hurwitz, |l

1. The ramification divisor R = div(p*w) — ¢*(divw) € Div((Gy)
is independent of the choice of w € Q( ().

Proof:



Riemann-Hurwitz, |l

1. The ramification divisor R = div(p*w) — ¢*(divw) € Div((Gy)

is independent of the choice of w € Q( ().
Proof:

o Let {dx} be any basis for Q(C,) and write w = f dx.

@ Then p*w = (¢*f) d(¢*x) so
div(p*w) = div(p*f) + div[d(¢*x)], whereas
©*(divw) = ¢*(divf) + ¢*(div dx).

@ Hence R = div(p*w) — ¢*(divw)
= [div(¢*f) — @*(divf)] + div[d(¢*x)] — ¢*(div dx)
= div[d(¢*x)] — ¢*(div dx) by property (5) above.

@ This last quantity is independent of w, as desired.



Riemann-Hurwitz, ||

2. We have deg R > > p. ¢, [ep(P) — 1] with equality if and only
if the characteristic of k does not divide e,(P) for any P € C;.

Proof (part 1):



Riemann-Hurwitz, ||

2. We have deg R > > p. ¢, [ep(P) — 1] with equality if and only
if the characteristic of k does not divide e,(P) for any P € C;.

Proof (part 1):

@ As shown in (1) we have R = div[d(¢*x)] — ¢*(div dx) for
any basis {dx} of Q(().

@ To compute the order of R at P, we may take x = t where t
is a uniformizer at Q = (P), since as we showed previously,
{dt} is a basis for Q((5).

o By definition, we have @*t = us® where s is a uniformizer at

P, e = e,(P) is the ramification index, and u € Op is defined
at P with u(P) # 0.



Riemann-Hurwitz, 1V

2. We have deg R > » p [e,(P) — 1] with equality if and only
if the characteristic of k does not divide e,(P) for any P € C;.

Proof (part 2):



Riemann-Hurwitz, 1V

2. We have deg R > » p [e,(P) — 1] with equality if and only
if the characteristic of k does not divide e,(P) for any P € C;.

Proof (part 2):

o We take t a uniformizer at Q@ = ©(P). Then ¢*t = us® where
s is a uniformizer at P, e = e,(P) is the ramification index,
and u € Op is defined at P with u(P) # 0.

o Then d(p*t) = [(du/ds)s® + eus®]ds so ordp[d(¢*t)] =
ordp[(du/ds)s® + eus®!] = (e — 1) + ordp[s(du/ds) + eu],
and we also have ordp[e*(div dt)] = 0.

@ Since u is defined at P we see that du/ds is also defined at P,
and quite similarly to our calculations with differentials
previously, we see that ordp[d(p*t)] > e — 1 with equality if
and only if the characteristic of k does not divide e = e,(P).

@ Summing over all points P € C; yields the result immediately.



Riemann-Hurwitz, V

3. We have 2g1 — 2 = (deg ¢)(2g2 — 2) + deg R.

Proof:



Riemann-Hurwitz, V

3. We have 2g1 — 2 = (deg ¢)(2g2 — 2) + deg R.

Proof:
@ Taking degrees in the definition of R and rearranging yields
deg[p*(divw)]| = deg[div(p*w)] + deg R.
@ By property (1) of ¢*, we have

deg(¢*w) = (deg p)(degw) = (deg ¢)(2g2 — 2) since w is a
differential on C, hence the degree of its divisor is 2g> — 2 as
we showed using Riemann-Roch.

e Since ¢*(divw) is a differential on Gy, its degree is 2g1 — 2.

@ So we are done.



Riemann-Hurwitz, VI

4. We have 2g1 — 2 > (deg ¢)(282 — 2) + > _pec,[ep(P) — 1]
with equality if and only if char(k) { e,(P) for any P € .

Proof:



Riemann-Hurwitz, VI

4. We have 2g; — 2 > (degv)(2g2 — 2) + ZPEQ [e,(P) — 1]
with equality if and only if char(k) { e,(P) for any P € .
Proof:

o From (2), deg R > > pcc,[e,(P) — 1] with equality if and
only if the characteristic of k does not divide e,(P) for any
P e C1.

e From (3), 2g1 — 2 = (deg »)(2g2 — 2) + deg R.
@ Then (2) 4+ (3) = (4).



Riemann-Hurwitz, VII

The Riemann-Hurwitz theorem is really a topological result, and
we can give some geometric motivation for where it comes from in
the situation of Riemann surfaces, where k = C.

@ We view the curves C; and (5 as surfaces over R.

@ Then the morphism ¢ represents a d-sheeted covering of (;
by Ci, where each unramified point of C; has exactly d
preimages in Ci.



Riemann-Hurwitz, VII

The Riemann-Hurwitz theorem is really a topological result, and
we can give some geometric motivation for where it comes from in
the situation of Riemann surfaces, where k = C.

@ We view the curves C; and (5 as surfaces over R.

@ Then the morphism ¢ represents a d-sheeted covering of (;
by Ci, where each unramified point of C; has exactly d
preimages in Ci.

e If © were unramified everywhere, then (e.g., by considering a
triangulation of C;) we see that the Euler characteristic
x1 = 2 — 2g1 of (3 would be d times the Euler characteristic
X2 = 2— 2g2 of C2.

e That would say x1 = (deg ¢)x2, which is precisely the
statement of Riemann-Hurwitz without the ramification term.



Riemann-Hurwitz, VIII

So now what happens if there are ramified points?

@ As we have seen, at ramified points of ¢, there are fewer
preimage points than expected, meaning that sheets of the
covering collide, which introduces an error term into the
characteristic calculation.



Riemann-Hurwitz, VIII

So now what happens if there are ramified points?

@ As we have seen, at ramified points of ¢, there are fewer
preimage points than expected, meaning that sheets of the
covering collide, which introduces an error term into the
characteristic calculation.

@ Precisely, at a ramified point the ramification index e, (P)
counts the number of sheets that collide at P, and so relative
to unramified points (with ramification index 1) the overall
characteristic 1 is lowered by a total of e,(P) from what
would be expected if the point were unramified.

@ Summing this correction over all of the ramified points yields
the general statement of Riemann-Hurwitz:

x1 = (deg)x2 — > pec,leq(P) — 1.



Isogenies, |

We are now — finally! — done with all of the preliminary results,
and will narrow our focus to elliptic curves permanently. Our first
task is to study maps from one elliptic curve to another.

@ Since we defined an elliptic curve as a smooth projective curve
of genus 1 together with a marked rational point O, we
require the maps also to preserve the marked point:



Isogenies, |

We are now — finally! — done with all of the preliminary results,
and will narrow our focus to elliptic curves permanently. Our first
task is to study maps from one elliptic curve to another.

@ Since we defined an elliptic curve as a smooth projective curve
of genus 1 together with a marked rational point O, we
require the maps also to preserve the marked point:

Definition

Let (E1, O1) and (Ez, O2) be two elliptic curves. An isogeny

¢ : E1 — Ey is a morphism from E; to E; such that ¢(0O;) = O;.
If E1 and E; are elliptic curves such that there exists a nonzero
isogeny between them, we say they are isogenous.

Since nonconstant morphisms of curves are surjective, and the only
constant isogeny is the zero map, nonzero isogenies are surjective.



Isogenies, |l

As we will show later, being isogenous is an equivalence relation on
elliptic curves.

@ It is self-evidently reflexive and transitive, since the identity
morphism is an isogeny and the composition of two isogenies
is an isogeny.



Isogenies, |l

As we will show later, being isogenous is an equivalence relation on
elliptic curves.

@ It is self-evidently reflexive and transitive, since the identity
morphism is an isogeny and the composition of two isogenies
is an isogeny.

When ¢ is nonzero, recall that we define the degree of ¢ to be
degree of the function-field extension k((;)/¢*k(C1). We also set
deg(0) = 0 for convenience.

Exercise: Show that the degree map is multiplicative on isogenies:
deg(p 0 1) = (deg ¢)(deg ).



Isogenies, IlI

Since E; and E; are groups, the collection of all isogenies from Ep
to E, forms an abelian group, and since compositions of isogenies
are isogenies, the set of isogenies from E to E forms a ring.



Isogenies, IlI

Since E; and E; are groups, the collection of all isogenies from Ep
to E, forms an abelian group, and since compositions of isogenies
are isogenies, the set of isogenies from E to E forms a ring.

Exercise: Let E; and E; be elliptic curves and define Hom(Eq, E5)
to be the collection of all isogenies from E; to E>. Show that
Hom(Eq, Ep) is an abelian group under the addition operation

(¢ + )P = o(P) + ¢(P) for all P € E; (the addition on the right
is the sum under the group law on E;) for ¢, € Hom(E;, Ep).



Isogenies, IlI

Since E; and E; are groups, the collection of all isogenies from Ep
to E, forms an abelian group, and since compositions of isogenies
are isogenies, the set of isogenies from E to E forms a ring.

Exercise: Let E; and E; be elliptic curves and define Hom(Eq, E5)
to be the collection of all isogenies from E; to E>. Show that
Hom(Eq, Ep) is an abelian group under the addition operation

(¢ + )P = o(P) + ¢(P) for all P € E; (the addition on the right
is the sum under the group law on E;) for ¢, € Hom(E;, Ep).

Exercise: Let E be an elliptic curve and define

End(E) = Hom(E, E) to be the collection of all isogenies from E

to itself. Show that E is a ring with 1 having no zero divisors, with
addition given as in the exercise above and multiplication given by
composition. [Hint: For the lack of zero divisors, consider degrees.]



Isogenies, 1V

Our most basic example of an isogeny is the multiplication-by-m
map:

e For an integer m, the multiplication-by-m map [m] : E — E is
an isogeny, since as we have previously discussed it is a
morphism, and it clearly preserves the group identity O.



Isogenies, 1V

Our most basic example of an isogeny is the multiplication-by-m
map:

e For an integer m, the multiplication-by-m map [m] : E — E is
an isogeny, since as we have previously discussed it is a
morphism, and it clearly preserves the group identity O.

@ We showed much earlier during our discussion of Mordell’s
theorem that the multiplication-by-m map has degree m?,
since as a rational map it is defined by a quotient of
polynomials of degree m?.

o We will later give a far nicer and minimally computational

proof that [m] has degree m?.



Isogenies, V

In particular, since its degree is m?, [m] # 0 for m # 0. There are
some nice consequences to this fact:

o First, we see that the endomorphism ring End(E) always
contains the subring Z generated by the identity map [1].



Isogenies, V

In particular, since its degree is m?, [m] # 0 for m # 0. There are
some nice consequences to this fact:

o First, we see that the endomorphism ring End(E) always
contains the subring Z generated by the identity map [1].
e Additionally, if ¢ : Ey — E, is any isogeny, we see that
deg(myp) = deg([m] o ) = deg([m]) deg(y) = m? deg(y).
@ Thus, if ¢ is a torsion element of Hom(Ej, E>) so that
my = 0, the above implies deg() = 0 whence ¢ = 0.
@ Thus, Hom(E;, E;) is a torsion-free abelian group.
As we will see in a few lectures, for many elliptic curves the

multiplication-by-m maps are the only endomorphisms! So it
requires some nontrivial effort to give other examples.



Isogenies, VI

Example: Consider the map i : E — E with i(x,y) = (—x, iy) on
the elliptic curve E : y? = x3 — x, where i> = —1 inside the
underlying field k (where we assume char(k) # 2 to avoid
trivialities).
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Example: Consider the mapi: E— E With i(x,y) = (—x,iy) on
the elliptic curve E : y? = x3 — x, where i> = —1 inside the
underlying field k (where we assume char(k) # 2 to avoid
trivialities).

@ This map is a morphism from E to E since (—x, iy) is also a
point of E and it is described by rational functions that are
defined everywhere, and since it maps O = oo to itself, it is
an isogeny of E.

e Since [i] o [i] maps (x,y) — (x, —y) we see [i] o [i] = [-1].
e Taking b[i] to be the b-fold sum of [i] with itself, we see that

the endomorphism ring End(E) contains the elements
[a] + b[i] for all a,b € Z.



Isogenies, VII

Example: Consider the map i : E — E with i(x,y) = (—x, iy) on
the elliptic curve E : y? = x3 — x, where i> = —1 inside the
underlying field k (where we assume char(k) # 2 to avoid
trivialities).
@ As we just saw, the maps of the form [a] + b[i] for a, b € Z
are endomorphisms of E.



Isogenies, VII

Example: Consider the map i : E — E with i(x,y) = (—x, iy) on
the elliptic curve E : y? = x3 — x, where i> = —1 inside the
underlying field k (where we assume char(k) # 2 to avoid
trivialities).
@ As we just saw, the maps of the form [a] + b[i] for a, b € Z
are endomorphisms of E.

e Since [i] o [i] = [~1], when k is a subfield of C we see that
the ring of such elements embeds in the Gaussian integer ring
Z|i] via the obvious map [a] + b[i] — a + bi.

@ In fact, these are all of the endomorphisms of E.

@ This curve is an example of an elliptic curve with
complex multiplication, as it possesses an endomorphism that
behaves like multiplication by a complex number (in this case,

i — v=1).




Isogenies, VIII

Example: Let E = V/(f) be an elliptic curve and let
E(®) = v(f(P)), where f(P) is obtained by raising all of the
coefficients of f to the pth powerl.
@ Then the Frobenius map Frob : E — E(P) with
Frob(x, y) = (xP, yP) is an isogeny from E to E(P) since it is
clearly a morphism and it preserves the point at co.

!Since the discriminant is a polynomial function of the coefficients of the
Weierstrass equation, since the Frobenius map is a field automorphism, the

discriminant of () is the pth power of the discriminant of E, so E® is also
nonsingular when E is nonsingular.



Isogenies, VIII

Example: Let E = V/(f) be an elliptic curve and let
E(®) = v(f(P)), where f(P) is obtained by raising all of the
coefficients of f to the pth powerl.

e Then the Frobenius map Frob : E — E(P) with
Frob(x, y) = (xP, yP) is an isogeny from E to E(P) since it is
clearly a morphism and it preserves the point at co.

o If E is defined over the field IF,, Frob fixes all of the
coefficients (indeed, I, is precisely the fixed field of Frob):
then E(P) = E and so Frob is an endomorphism of E.

@ More generally, if E is defined over I, for some prime power
q, then the gth-power Frobenius map Frob(x,y) = (x9,y9) is
an endomorphism of E.

!Since the discriminant is a polynomial function of the coefficients of the
Weierstrass equation, since the Frobenius map is a field automorphism, the
discriminant of £ is the pth power of the discriminant of E, so E® is also
nonsingular when E is nonsingular.




Properties of Isogenies, |

Now let's prove some properties of isogenies using all of the results
about morphisms and ramification we have developed:

Proposition (Properties of Isogenies)

Let ¢ : E1 — E» be a nonzero isogeny. Then

1. The map @ is a group homomorphism from E; to E;.

2. For all Q € E, #cpfl(Q) = deg, ¢. In particular,
ker o = ¢~ 1(0) is a finite subgroup of Ej.

3. For all P € E;, the ramification index e,(P) = deg; ¢, the
inseparable degree of .

4. If ¢ is separable then y is everywhere unramified and
# ker o = deg . )
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1. The map ¢ is a group homomorphism from Ej to E;.

Discussion:



Properties of Isogenies, Il

1. The map ¢ is a group homomorphism from Ej to E;.
Discussion:

@ Since isogenies are the natural maps in the category of elliptic
curves, and elliptic curves carry a natural group structure
(which as we have discussed can be described purely in terms
of the divisor group), the fact that isogenies are group
homomorphisms is quite reasonable.

@ Indeed, the reason we impose the additional condition that
isogenies map the identity of Ej to the identity of E; is
precisely to ensure that isogenies are group homomorphisms.
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1. The map ¢ is a group homomorphism from E; to E;.

Proof:



Properties of Isogenies, Il

1. The map ¢ is a group homomorphism from E; to E;.

Proof:
o Let P, @ be points of C; and O be the identity of C;.

@ Then by our earlier results, [P+ Q] — [P] — [Q] + [O] is a
principal divisor on Ej as it has degree 0 and the underlying
sum of points resolves to the identity on Ej.

e For div(f) = [P+ Q] — [P] — [Q] + [O], we then have
div(p*f) = ¢*div(f) = [p(P+ Q)] = [p(P)] = [#(Q)]+[»(O)],
so this latter divisor is principal on E;.

@ But that implies the resulting sum of points
o(P+ Q) — ¢(P) — ¢(Q) + ¢(O) resolves to the identity on
E;, so since ¢(O) is the identity on E;, we conclude
immediately that (P + Q) = ¢(P) + ¢(Q) as claimed.
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1. The map ¢ is a group homomorphism from E; to E;.

More Discussion:




Properties of Isogenies, Ill, Again

1. The map ¢ is a group homomorphism from E; to E;.

More Discussion:

@ In fact this result is really just bookkeeping. Here's a way that
makes it clearer.

o We have constructed group isomorphisms 71 : E; — Pic?(E;)
and 73 : Ey — Pic%(E,) with 7;(P) = [P] — [O] as divisor
classes.

@ Then ¢, o Ty = T 0 ¢ essentially by definition and the fact
that ¢(O) = O, so since ¢, is a homomorphism on the Picard
groups (it's certainly a homomorphism on the divisor groups,
and it preserves degree), ¢ = 7-2_1 0 4 0Ty is a composition of
homomorphisms and thus also a homomorphism.



Properties of Isogenies, Ill, Still?

2. Forall Q € B>, #p 1(Q) = deg, ¢. In particular,
ker o = ©~1(0) is a finite subgroup of Ej.




Properties of Isogenies, Ill, Still?

2. Forall Q € B>, #p 1(Q) = deg, ¢. In particular,
ker o = ©~1(0) is a finite subgroup of Ej.

Exercise: Suppose that ¢ : G — H is a surjective group
homomorphism. Show that for any h € H there is a bijection
between ¢~ 1(h) and ker ¢.

Proof:



Properties of Isogenies, Ill, Still?

2. Forall Q € B>, #p 1(Q) = deg, ¢. In particular,
ker o = ©~1(0) is a finite subgroup of Ej.

Exercise: Suppose that ¢ : G — H is a surjective group
homomorphism. Show that for any h € H there is a bijection
between ¢~ 1(h) and ker ¢.

Proof:
@ By our results on ramification we know that
#p~H(Q) = deg, ¢ for all but finitely many Q € E;.
@ Since ¢ is a group homomorphism by (1) and surjective since

it is a nonzero morphism, applying the exercise above yields
both results immediately.
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3. For all P € Ey, the ramification index e, (P) = deg; ¢, the
inseparable degree of .

Proof:



Properties of Isogenies, 1117 Really?

3. For all P € Ey, the ramification index e, (P) = deg; ¢, the
inseparable degree of .
Proof:

e First, let Q@ = ¢(P) and take P’ to be another point in
0 1(Q), and also define R = P’ — P.



Properties of Isogenies, 1117 Really?

3. For all P € Ey, the ramification index e, (P) = deg; ¢, the
inseparable degree of .

Proof:

o First, let Q@ = p(P) and take P’ to be another point in
0 1(Q), and also define R = P’ — P.

@ Since the translation morphism 7 : E — E defined by
¢(A) = A+ R is an isomorphism and hence unramified, we
have p(R) = O and so p o TR = .

@ Then e (P) = egors(P) = e,(Tr(P))er(P) = e,(P’) by the
ramification composition formula. This means all points in
©~1(P) have the same ramification index.

© Then deg, pdeg;p = degp = Y pe,1(q) & (P) =
#gp‘l(Q) - e,(P) = degg ¢ - e,(P), so we must have
e,(P) = deg; ¢ as claimed.
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4. If ¢ is separable then ¢ is everywhere unramified and
# ker p = deg .

Proof:



Properties of Isogenies, 11?7 Apparently?

4. If ¢ is separable then ¢ is everywhere unramified and
# ker p = deg .
Proof:

@ By (3) we see immediately that if ¢ is separable, then
e,(P) = deg; o =1 for all P, so ¢ is unramified.

@ The cardinality of the kernel is immediate from (2).
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4. If ¢ is separable then ¢ is everywhere unramified and
# ker p = deg .
Proof:

@ By (3) we see immediately that if ¢ is separable, then
e,(P) = deg; o =1 for all P, so ¢ is unramified.

@ The cardinality of the kernel is immediate from (2).

Exercise: Use Riemann-Hurwitz to prove directly that if
© : E; — E is a nonconstant separable morphism of elliptic curves
then ¢ is everywhere unramified.



Properties of Isogenies, Il: Wait, Two?

Next time we will prove more properties, involving Galois theory:

Proposition (Properties of Isogenies, continued)

Let o : E; — Ep be a nonzero isogeny. Then

5. The kernel ker ¢ is isomorphic to the automorphism group of
the extension k(Ey)/¢*k(Ez) via the map = sending R — 74
where Tg is the translation-by-R morphism.

6. If ¢ is separable then the extension k(E1)/¢*k(Ez) is a Galois
extension of degree # ker .

7. Suppose that ¢ : Ey — E; and v : Ey — E3 are nonconstant
isogenies and that ¢ is separable. If ker ¢ C ker) then there
exists a unique isogeny v : Ex — E3 such that ¢ = v o .

8. Suppose that ® is a finite subgroup of the elliptic curve E.
Then there exists a unique elliptic curve E' and a separable
isogeny ¢ : E — E’ such that ker p = .




Summary

We discussed the direct and inverse image maps @, and ¢*
We proved the Riemann-Hurwitz genus theorem.

We introduced isogenies and established some of their basic
properties.

Next lecture: More with isogenies, dual isogenies.



