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Recall, I

Suppose that ϕ : C1 → C2 is a nonconstant morphism of curves.

Definition

The map ϕ∗ : k(C2)→ k(C1) is defined by ϕ∗f = f ◦ ϕ for
f ∈ k(C2). The degree deg(ϕ) is defined to be the degree of the
extension k(C1)/ϕ∗k(C2).

Definition

For each P ∈ C1 we define the ramification index eϕ(P) to be
ordP(ϕ∗tϕ(P)), where tϕ(P) is a local uniformizer at ϕ(P).
We say P ∈ C1 is unramified when eϕ(P) = 1 and otherwise P is
ramified.



Recall, II

We have various other results:

Proposition (Properties of Ramification)

Let ϕ : C1 → C2 be a nonconstant morphism of (smooth
projective) curves.

1. For all Q ∈ C2, we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

2. A point Q ∈ C2 is unramified if and only if #ϕ−1(Q) = degϕ.

3. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ. As a
consequence, when ϕ is separable, there are only finitely many
ramified points Q.

4. The ramification index is multiplicative under composition:
explicitly, if ψ : C2 → C3 is another nonconstant morphism
and P ∈ C1, we have eψ◦ϕ(P) = eϕ(P)eψ(ϕ(P)).



The Direct Image Map

When we think of k(C1) as a finite extension of ϕ∗k(C2), we may
use the norm in this extension to construct a map
ϕ∗ : k(C1)→ k(C2).

Explicitly, we define ϕ∗ : k(C1)→ k(C2) via
ϕ∗ = (ϕ∗)−1 ◦ Nk(C1)/ϕ∗k(C2).

We will not bother being more explicit here, because our main
interest is in the actions of the maps ϕ∗ and ϕ∗ on divisors
and differentials, where we can give much nicer formulas.



Actions of ϕ∗ and ϕ∗, I

As usual we start with divisors:

Definition

Let ϕ : C1 → C2 be a nonconstant map of (smooth projective)
curves.

We define the inverse image map ϕ∗ : Div(C2)→ Div(C1) on
divisor groups by setting ϕ∗(Q) =

∑
P∈ϕ−1(Q) eϕ(P)P for all

Q ∈ C2 and extending linearly.

We also define the direct image map ϕ∗ : Div(C1)→ Div(C2) by
setting ϕ∗(P) = ϕ(P) for all P ∈ C1 and extending linearly.

Rather vacuously, both ϕ∗ and ϕ∗ are homomorphisms.



Actions of ϕ∗ and ϕ∗, 2

Example: Let ϕ : P1 → P1 be the squaring map ϕ(x) = x2. Find
ϕ∗(D) and ϕ∗(D) for D = P4 + 2P0 − P∞.

The value of ϕ∗(D) is easier, since we just apply ϕ to all of
the points.

So we see that ϕ∗(D) = P16 + 2P0 − P∞.

For ϕ∗(D) we need to compute the preimages of the various
points that appear in D.

We easily find ϕ−1(P4) = {P2,P−2}, ϕ−1(P0) = P0, and
ϕ−1(P∞) = P∞.

As we worked out last time, the ramification index of ϕ at all
points of P1 other than 0 and ∞ is 1, and at 0 and ∞ it is 2.

So, for D = P4 + 2P0 − P∞ we have
ϕ∗(D) = P2 + P−2 + 4P0 − 2P∞.
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Actions of ϕ∗ and ϕ∗, Three

The actions also extend naturally to differentials. We will only
need the action of ϕ∗, but for completeness we also give ϕ∗.

Definition

Let ϕ : C1 → C2 be a nonconstant map of (smooth projective)
curves.

We define ϕ∗ : Ω(C2)→ Ω(C1) by setting
ϕ∗(f dx) = (ϕ∗f ) d(ϕ∗x) for all f , x ∈ k(C2).

We define ϕ∗ : Ω(C1)→ Ω(C2) by setting
ϕ∗(g dy) = (ϕ∗g) d(ϕ∗y) for all g , y ∈ k(C1).

Example: Let ϕ : P1 → P1 be the squaring map ϕ(x) = x2.

Then for ω2 = (x + 2) dx we have
ϕ∗(ω2) = (x2 + 2) d(x2) = (x2 + 2) 2xdx .
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Actions of ϕ∗ and ϕ∗, Quatre

And now for the properties:

Proposition (Properties of ϕ∗ and ϕ∗)

Let ϕ : C1 → C2 be a nonconstant map of (smooth projective)
curves. Then

1. For any D ∈ Div(C2), we have deg(ϕ∗D) = (degϕ)(deg D).

2. For any D ∈ Div(C1), we have deg(ϕ∗D) = deg D.

3. For all D ∈ Div(C2) we have ϕ∗(ϕ
∗D) = (degϕ)D.

4. If ψ : C2 → C3 is another map, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and
(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ as maps on divisor groups.

5. For all nonzero f ∈ k(C2) we have ϕ∗(div f ) = div(ϕ∗f ).

6. For all nonzero g ∈ k(C1) we have ϕ∗(div g) = div(ϕ∗g).

7. The map ϕ is separable if and only if ϕ∗ : Ω(C2)→ Ω(C1) is
injective (or equivalently, nonzero).



Actions of ϕ∗ and ϕ∗, Cinque

1. For any D ∈ Div(C2), we have deg(ϕ∗D) = (degϕ)(deg D).

Proof:

Recall property (1) of the ramification index: For all Q ∈ C2,
we have

∑
P∈ϕ−1(Q) eϕ(P) = degϕ.

For a single point Q we have ϕ∗Q =
∑

P∈ϕ−1(Q) eϕ(P)P.

So deg(ϕ∗Q) =
∑

P∈ϕ−1(Q) eϕ(P) = degϕ by property (1).

Now sum over all points in D and apply linearity.

2. For any D ∈ Div(C1), we have deg(ϕ∗D) = deg D.

Proof:

Obvious, since if D =
∑

P∈C1
nPP then

ϕ∗D =
∑

P∈C1
nPϕ(P), whose degree is still

∑
P∈C1

nP .
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Actions of ϕ∗ and ϕ∗, Seis

3. For all D ∈ Div(C2) we have ϕ∗(ϕ
∗D) = (degϕ)D.

Proof:

For a single point Q we have
ϕ∗(ϕ

∗Q)
= ϕ∗

∑
P∈ϕ−1(Q) eϕ(P)P

=
∑

P∈ϕ−1(Q) eϕ(P)ϕ(P)
= [

∑
P∈ϕ−1(Q) eϕ(P)]Q

= (degϕ)Q using property (1) again.
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Actions of ϕ∗ and ϕ∗, Seis

3. For all D ∈ Div(C2) we have ϕ∗(ϕ
∗D) = (degϕ)D.

Proof:

For a single point Q we have
ϕ∗(ϕ

∗Q)
= ϕ∗

∑
P∈ϕ−1(Q) eϕ(P)P

=
∑

P∈ϕ−1(Q) eϕ(P)ϕ(P)
= [

∑
P∈ϕ−1(Q) eϕ(P)]Q

= (degϕ)Q using property (1) again.

Now sum over all points in D and apply linearity.



Actions of ϕ∗ and ϕ∗, Sieben

4. If ψ : C2 → C3 is another map, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and
(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ as maps on divisor groups.

Proof:

For a single point divisor R ∈ C3 we have (ψ ◦ ϕ)∗R
=

∑
P∈(ψ◦ϕ)−1R eψ◦ϕ(P)P

=
∑

P∈ϕ−1(Q)[
∑

Q∈ψ−1(R) eϕ(Q)]eψ(P)P
= ϕ∗ψ∗R using the ramification-in-towers property; now apply
linearity.

Likewise, for a single point divisor P ∈ C1 we have
(ψ ◦ ϕ)∗P = ψ(ϕ(P)) = (ψ∗ ◦ ϕ∗)(P) rather trivially.
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Actions of ϕ∗ and ϕ∗, Kahdeksan

5. For all nonzero f ∈ k(C2) we have ϕ∗(div f ) = div(ϕ∗f ).

Exercise: For any nonzero f ∈ k(C2) and any P ∈ C1, show that
ordP(ϕ∗f ) = eϕ(P)ordϕ(P)(f ).

Proof:

By the exercise we see that div(ϕ∗f )
=

∑
P∈C1

ordP(ϕ∗f )P
=

∑
P∈C1

ordϕ(P)(f ) · [eϕ(P)P]
=

∑
Q∈C2

ordQ(f ) · [
∑

P∈ϕ−1(Q) eϕ(P)]P
=

∑
Q∈C2

ordQ(f )ϕ∗Q
= ϕ∗

∑
Q∈C2

ordQ(f )Q
= ϕ∗(div f )
as claimed.
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Actions of ϕ∗ and ϕ∗, Delapan

6. For all nonzero g ∈ k(C1) we have ϕ∗(div g) = div(ϕ∗g).

Discussion:

This property follows by general facts about the behavior of
norms in finite extensions of Dedekind domains.

It requires the definition of ϕ∗ in terms of norms, and is hard
to motivate otherwise.

As an outline, if (div g) =
∑

P∈C1
ordP(g)P then ϕ∗(div g)

=
∑

P∈C1
ordP(g)ϕ(P)

=
∑

Q∈C2
[
∑

ϕ(P)=Q ordP(g)]Q
=

∑
Q∈C2

ordQ(ϕ∗g)]Q
where the last equality follows from the definition of ϕ∗g .
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Actions of ϕ∗ and ϕ∗, Decem

7. The map ϕ is separable if and only if ϕ∗ : Ω(C2)→ Ω(C1) is
injective (or equivalently, nonzero).

Proof:

Recall y ∈ k(C2) has {dy} a basis for Ω(C2) if and only if
k(C2)/k(y) is a finite-degree separable extension.

Choose such an element y .

Applying ϕ∗ shows that ϕ∗k(C2)/ϕ∗k(y) is also a
finite-degree separable extension, and by definition of the
action of ϕ∗y = y ◦ ϕ we see that ϕ∗k(y) = k(ϕ∗y).

Then ϕ∗ is injective ⇐⇒ d(ϕ∗y) 6= 0 ⇐⇒ {d(ϕ∗y)} is a
basis for k(Ω1) ⇐⇒ k(C1)/k(ϕ∗y) is separable ⇐⇒
k(C1)/ϕ∗k(C2) is separable.

The last statement is the definition of separability for ϕ.
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Riemann-Hurwitz, I

We can now establish the fundamental relationship between the
genera of curves related by a morphism.

Theorem (Riemann-Hurwitz)

Let ϕ : C1 → C2 be a nonconstant separable morphism where C1

and C2 are smooth projective curves of respective genera g1 and
g2. Let ω ∈ Ω(C2) be any nonzero differential and define the
ramification divisor R = div(ϕ∗ω)− ϕ∗(divω) ∈ Div(C1).

1. The ramification divisor R is independent of the choice of ω.

2. We have deg R ≥
∑

P∈C1
[eϕ(P)− 1] with equality if and only

if the characteristic of k does not divide eϕ(P) for any P ∈ C1.
(In particular, equality holds when the characteristic is zero.)

3. We have 2g1 − 2 = (degϕ)(2g2 − 2) + deg R.

4. We have 2g1 − 2 ≥ (degϕ)(2g2 − 2) +
∑

P∈C1
[eϕ(P)− 1]

with equality if and only if char(k) - eϕ(P) for any P ∈ C1.



Riemann-Hurwitz, II

1. The ramification divisor R = div(ϕ∗ω)− ϕ∗(divω) ∈ Div(C1)
is independent of the choice of ω ∈ Ω(C2).

Proof:

Let {dx} be any basis for Ω(C2) and write ω = f dx .

Then ϕ∗ω = (ϕ∗f ) d(ϕ∗x) so
div(ϕ∗ω) = div(ϕ∗f ) + div[d(ϕ∗x)], whereas
ϕ∗(divω) = ϕ∗(divf ) + ϕ∗(div dx).

Hence R = div(ϕ∗ω)− ϕ∗(divω)
= [div(ϕ∗f )− ϕ∗(divf )] + div[d(ϕ∗x)]− ϕ∗(div dx)
= div[d(ϕ∗x)]− ϕ∗(div dx) by property (5) above.

This last quantity is independent of ω, as desired.



Riemann-Hurwitz, II
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Riemann-Hurwitz, III

2. We have deg R ≥
∑

P∈C1
[eϕ(P)− 1] with equality if and only

if the characteristic of k does not divide eϕ(P) for any P ∈ C1.

Proof (part 1):

As shown in (1) we have R = div[d(ϕ∗x)]− ϕ∗(div dx) for
any basis {dx} of Ω(C2).

To compute the order of R at P, we may take x = t where t
is a uniformizer at Q = ϕ(P), since as we showed previously,
{dt} is a basis for Ω(C2).

By definition, we have ϕ∗t = use where s is a uniformizer at
P, e = eϕ(P) is the ramification index, and u ∈ OP is defined
at P with u(P) 6= 0.
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Riemann-Hurwitz, IV

2. We have deg R ≥
∑

P∈C1
[eϕ(P)− 1] with equality if and only

if the characteristic of k does not divide eϕ(P) for any P ∈ C1.

Proof (part 2):

We take t a uniformizer at Q = ϕ(P). Then ϕ∗t = use where
s is a uniformizer at P, e = eϕ(P) is the ramification index,
and u ∈ OP is defined at P with u(P) 6= 0.

Then d(ϕ∗t) = [(du/ds)se + euse−1]ds so ordP [d(ϕ∗t)] =
ordP [(du/ds)se + euse−1] = (e − 1) + ordP [s(du/ds) + eu],
and we also have ordP [ϕ∗(div dt)] = 0.

Since u is defined at P we see that du/ds is also defined at P,
and quite similarly to our calculations with differentials
previously, we see that ordP [d(ϕ∗t)] ≥ e − 1 with equality if
and only if the characteristic of k does not divide e = eϕ(P).

Summing over all points P ∈ C1 yields the result immediately.



Riemann-Hurwitz, IV
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Riemann-Hurwitz, V

3. We have 2g1 − 2 = (degϕ)(2g2 − 2) + deg R.

Proof:

Taking degrees in the definition of R and rearranging yields
deg[ϕ∗(divω)] = deg[div(ϕ∗ω)] + deg R.

By property (1) of ϕ∗, we have
deg(ϕ∗ω) = (degϕ)(degω) = (degϕ)(2g2 − 2) since ω is a
differential on C2 hence the degree of its divisor is 2g2 − 2 as
we showed using Riemann-Roch.

Since ϕ∗(divω) is a differential on C1, its degree is 2g1 − 2.

So we are done.
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Riemann-Hurwitz, VI

4. We have 2g1 − 2 ≥ (degϕ)(2g2 − 2) +
∑

P∈C1
[eϕ(P)− 1]

with equality if and only if char(k) - eϕ(P) for any P ∈ C1.

Proof:

From (2), deg R ≥
∑

P∈C1
[eϕ(P)− 1] with equality if and

only if the characteristic of k does not divide eϕ(P) for any
P ∈ C1.

From (3), 2g1 − 2 = (degϕ)(2g2 − 2) + deg R.

Then (2) + (3) = (4).
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Riemann-Hurwitz, VII

The Riemann-Hurwitz theorem is really a topological result, and
we can give some geometric motivation for where it comes from in
the situation of Riemann surfaces, where k = C.

We view the curves C1 and C2 as surfaces over R.

Then the morphism ϕ represents a d-sheeted covering of C2

by C1, where each unramified point of C2 has exactly d
preimages in C1.

If ϕ were unramified everywhere, then (e.g., by considering a
triangulation of C1) we see that the Euler characteristic
χ1 = 2− 2g1 of C1 would be d times the Euler characteristic
χ2 = 2− 2g2 of C2.

That would say χ1 = (degϕ)χ2, which is precisely the
statement of Riemann-Hurwitz without the ramification term.
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Riemann-Hurwitz, VIII

So now what happens if there are ramified points?

As we have seen, at ramified points of ϕ, there are fewer
preimage points than expected, meaning that sheets of the
covering collide, which introduces an error term into the
characteristic calculation.

Precisely, at a ramified point the ramification index eϕ(P)
counts the number of sheets that collide at P, and so relative
to unramified points (with ramification index 1) the overall
characteristic χ1 is lowered by a total of eϕ(P) from what
would be expected if the point were unramified.

Summing this correction over all of the ramified points yields
the general statement of Riemann-Hurwitz:
χ1 = (degϕ)χ2 −

∑
P∈C1

[eϕ(P)− 1].
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Isogenies, I

We are now – finally! – done with all of the preliminary results,
and will narrow our focus to elliptic curves permanently. Our first
task is to study maps from one elliptic curve to another.

Since we defined an elliptic curve as a smooth projective curve
of genus 1 together with a marked rational point O, we
require the maps also to preserve the marked point:

Definition

Let (E1,O1) and (E2,O2) be two elliptic curves. An isogeny
ϕ : E1 → E2 is a morphism from E1 to E2 such that ϕ(O1) = O2.
If E1 and E2 are elliptic curves such that there exists a nonzero
isogeny between them, we say they are isogenous.

Since nonconstant morphisms of curves are surjective, and the only
constant isogeny is the zero map, nonzero isogenies are surjective.
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Isogenies, II

As we will show later, being isogenous is an equivalence relation on
elliptic curves.

It is self-evidently reflexive and transitive, since the identity
morphism is an isogeny and the composition of two isogenies
is an isogeny.

When ϕ is nonzero, recall that we define the degree of ϕ to be
degree of the function-field extension k(C2)/ϕ∗k(C1). We also set
deg(0) = 0 for convenience.

Exercise: Show that the degree map is multiplicative on isogenies:
deg(ϕ ◦ ψ) = (degϕ)(degψ).
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Isogenies, III

Since E1 and E2 are groups, the collection of all isogenies from E1

to E2 forms an abelian group, and since compositions of isogenies
are isogenies, the set of isogenies from E to E forms a ring.

Exercise: Let E1 and E2 be elliptic curves and define Hom(E1,E2)
to be the collection of all isogenies from E1 to E2. Show that
Hom(E1,E2) is an abelian group under the addition operation
(ϕ+ ψ)P = ϕ(P) + ψ(P) for all P ∈ E1 (the addition on the right
is the sum under the group law on E2) for ϕ,ψ ∈ Hom(E1,E2).

Exercise: Let E be an elliptic curve and define
End(E ) = Hom(E ,E ) to be the collection of all isogenies from E
to itself. Show that E is a ring with 1 having no zero divisors, with
addition given as in the exercise above and multiplication given by
composition. [Hint: For the lack of zero divisors, consider degrees.]
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Isogenies, IV

Our most basic example of an isogeny is the multiplication-by-m
map:

For an integer m, the multiplication-by-m map [m] : E → E is
an isogeny, since as we have previously discussed it is a
morphism, and it clearly preserves the group identity O.

We showed much earlier during our discussion of Mordell’s
theorem that the multiplication-by-m map has degree m2,
since as a rational map it is defined by a quotient of
polynomials of degree m2.

We will later give a far nicer and minimally computational
proof that [m] has degree m2.
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Isogenies, V

In particular, since its degree is m2, [m] 6= 0 for m 6= 0. There are
some nice consequences to this fact:

First, we see that the endomorphism ring End(E ) always
contains the subring Z generated by the identity map [1].

Additionally, if ϕ : E1 → E2 is any isogeny, we see that
deg(mϕ) = deg([m] ◦ ϕ) = deg([m]) deg(ϕ) = m2 deg(ϕ).

Thus, if ϕ is a torsion element of Hom(E1,E2) so that
mϕ = 0, the above implies deg(ϕ) = 0 whence ϕ = 0.

Thus, Hom(E1,E2) is a torsion-free abelian group.

As we will see in a few lectures, for many elliptic curves the
multiplication-by-m maps are the only endomorphisms! So it
requires some nontrivial effort to give other examples.
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Isogenies, VI

Example: Consider the map i : E → E with i(x , y) = (−x , iy) on
the elliptic curve E : y2 = x3 − x , where i2 = −1 inside the
underlying field k (where we assume char(k) 6= 2 to avoid
trivialities).

This map is a morphism from E to E since (−x , iy) is also a
point of E and it is described by rational functions that are
defined everywhere, and since it maps O =∞ to itself, it is
an isogeny of E .

Since [i ] ◦ [i ] maps (x , y) 7→ (x ,−y) we see [i ] ◦ [i ] = [−1].

Taking b[i ] to be the b-fold sum of [i ] with itself, we see that
the endomorphism ring End(E ) contains the elements
[a] + b[i ] for all a, b ∈ Z.
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Example: Consider the map i : E → E with i(x , y) = (−x , iy) on
the elliptic curve E : y2 = x3 − x , where i2 = −1 inside the
underlying field k (where we assume char(k) 6= 2 to avoid
trivialities).

As we just saw, the maps of the form [a] + b[i ] for a, b ∈ Z
are endomorphisms of E .

Since [i ] ◦ [i ] = [−1], when k is a subfield of C we see that
the ring of such elements embeds in the Gaussian integer ring
Z[i ] via the obvious map [a] + b[i ] 7→ a + bi .

In fact, these are all of the endomorphisms of E .

This curve is an example of an elliptic curve with
complex multiplication, as it possesses an endomorphism that
behaves like multiplication by a complex number (in this case,
i =
√
−1).
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Isogenies, VIII

Example: Let E = V (f ) be an elliptic curve and let
E (p) = V (f (p)), where f (p) is obtained by raising all of the
coefficients of f to the pth power1.

Then the Frobenius map Frob : E → E (p) with
Frob(x , y) = (xp, yp) is an isogeny from E to E (p) since it is
clearly a morphism and it preserves the point at ∞.

If E is defined over the field Fp, Frob fixes all of the
coefficients (indeed, Fp is precisely the fixed field of Frob):
then E (p) = E and so Frob is an endomorphism of E .

More generally, if E is defined over Fq for some prime power
q, then the qth-power Frobenius map Frob(x , y) = (xq, yq) is
an endomorphism of E .

1Since the discriminant is a polynomial function of the coefficients of the
Weierstrass equation, since the Frobenius map is a field automorphism, the
discriminant of f (p) is the pth power of the discriminant of E , so E (p) is also
nonsingular when E is nonsingular.
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Properties of Isogenies, I

Now let’s prove some properties of isogenies using all of the results
about morphisms and ramification we have developed:

Proposition (Properties of Isogenies)

Let ϕ : E1 → E2 be a nonzero isogeny. Then

1. The map ϕ is a group homomorphism from E1 to E2.

2. For all Q ∈ E2, #ϕ−1(Q) = degs ϕ. In particular,
kerϕ = ϕ−1(O) is a finite subgroup of E1.

3. For all P ∈ E1, the ramification index eϕ(P) = degi ϕ, the
inseparable degree of ϕ.

4. If ϕ is separable then ϕ is everywhere unramified and
# kerϕ = degϕ.



Properties of Isogenies, III

1. The map ϕ is a group homomorphism from E1 to E2.

Discussion:

Since isogenies are the natural maps in the category of elliptic
curves, and elliptic curves carry a natural group structure
(which as we have discussed can be described purely in terms
of the divisor group), the fact that isogenies are group
homomorphisms is quite reasonable.

Indeed, the reason we impose the additional condition that
isogenies map the identity of E1 to the identity of E2 is
precisely to ensure that isogenies are group homomorphisms.
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Properties of Isogenies, III

1. The map ϕ is a group homomorphism from E1 to E2.

Proof:

Let P,Q be points of C1 and O be the identity of C1.

Then by our earlier results, [P + Q]− [P]− [Q] + [O] is a
principal divisor on E1 as it has degree 0 and the underlying
sum of points resolves to the identity on E1.

For div(f ) = [P + Q]− [P]− [Q] + [O], we then have
div(ϕ∗f ) = ϕ∗div(f ) = [ϕ(P +Q)]−[ϕ(P)]−[ϕ(Q)]+[ϕ(O)],
so this latter divisor is principal on E2.

But that implies the resulting sum of points
ϕ(P + Q)− ϕ(P)− ϕ(Q) + ϕ(O) resolves to the identity on
E2, so since ϕ(O) is the identity on E2, we conclude
immediately that ϕ(P + Q) = ϕ(P) + ϕ(Q) as claimed.
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Properties of Isogenies, III, Again

1. The map ϕ is a group homomorphism from E1 to E2.

More Discussion:

In fact this result is really just bookkeeping. Here’s a way that
makes it clearer.

We have constructed group isomorphisms τ1 : E1 → Pic0(E1)
and τ2 : E2 → Pic0(E2) with τi (P) = [P]− [O] as divisor
classes.

Then ϕ∗ ◦ τ1 = τ2 ◦ ϕ essentially by definition and the fact
that ϕ(O) = O, so since ϕ∗ is a homomorphism on the Picard
groups (it’s certainly a homomorphism on the divisor groups,
and it preserves degree), ϕ = τ−12 ◦ ϕ∗ ◦ τ1 is a composition of
homomorphisms and thus also a homomorphism.
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Properties of Isogenies, III, Still?

2. For all Q ∈ E2, #ϕ−1(Q) = degs ϕ. In particular,
kerϕ = ϕ−1(O) is a finite subgroup of E1.

Exercise: Suppose that ϕ : G → H is a surjective group
homomorphism. Show that for any h ∈ H there is a bijection
between ϕ−1(h) and kerϕ.

Proof:

By our results on ramification we know that
#ϕ−1(Q) = degs ϕ for all but finitely many Q ∈ E2.

Since ϕ is a group homomorphism by (1) and surjective since
it is a nonzero morphism, applying the exercise above yields
both results immediately.
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Properties of Isogenies, III? Really?

3. For all P ∈ E1, the ramification index eϕ(P) = degi ϕ, the
inseparable degree of ϕ.

Proof:

First, let Q = ϕ(P) and take P ′ to be another point in
ϕ−1(Q), and also define R = P ′ − P.

Since the translation morphism τR : E → E defined by
ϕ(A) = A + R is an isomorphism and hence unramified, we
have ϕ(R) = O and so ϕ ◦ τR = ϕ.

Then eϕ(P) = eϕ◦τR (P) = eϕ(τR(P))eτR (P) = eϕ(P ′) by the
ramification composition formula. This means all points in
ϕ−1(P) have the same ramification index.

Then degs ϕ degi ϕ = degϕ =
∑

P∈ϕ−1(Q) eϕ(P) =

#ϕ−1(Q) · eϕ(P) = degs ϕ · eϕ(P), so we must have
eϕ(P) = degi ϕ as claimed.
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Properties of Isogenies, III? Apparently?

4. If ϕ is separable then ϕ is everywhere unramified and
# kerϕ = degϕ.

Proof:

By (3) we see immediately that if ϕ is separable, then
eϕ(P) = degi ϕ = 1 for all P, so ϕ is unramified.

The cardinality of the kernel is immediate from (2).

Exercise: Use Riemann-Hurwitz to prove directly that if
ϕ : E1 → E2 is a nonconstant separable morphism of elliptic curves
then ϕ is everywhere unramified.
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The cardinality of the kernel is immediate from (2).

Exercise: Use Riemann-Hurwitz to prove directly that if
ϕ : E1 → E2 is a nonconstant separable morphism of elliptic curves
then ϕ is everywhere unramified.



Properties of Isogenies, III? Apparently?

4. If ϕ is separable then ϕ is everywhere unramified and
# kerϕ = degϕ.

Proof:

By (3) we see immediately that if ϕ is separable, then
eϕ(P) = degi ϕ = 1 for all P, so ϕ is unramified.

The cardinality of the kernel is immediate from (2).

Exercise: Use Riemann-Hurwitz to prove directly that if
ϕ : E1 → E2 is a nonconstant separable morphism of elliptic curves
then ϕ is everywhere unramified.



Properties of Isogenies, II: Wait, Two?

Next time we will prove more properties, involving Galois theory:

Proposition (Properties of Isogenies, continued)

Let ϕ : E1 → E2 be a nonzero isogeny. Then

5. The kernel kerϕ is isomorphic to the automorphism group of
the extension k(E1)/ϕ∗k(E2) via the map Ξ sending R 7→ τ∗R
where τR is the translation-by-R morphism.

6. If ϕ is separable then the extension k(E1)/ϕ∗k(E2) is a Galois
extension of degree # kerϕ.

7. Suppose that ϕ : E1 → E2 and ψ : E1 → E3 are nonconstant
isogenies and that ϕ is separable. If kerϕ ⊆ kerψ then there
exists a unique isogeny γ : E2 → E3 such that ψ = γ ◦ ϕ.

8. Suppose that Φ is a finite subgroup of the elliptic curve E.
Then there exists a unique elliptic curve E ′ and a separable
isogeny ϕ : E → E ′ such that kerϕ = Φ.



Summary

We discussed the direct and inverse image maps ϕ∗ and ϕ∗

We proved the Riemann-Hurwitz genus theorem.

We introduced isogenies and established some of their basic
properties.

Next lecture: More with isogenies, dual isogenies.


