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Recall, I

Recall differentials:

The space of differentials Ω(C ) consists of symbols dx for
x ∈ k(C ), subject to the following three relations:

1. The additivity relation d(x + y) = dx + dy for all
x , y ∈ k(C ).

2. The Leibniz rule d(xy) = x dy + y dx for all x , y ∈ k(C ).
3. Derivatives of constants are zero: da = 0 for all a ∈ k .

Ω(C ) is a 1-dimensional k(C )-vector space.

If t is a local uniformizer at some P, then any differential is of
the form ω = f dt for some f ∈ k(C ).

The divisor of ω is div(ω) =
∑

P ordP(ω) P.

The canonical class C is the divisor class of div(ω) in Pic(C ).

A differential ω is holomorphic if div(ω) ≥ 0. The space Ω(0)
of holomorphic differentials is finite-dimensional, and its
dimension is defined to be g , the genus of C .



Differentials on Elliptic Curves, II

Proposition (Differentials on Elliptic Curves)

Let C/k be a smooth projective curve with affine Weierstrass
equation y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. Then

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

2. The space of holomorphic differentials on C is a 1-dimensional
k-vector space, whence C has genus 1.

3. Smooth projective genus-1 curves are equivalent to curves
with nonsingular Weierstrass equations.

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.



Differentials on Elliptic Curves, III

2. The space of holomorphic differentials on C is a 1-dimensional
k-vector space, whence C has genus 1.

Proof:

Take ω as in (1): then div(ω) = 0.

From our properties of differentials, any other differential ζ is
of the form f ω for some f ∈ k(C ).

But then div(ζ) = div(f ) + div(ω) = div(f ), so in order for ζ
to be holomorphic we must have div(f ) ≥ 0, meaning that f
is a rational function with no poles.

But the only such (projective) functions are constants, whence
ζ is a k-scalar multiple of ω.

Thus, the space of holomorphic differentials on C is a
1-dimensional k-vector space, so C has genus 1 as claimed.
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Differentials on Elliptic Curves, IV

3. Every smooth projective genus-1 curve has a nonsingular
Weierstrass equation, and conversely every nonsingular
Weierstrass equation gives a smooth projective genus-1 curve.

Proof:

We showed the first part earlier using Riemann-Roch.

The second part is simply (2).



Differentials on Elliptic Curves, V

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

We could in principle show this result just using the point
addition formulas, since they give explicit expressions for x̃
and ỹ in terms of x , y , and the coordinates of Q.

We will give a less tedious argument.

Because of this result, we call ω the invariant differential of E .
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4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 1):

Since ω̃ is obtained by adding Q to all points on C , for any P
on C we see that ordP(ω̃) = ordP−Q(ω) = 0, and so ω̃ is also
a nonvanishing holomorphic differential.

By (2) since the space of holomorphic differentials is
1-dimensional, that means ω̃ = cQω for some scalar cQ ∈ k
that (a priori) depends on Q.

Now consider the map ϕ : E → P1 sending Q 7→ [cQ : 1] for
each point Q.
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Differentials on Elliptic Curves, VII

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 2):

Now consider ϕ : E → P1 sending Q 7→ [cQ : 1].

This map is necessarily rational (since after all the expressions
for x̃ and ỹ are rational functions, so the ratio ω̃/ω is some
rational function), but it clearly omits [1 : 0] since cQ is
defined for all Q.

Thus ϕ is not surjective, meaning that it must be constant
since nonconstant rational maps of curves are surjective.

Finally, setting Q to be the identity O on E shows ω̃O = ω, so
the constant must be 1. We conclude that ω̃ = ω for all Q.
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Riemann-Roch Redux — I

Now that we have defined the canonical class and the genus, we
can outline the proof of Riemann-Roch:

Theorem (Riemann-Roch)

For any algebraic curve C/k, there exists an integer g ≥ 0 called
the genus of C , and a divisor class C, called the canonical class of
C , such that for any divisor C ∈ C and any divisor A ∈ Div(K ), we
have `(A) = deg(A)− g + 1 + `(C − A).



Riemann-Roch Redux —— II

The main additional definition required is the residue of a rational
function f ∈ k(C ) at a point P, which is the general analogue of
the residue of a meromorphic function at a point in C.

There are various ways to give this definition, but the
standard approach is as the coefficient a−1 in a local Laurent
expansion f =

∑∞
n=−k antn where t is a local uniformizer.

To show such an expansion exists, by definition g = t−ordP f f
is defined at P: writing a−k = g(P), we see that f − a−kt−k

has a strictly smaller pole order.

By repeating this procedure, we may write
f = [

∑d
n=−k antn] + h where h is defined at P and has a zero

of order at least d + 1. The Laurent expansion is just the
formal limit as d →∞.
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Riemann-Roch Redux ——— III

Here are some other facts about residues:

The residue of a rational function is only nonzero when the
function has a pole at P.

By the analogue of Cauchy’s residue theorem (or Stokes’s
theorem, depending on one’s interpretation), the sum of the
residues of any rational function over all its poles is zero.



Riemann-Roch Redux ———— IV

Now suppose we have an effective divisor D = P1 + P2 + · · ·+ Pd

for distinct points Pi .

Then we obtain a map ϕ : L(D)→ kd by taking
ϕ(D) = (ResP1f , ResP2f , . . . , ResPd

f ).

The kernel of this map is the set of functions g ∈ L(D) whose
residue is zero at each Pi , which includes all constant
functions.

Thus, we obtain an exact sequence 0→ k → L(D)
ϕ→ kd .

Now we ask the question: how close is the map ϕ to being
surjective? In other words, what conditions are there on the values
of the residues of a function in L(D) at the points Pi?
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Riemann-Roch Redux ————— V

We can answer this question by looking at the residues of
holomorphic and meromorphic differentials. Here is some
motivation for why these things show up in Riemann-Roch:

Definition

Let D be a divisor on the curve C . We define Ω(D) to be the
space of differentials ζ such that div(ζ) ≥ −D. In particular, Ω(0)
is the space of holomorphic differentials.

Exercise: Show Ω(D) is a k-vector space isomorphic to L(C − D),
where C is any element of the canonical class of C . [Hint: Fix a
differential ω and let f ∈ L(C − D) and consider f 7→ f ω. The
proof that the space of holomorphic differentials is isomorphic to
L(C) is a special case. ]
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Riemann-Roch Redux —————— VI

Definition

If ω is holomorphic, we define the residue of ω at P as the residue
of the ratio ω/dt at P where dt is a local uniformizer at P.

In the same way as for functions, the sum of the residues of
any meromorphic differential over all points must be zero.

So, again with D = P1 + P2 + · · ·+ Pd for distinct points Pi ,
for each holomorphic ω and each f ∈ L(D), we see that the
sum of the residues of f ω must be zero.

This means each differential imposes a linear condition on the
possible choices of residues for f .
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Riemann-Roch Redux ——————— VII

More precisely, we obtain a map ψ : Ω(0)→ kd by taking
ψ(D) = (ResP1ω,ResP2ω, . . . ,ResPk

ω).

The kernel of this map is the set of differentials ω ∈ Ω(D)
whose residue is zero at each Pi , which includes everything in
ω ∈ Ω(0).

Thus, we get another exact sequence

0→ Ω(0)→ Ω(D)
ψ→ kd , to go along with

0→ k → L(D)
ϕ→ kd .

Exercise: If D ≥ 0, show that Riemann-Roch is equivalent to the
statement that dimk [L(D)/L(0)] + dimk [Ω(D)/Ω(0)] = deg(D).
(Note that we require D ≥ 0 in order for the quotient spaces to
make sense.)
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Riemann-Roch Redux ———————— VIII

We have 0→ Ω(0)→ Ω(D)
ψ→ kd and 0→ k → L(D)

ϕ→ kd .
Now, observe that dim(imϕ) and dim(imψ) are orthogonal in kd :

For f ∈ L(D) and ω ∈ Ω(D), the dot product of ϕ(f ) and
ψ(ω) is

∑d
i=1ResPi

(f )ResPi
(ω) =

∑d
i=1ResPi

(f ω) = 0 since
this is the sum of the residues of a differential.

So, since the images of ϕ and ψ are orthogonal, we see that
dim(imϕ) + dim(imψ) ≤ d = deg(D).

By nullity-rank, since ker(ϕ) = k we get
dim(imϕ) = dim(L(D))− 1 = `(D)− 1.

Likewise, since ker(ψ) = Ω(D) we get
dim(imψ) = dim(Ω(0))− dim(Ω(D)) = g − `(C − D).

Thus, we obtain Riemann’s inequality
`(D)− 1 + g − `(C − D) ≤ deg(D).

Riemann-Roch is the statement that we actually have equality here.
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Riemann-Roch Redux ————————— IX

As it stands, we know `(D)− 1 + g − `(C −D) ≤ deg(D) when D
is effective.

In the event that C − D is also effective, however, we can
extract the desired result.

In such a case, we have both
`(D)− 1 + g − `(C − D) ≤ deg(D) and
`(C − D)− 1 + g − `(D) ≤ deg(C − D) = deg(C )− deg(D).

Adding yields 2g − 2 ≤ deg(C ). But since deg(C ) = 2g − 2
(a calculation we take for granted), we must have equality in
both cases.

This establishes Riemann-Roch for divisors D where both D
and C − D are effective divisors (or equivalent to effective
divisors, since as we showed, `(D1) = `(D2) when D1 ∼ D2).

This is nearly enough: as we showed, if L(D) 6= 0 then D is
equivalent to an effective divisor.
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The only other item we need to justify is that when `(C − D) = 0,
one has deg(D) ≥ `(D)− 1 + g .

Assuming that deg(D) ≥ `(D)− 1 + g , one obtains
Riemann-Roch in general: if both D and C −D are equivalent
to effective divisors, the result is as above, and if D is but
C − D is not, the result follows from deg(D) ≥ `(D)− 1 + g ,
and if C − D is but D is not, the result is equivalent by
interchanging D and C − D.

Finally, if neither D nor C − D is equivalent to an effective
divisor (i.e., if `(D) = `(C − D) = 0), then by the inequality
above we must have deg(D) ≥ g − 1 and deg(C −D) ≥ g − 1.

But since deg(C ) = 2g − 2 this forces deg(D) = g − 1, in
which case we do get deg(D) = `(D)− 1 + g − `(C − D), as
required.



Preliminaries for Ramification, I

Our next object of study is how morphisms interact with divisors
and differentials. We begin by discussing the notion of ramification.

Recall, as we have previously discussed, that if ϕ : C1 → C2 is
a nonconstant morphism of curves then we obtain a
corresponding injection ϕ∗ : k(C2)→ k(C1) on function fields
given by ϕ∗f = f ◦ ϕ for f ∈ k(C2).

More generally, this association yields an equivalence of
categories, where E is an arbitrary field:

1. (Objects) Function fields K/E of transcendence degree 1
where K ∩ E = E
(Morphisms) Field injections fixing 1 (up to isomorphism)

2. (Objects) Smooth projective curves defined over E
(Morphisms) Non-constant morphisms defined over E (up to
isomorphism)
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Preliminaries for Ramification, II

Continue to assume ϕ : C1 → C2 is a nonconstant morphism.

Since both function fields have transcendence degree 1 over k
and are finitely generated, the field extension k(C1)/ϕ∗k(C2)
has finite degree.

We define the degree of this extension to be the degree
deg(ϕ). For completeness also we define the degree of
constant morphisms to be 0.

Additionally, we say ϕ is separable (or inseparable) when the
corresponding field extension is separable (or inseparable) and
define the associated separable degree (and inseparable
degree) of ϕ to be the corresponding separable degree (and
inseparable degree) of the field extension.



Preliminaries for Ramification, III

Example: Consider the morphism ϕ : P1 → P1 given by
ϕ[X : Y ] = [X 2 : Y 2], with x = X/Y as usual.

We have k(C1) = k(C2) = k(x) and ϕ(x) = x2, so
ϕ∗k(C2) = k(x2).

Then the corresponding function-field extension is
k(x)/k(x2), which has degree 2.

Written affinely, the map is simply ϕ(x) = x2, which we quite
reasonably would expect to have degree 2 under any sensible
definition.

When the field characteristic is not equal to 2, this map is
separable, and when the characteristic equals 2, it is (purely)
inseparable.
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Ramification, I

Now we can discuss ramification:

Definition

Let ϕ : C1 → C2 be a nonconstant morphism. For each P ∈ C1 we
define the ramification index eϕ(P) to be ordP(ϕ∗tϕ(P)), where
tϕ(P) is a local uniformizer at ϕ(P).

Intuitively, the ramification index eϕ(P) measures by what factor
the local order of vanishing changes when we apply ϕ to move
from P to ϕ(P).

Note by definition that the evaluation
(ϕ∗tϕ(P))(P) = (tϕ(P) ◦ ϕ)(P) = tϕ(P)(ϕ(P)) = 0, so the
function ϕ∗tϕ(P) is defined at P and evaluates to zero there.

Thus, we have eϕ(P) ≥ 1 with equality if and only if ϕ∗tϕ(P)

is a local uniformizer at P.
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Ramification, II

Now we can discuss ramification:

Definition

Let ϕ : C1 → C2 be a nonconstant morphism, with ramification
index ordP(ϕ∗tϕ(P)). When eϕ(P) = 1 we say that P is unramified
and otherwise (when eϕ(P) > 1) we say that P is ramified.
We extend this to say a point Q ∈ C2 is unramified when all its
preimages P ∈ ϕ−1(Q) are unramified.

Equivalently, in terms of the characterization on the last slide, P is
unramified precisely when applying the map ϕ∗ maps a local
uniformizer at ϕ(P) to a local uniformizer at P.



Ramification, III

Example: Consider the squaring map ϕ : P1(C)→ P1(C) with
ϕ(x) = x2 from earlier. Find the ramification index at 2, 0, and ∞.

By definition, ϕ∗f (x) = f (x2).

At P = 2 we have ϕ(P) = 4 and so tϕ(P) = x − 4 is a local
uniformizer at ϕ(P). Then ϕ∗tϕ(P) = x2 − 4, so
ordP(ϕ∗tϕ(P)) = ordx−2(x2 − 4) = 1, so P = 2 is unramified.

On the other hand, at Q = 0 we see that tϕ(Q) = x so that
ϕ∗tϕ(Q) = x2 and ordQ(ϕ∗tϕ(Q)) = ordx(x2) = 2, so Q = 0 is
ramified.

At R =∞ we see that tϕ(R) = 1/x so that ϕ∗tϕ(Q) = 1/x2

and ordQ(ϕ∗tϕ(Q)) = ord1/x(1/x2) = 2, so R =∞ is
ramified.

Indeed, one may check that 0 and ∞ are the only ramified points
of this morphism.



Ramification, III

Example: Consider the squaring map ϕ : P1(C)→ P1(C) with
ϕ(x) = x2 from earlier. Find the ramification index at 2, 0, and ∞.

By definition, ϕ∗f (x) = f (x2).

At P = 2 we have ϕ(P) = 4 and so tϕ(P) = x − 4 is a local
uniformizer at ϕ(P). Then ϕ∗tϕ(P) = x2 − 4, so
ordP(ϕ∗tϕ(P)) = ordx−2(x2 − 4) = 1, so P = 2 is unramified.

On the other hand, at Q = 0 we see that tϕ(Q) = x so that
ϕ∗tϕ(Q) = x2 and ordQ(ϕ∗tϕ(Q)) = ordx(x2) = 2, so Q = 0 is
ramified.

At R =∞ we see that tϕ(R) = 1/x so that ϕ∗tϕ(Q) = 1/x2

and ordQ(ϕ∗tϕ(Q)) = ord1/x(1/x2) = 2, so R =∞ is
ramified.

Indeed, one may check that 0 and ∞ are the only ramified points
of this morphism.



Ramification, IV

Exercise: Compute the ramification index eϕ(P) for all points
P ∈ P1 for the map ϕ : P1(C)→ P1(C) with ϕ(x) = x3.

Exercise: Let f ∈ k(x) be a nonconstant rational function. Show
that a finite point P ∈ k is ramified for the map f : P1(k)→ P1(k)
if and only if f ′(P) = 0. Deduce that f has only finitely many
ramified points. Under what conditions on f will ∞ be ramified?



Ramification, V

The ramification index defined here is the natural function-field
analogue for the ramification index of a prime in a number field.

Explicitly, if L/K is an extension of number fields with
corresponding rings of integers OL and OK , then each prime
ideal R of OL lies over a unique prime ideal Q of OK with
Q = OK ∩ R.

If the prime ideal factorization of QOR has its power of R
equal to Re(R), then the ramification index of R is e(R).
(This quantity is well defined since OL is a Dedekind domain
and therefore has unique factorization of ideals as a product
of prime ideals.)

In fact, the ramification index in our situation literally is the
ramification index for the prime ideal mP associated to the
valuation ring OP in the field extension k(C1)/ϕ∗k(C2).



The Ramifications of Ramification, I

We have various other results:

Proposition (Properties of Ramification)

Let ϕ : C1 → C2 be a nonconstant morphism of (smooth
projective) curves.

1. For all Q ∈ C2, we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

2. A point Q ∈ C2 is unramified if and only if #ϕ−1(Q) = degϕ.

3. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ. As a
consequence, when ϕ is separable, there are only finitely many
ramified points Q.

4. The ramification index is multiplicative under composition:
explicitly, if ψ : C2 → C3 is another nonconstant morphism
and P ∈ C1, we have eψ◦ϕ(P) = eϕ(P)eψ(ϕ(P)).



The Ramifications of Ramification, II

1. For all Q ∈ C2, we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

Example:

Consider the squaring map ϕ : P1(C)→ P1(C) with
ϕ(x) = x2 of degree 2.

For Q = 4 we have ϕ−1(Q) = {P2,P−2} and as we
half-computed already, eϕ(P2) = eϕ(P−2) = 1.

For Q ′ = 0 we have ϕ−1(Q ′) = {P0} and as we have already
computed, eϕ(P0) = 2.

For Q ′′ =∞ we have ϕ−1(Q ′′) = {P∞} and as we have
already computed, eϕ(P∞) = 2.
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1. For all Q ∈ C2, we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

Example:

Consider the squaring map ϕ : P1(C)→ P1(C) with
ϕ(x) = x2 of degree 2.

For Q = 4 we have ϕ−1(Q) = {P2,P−2} and as we
half-computed already, eϕ(P2) = eϕ(P−2) = 1.

For Q ′ = 0 we have ϕ−1(Q ′) = {P0} and as we have already
computed, eϕ(P0) = 2.

For Q ′′ =∞ we have ϕ−1(Q ′′) = {P∞} and as we have
already computed, eϕ(P∞) = 2.



The Ramifications of Ramification, III

1. For all Q ∈ C2, we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

Discussion:

This result is the analogue of the so-called “efg” theorem of
number fields: if L/K is an extension of number fields and
fϕ(R|Q) is the relative degree of the prime R of OL lying over
the prime Q of OK , then

∑
R|Q ei (R)fi (R) = [L : K ].

In our situation, the analogous definition of the relative degree
would be the vector space dimension dimOP/mP

(OOϕ∗P/mϕ∗P ),
but since k is algebraically closes both fields OP/mP and
Oϕ∗P/mϕ∗P are isomorphic to k, so the relative degree is
always 1.

The proof (in both the number field case and our case)
follows from examining the prime ideal factorization in the
appropriate extension of Dedekind domains.
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(OOϕ∗P/mϕ∗P ),
but since k is algebraically closes both fields OP/mP and
Oϕ∗P/mϕ∗P are isomorphic to k, so the relative degree is
always 1.

The proof (in both the number field case and our case)
follows from examining the prime ideal factorization in the
appropriate extension of Dedekind domains.



The Ramifications of Ramification, IV

2. A point Q ∈ C2 is unramified if and only if #ϕ−1(Q) = degϕ.

Proof:

By (1) we have
∑

P∈ϕ−1(Q) eϕ(P) = degϕ.

Since there are degϕ terms in the sum and each term is at
least 1, the sum is always at least #ϕ−1(Q), and it equals
#ϕ−1(Q) if and only if eϕ(P) = 1 for all P ∈ ϕ−1(Q).

So we see eϕ(P) = 1 for all P ∈ ϕ−1(Q) if and only if
#ϕ−1(Q) = degϕ, as claimed.



The Ramifications of Ramification, IV

2. A point Q ∈ C2 is unramified if and only if #ϕ−1(Q) = degϕ.

Proof:
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The Ramifications of Ramification, V

3. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ. As a
consequence, when ϕ is separable, there are only finitely many
ramified points Q.

Remarks:

This result is the analogue of the statement that there are
only finitely many ramified primes in any extension L/K of
number fields, which for number fields is typically proven by
examining discriminants.

The idea here is that typically a point Q ∈ C2 has a total of
degs ϕ preimages under ϕ, with the exceptions occuring when
Q is ramified.

Ramification corresponds to the situation where these
preimages “collide” and yield fewer preimage points than
expected (and the number of such collisions is measured by
the ramification index).
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examining discriminants.

The idea here is that typically a point Q ∈ C2 has a total of
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The Ramifications of Ramification, VI

3. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ. As a
consequence, when ϕ is separable, there are only finitely many
ramified points Q.

Proof (second part):

If ϕ is separable, the result follows immediately from the first
part and (2), since degs ϕ = degϕ: so for all but finitely many
Q we see that Q is unramified.

Exercise: Suppose k is algebraically closed, char k = p. Consider
the Frobenius morphism Frob : P1(k)→ P1(k) with Frob(x) = xp.

a. Verify that #Frob−1(Q) = 1 for all Q ∈ P1, and show that
Frob is ramified at every point.

b. Deduce that the hypothesis that ϕ be separable in (3) above
is necessary to ensure there are finitely many ramified points.
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3. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ. As a
consequence, when ϕ is separable, there are only finitely many
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Proof (second part):

If ϕ is separable, the result follows immediately from the first
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the Frobenius morphism Frob : P1(k)→ P1(k) with Frob(x) = xp.
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Frob is ramified at every point.
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is necessary to ensure there are finitely many ramified points.



The Ramifications of Ramification, VII

4. The ramification index is multiplicative under composition:
explicitly, if ψ : C2 → C3 is another nonconstant morphism
and P ∈ C1, we have eψ◦ϕ(P) = eϕ(P)eψ(ϕ(P)).

Commentary:

This result is the analogue of the fact that the ramification
index is multiplicative in towers of number fields.

Proof (sketch):

Applying ϕ changes the local order of vanishing by a factor of
eϕ(P), while applying ψ changes the local order of vanishing
by a factor of eψ(ϕ(P)).

Thus, the composition changes the local order of vanishing by
the product of these two factors.
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Summary

We used the invariant differential to show curves with a
Weierstrass equation have genus 1.

We outlined the proof of Riemann-Roch.

We introduced ramification and established some properties of
ramification.

Next lecture: Morphisms on divisors and differentials,
Riemann-Hurwitz, isogenies.


