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Recall, I

Theorem (Riemann-Roch)

For any algebraic curve C/k, there exists an integer g ≥ 0 called
the genus of C , and a divisor class C, called the canonical class of
C , such that for any divisor C ∈ C and any divisor A ∈ Div(K ), we
have `(A) = deg(A)− g + 1 + `(C − A).

Proposition (Corollaries of Riemann-Roch)

Let C/k be an algebraic curve.

1. For any divisor A with deg(A) ≥ 0, we have
deg(A)− g + 1 ≤ `(A) ≤ deg(A) + 1.

2. For C ∈ C we have `(C ) = g and deg(C ) = 2g − 2.

3. If deg(A) ≥ 2g − 2, then `(A) = deg(A)− g + 1 except when
A ∈ C (in which case `(A) = g).

4. The genus g is unique, as is the equivalence class C.



Recall, II

Theorem (Genus-1 Curves)

Suppose C is a smooth curve of genus 1 defined over the field F
that has a rational point P ∈ F . Then there exist x , y ∈ F (C )
with vP(x) = 2 and vP(y) = 3 such that F (C ) = F (x , y) and
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 for some
a1, a2, a3, a4, a6 ∈ F .

Definition (Elliptic Curves, Properly)

Let F be a field. An elliptic curve E over F is a smooth projective
curve defined over F with genus 1 that has an F -rational point O.



Elliptic Curves But Properly, V

Theorem (The Group Law, Again, Continued)

Let F be a field and E be an elliptic curve defined over F with an
F -rational point O.

5. The group law defines morphisms + : E × E → E mapping
(P,Q) 7→ P + Q and − : E → E mapping P 7→ −P.

6. For any divisor D ∈ Div(E ), D is principal if and only if
deg(D) = 0 and the formal sum representing D evaluates to
O when viewed as a sum of points using the group law.



Elliptic Curves But Properly, X

5. The group law defines morphisms + : E × E → E mapping
(P,Q) 7→ P + Q and − : E → E mapping P 7→ −P.

Proof (outline):

The actual details involve various special cases, but it suffices
to show that the maps are rational, since rational maps from a
smooth curve to a variety are automatically morphisms.

But the addition map and the additive-inverse map are both
rational on almost all points, as we have already seen via the
explicit formulas.

The only possible exceptions involve adding a point to itself or
a point to O.

One may check explicitly in these cases that the maps still
yield morphisms by rearranging the formulas using projective
equivalences like the ones we did a few weeks ago.



Elliptic Curves But Properly, XI

6. For any divisor D ∈ Div(E ), D is principal if and only if
deg(D) = 0 and the formal sum representing D evaluates to
O when viewed as a sum of points using the group law.

Proof:

As we have previously noted, the degree of any principal
divisor is 0, so certainly we must have deg(D) = 0.

Now if D ∈ Div0(E ) is D =
∑

P nP [P] we have D ∼ 0 if and
only if σ(D) = O.

But σ(D) = σ(
∑

P nP [P]) =
∑

P nPσ([P]) =∑
P nP(P − O) =

∑
P nPP by definition of σ and the

equivalence of the group operations in (4).

So we see σ(D) = O if and only if
∑

P nPP = O when viewed
as a sum of points using the group law.



Elliptic Curves But Properly, XII

Some of these results can be packaged together via an exact
sequence:

Exercise: Show that we have an exact sequence

1→ k∗ → k(E )∗
div→ Div0(E )

(6)→ E → 0

where div represents the divisor map f 7→ div(f ) and (6)
represents the map discussed in (6) that takes a divisor

∑
P nP [P]

and evaluates it as a sum of points on E .



Differentials, I

We would now like to establish the converse of our theorem above:
namely, that every smooth projective curve with a Weierstrass
equation Y 2Z + a1XYZ + a3YZ 2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3

is actually an elliptic curve.

Since [0 : 1 : 0] (the affine point at ∞) is always a rational
point on this curve, we need only show it has genus 1.

In order to do this, we need to discuss differentials, since they
allow us to understand the genus.



Differentials, II

So, let’s get right to it:

Definition

Let C/k be a (smooth projective) curve. The space Ω(C ) of
meromorphic differential 1-forms on C is the k-vector space
consisting of symbols of the form dx for x ∈ k(C ), subject to the
following three relations:

1. The additivity relation d(x + y) = dx + dy for all x , y ∈ k(C ).

2. The Leibniz rule d(xy) = x dy + y dx for all x , y ∈ k(C ).

3. Derivatives of constants are zero: da = 0 for all a ∈ k.

There is a more general notion of differential form defined using
the notion of a derivation from a commutative ring R to an
R-module M. We won’t bother with this.



Differentials, III

1. The additivity relation d(x + y) = dx + dy for all x , y ∈ k(C ).

2. The Leibniz rule d(xy) = x dy + y dx for all x , y ∈ k(C ).

3. Derivatives of constants are zero: da = 0 for all a ∈ k .

Although Ω(C ) contains differentials of the form df for all
f ∈ k(C ), and may therefore appear to be very large, in fact
the relations impose all of the familiar rules of calculus.

Exercise: Show that (1)-(3) also imply the power rule

d(xn) = nxn−1dx and the quotient rule d(
x

y
) =

x dy − y dx

y2
.

Exercise: Suppose C/k is a curve and x1, x2, . . . , xn ∈ k(C ).
For any rational function f ∈ k(x1, . . . , xn), show the “chain
rule”: that df = fx1 dx1 + · · ·+ fxn dxn, where fxi denotes the
usual partial derivative. [Hint: First show the result for
polynomials f , then use the quotient rule.]
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Differentials, IV

As a corollary of the above exercises, we see immediately that if
the function field k(C ) is generated (as a field extension) by
x1, . . . , xn then Ω(C ) is spanned by dx1, dx2, ... , dxn as a
k(C )-vector space.

Example:

For C = P1, we have k(C ) = k(x) for x = X/Y .

Since x generates the function field by itself we see that Ω(C )
is spanned by dx .

In fact, {dx} is a basis, since there are no additional relations
arising in the definition of Ω(C ).
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Example:

Let p be a prime. For C = P1 over a field of characteristic not
equal to p, we know that {dx} is a basis of Ω(C ).

Then for f = xp, since df = pxp−1dx is a nonzero scalar
multiple of dx , we see that {df } is also a basis of Ω(C ).

On the other hand, over a field of characteristic p, we have
df = pxp−1 dx = 0, and so {df } is not a basis of Ω(C ).

Example:

For C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and y = Y /Z ,
we have k(C ) = k(x , y), so Ω(C ) is spanned by dx and dy .

But since y2 = x3 + x , taking differentials yields a linear
dependence 2y dy = (3x2 + 1) dx . Thus in fact either dx or
dy suffices to span Ω(C ).
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More generally, one may show similarly that Ω(C ) is always a
1-dimensional k(C )-vector space for any curve C .

In general, dx generates Ω(C ) if and only if k(C )/k(x) is a
separable extension of finite degree.

The second example shows that separability is necessary, since
if k has characteristic p then k(x)/k(xp) is not separable, and
as we saw, in that situation dxp does not span Ω(C ).

Our goal now is to show that we may do calculations with
differentials that mirror those for rational functions. First, we will
give a well-defined notion of the order of a differential ω at a point
P, and then we use it to attach a divisor to a differential.
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Proposition (Properties of Differentials)

Let C/k be a curve, let ω be a differential in Ω(C ), and let P be a
point of C with a local uniformizer t. Then the following hold:

1. There exists a unique rational function f ∈ k(C ) such that
ω = f dt. (Since f is unique, we may think of it as the
“quotient” ω/dt.)

2. If f ∈ k(C ) is defined at P, then df /dt is also defined at P.

3. If t ′ is another local uniformizer at P, then
ordP(ω/dt) = ordP(ω/dt ′). We may therefore define ordP(ω)
to be the value ordP(ω/dt) for any local uniformizer t.

4. Let x ∈ k(C )× with x(P) = 0. Then ordP(dx) = ordP(x)− 1
except when the characteristic of k divides ordP(x), in which
case we have ordP(f dx) ≥ ordP(x).



Properties of Differentials, II

Proposition (Properties of Differentials, continued)

Let C/k be a curve, let ω be a differential in Ω(C ), and let P be a
point of C with a local uniformizer t. Then the following hold:

5. For all but finitely many P, we have ordP(ω) = 0.

6. For any differential ω, its divisor div(ω) =
∑

P ordP(ω) P is
well defined, and for any other differential ω1 we have
div(ω) ∼ div(ω1). We define the canonical class C to be the
resulting divisor class of div(ω) in Pic(C ).

A differential ω is holomorphic if div(ω) ≥ 0: equivalently, when
ordP(ω) ≥ 0 for all P, which is to say, when ω has no poles.

7. The holomorphic differentials form a finite-dimensional vector
space, whose dimension is defined to be g, the genus of C .



Properties of Differentials, III

1. There exists a unique rational function f ∈ k(C ) such that
ω = f dt. (Since f is unique, we may think of it as the
“quotient” ω/dt.)

Proof:

First, since t is a local uniformizer, the extension k(C )/k(t)
has finite degree and is separable.

Hence by the discussion above, we see that {dt} spans Ω(C )
as a k(C )-vector space.

This means so there exists a unique rational function
f ∈ k(C ) such that ω = f dt.



Properties of Differentials, IV

2. If f ∈ k(C ) is defined at P, then df /dt is also defined at P.

The most direct proof of this fact follows by working with
local Laurent expansions near P. We will not need to (or
really, we will not want to) do this explicitly, so here is an
outline of the idea.

One may expand functions in OP as infinite formal power
series in the formal Laurent series ring of k((t)), and the
resulting map D : k(C )→ k((t)) is a derivation.

Elements in the local ring OP (i.e., functions f defined at P)
have images lying in the formal power series ring k[[t]], and
for such elements, one may show that the term-by-term power
series derivative f ′ yields the rational function with df = f ′ dt.
Since the term-by-term derivative f ′ lies in k[[t]], it is defined
at P.
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3. If t ′ is another local uniformizer at P, then
ordP(ω/dt) = ordP(ω/dt ′).

Proof:

Taking f = t ′ in (2) shows that dt ′/dt = g is defined at P,
and interchanging t and t ′ shows that dt ′/dt = 1/g is also
defined at P.

Therefore, we have ordP(g) ≥ 0 and ordP(1/g) ≥ 0 whence
ordP(g) = 0.

Then we immediately have
ordP(ω/dt) = ordP(ω/dt ′ · dt ′/dt) =
ordP(ω/dt ′) + ordP(g) = ordP(ω/dt ′).

We now define ordP(ω) to be the value ordP(ω/dt) for any local
uniformizer t.
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4. Let x ∈ k(C )× with x(P) = 0. Then ordP(dx) = ordP(x)− 1
except when the characteristic of k divides ordP(x), in which
case we have ordP(f dx) ≥ ordP(x).

Proof (part 1):

Intuitively, the idea of this result is the extremely reasonable
notion that taking the derivative of a function lowers its order
of vanishing by 1, except in situations where the function is
something times a pth power in characteristic p.

Since x is not zero we may write x = utn for some u of order
0, and n = ordP(x). Then dx = untn−1 dt + (du/dt)tn dt by
the chain rule.

From (2) we know that du/dt is defined at P so
ordP(du/dt) ≥ 0.

Now we look at the orders of the terms untn−1 and (du/dt)tn.
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4. Let x ∈ k(C )× with x(P) = 0. Then ordP(dx) = ordP(x)− 1
except when the characteristic of k divides ordP(x), in which
case we have ordP(f dx) ≥ ordP(x).

Proof (part 2):

We have x = utn for some u of order 0, and n = ordP(x).

Then dx = untn−1 dt + (du/dt)tn dt and ordP(du/dt) ≥ 0.

If the characteristic of k divides n, then n = 0 (in k), so
dx = (du/dt)tn dt. Then
ordP(dx) = ordP(dx/dt) = ordP(du/dt) + n ≥ ordP(x) as
desired.

Otherwise, if the characteristic does not divide n, then n 6= 0
in k so ordP(untn−1) = n − 1 while the order of the second
term (du/dt)tn is at least n (as just calculated above).

So since ordP is a discrete valuation, the order of the sum
untn−1 + (du/dt)tn is n − 1 = ordP(x)− 1, as desired.
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5. For all but finitely many P, we have ordP(ω) = 0.

Proof (part 1):

Pick x to be a local uniformizer at an arbitrary point of C :
then by (1) we may write ω = f dx .

Now, f has finitely many zeroes and poles, as noted in our
discussion of divisors of functions.

Additionally, as we will discuss in more detail later, there are
only finitely many points at which x − x(P) fails to be a local
uniformizer at P. (These are the points at which x is
ramified, when thought of as a map x : C → P1.)

So there are only finitely many points P where f has a zero or
pole, or where x − x(P) fails to be a local uniformizer.
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5. For all but finitely many P, we have ordP(ω) = 0.

Proof (part 2):

So there are only finitely many points P where f has a zero or
pole, or where x − x(P) fails to be a local uniformizer.

Let Q be any other point.

Then x − x(Q) is a local uniformizer, so we have
ordQ(dx) = ordQ(d(x − x(Q)) = 1− 1 = 0 by (4).

Hence
ordQ(ω) = ordQ(f dx) = ordQ(f ) + ordQ(dx) = 0 + 0 = 0
because f is defined and does not vanish at Q.

This applies for all but finitely many points Q, so we are done.
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Now, (5) tells us that for any differential ω, its divisor
div(ω) =

∑
P ordP(ω) P is well defined.

6. Define div(ω) =
∑

P ordP(ω) P. Then for any other
differential ω1 we have div(ω) ∼ div(ω1).

Proof:

Suppose ω1 is any other differential.

By (1) there exists f ∈ k(C ) such that ω/ω1 = f : thus
div(ω)− div(ω1) = div(f ) which means by definition that
div(ω) ∼ div(ω1).

The well-definedness of the canonical class is then immediate
from the equivalence.
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The result (6) says that the divisors of any two differentials differ
by the divisor of a rational function, meaning that their divisor
classes are the same.

Definition

We define the canonical class C to be the resulting divisor class of
div(ω) in Pic(C ).

The differential analogue of effective divisors are holomorphic
differentials:

Definition

A differential ω is holomorphic if div(ω) ≥ 0: equivalently, when
ordP(ω) ≥ 0 for all P, which is to say, when ω has no poles.
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7. The holomorphic differentials form a finite-dimensional vector
space, whose dimension is defined to be g , the genus of C .

Proof:

Writing ω = f dt we see that ω is holomorphic if and only if
div(f ) ≥ −div(ω).

Therefore, the map ω 7→ ω/dt is an isomorphism of the space
of holomorphic differentials with the Riemann-Roch space
L(div(ω)), whose dimension l(div(ω)) = l(C) is finite, as
follows from our properties of Riemann-Roch spaces.
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The Genius of Genus, I

Of course, the real point of (6) and (7) is to give a proper
definition of the canonical class and the genus of a curve that
appear in the statement of the Riemann-Roch theorem.

We can also give some explanation of why the genus g ,
defined here as the dimension of the space of holomorphic
differentials C , corresponds to the topological genus.

The idea is that when we are working over k = C, then
viewing C as a (compact, connected) Riemann surface, we
may integrate a holomorphic differential along a path inside C .

Let Ω(0) denote the space of holomorphic differentials.



The Genius of Genus, II

By standard results from complex analysis, if two paths are
homotopic then integrating any differential along the two
paths yields the same value.

Since the set of paths up to homotopy is the first homology
group H1(C ), which is a free abelian group of rank g (the
topological genus of C ), we obtain a pairing between H1(C )
and Ω(0) given by 〈C , ω〉 =

∫
C ω.

One then shows that this is a perfect pairing, and so these
vector spaces are isomorphic.

Essentially, the idea is that we can obtain independent
holomorphic differentials by integrating around independent
non-contractible paths on C .

We remark that all of this is just a rephrasing of Poincaré
duality applied to the de Rham cohomology groups of C ,
considered as a 2-dimensional manifold.



Examples of Differentials, I

Example: On C = P1 with x = X/Y as usual, find div(dx).

First, since k(C ) = k(x), so rather trivially k(C )/k(x) is
separable and of finite degree, we see Ω(C ) is spanned by dx .

Thus, every differential on C is of the form ω = f dx for some
rational function f ∈ k(x), so div(ω) = div(f ) + div(dx).

To find div(dx), first observe that for all c ∈ k the function
x − c is a uniformizer at [c : 1], so
ord[c:1](dx) = ord[c:1](x − c)− 1 = 0 by our results in (4).

Also, at the point at infinity [1 : 0], the function 1/x is a
uniformizer, so ord[1:0](x) = −1 and thus
ord[1:0](dx) = ord[1:0](x)− 1 = −2, again by (4).

Therefore, div(dx) = −2P[1:0].



Examples of Differentials, I

Example: On C = P1 with x = X/Y as usual, find div(dx).

First, since k(C ) = k(x), so rather trivially k(C )/k(x) is
separable and of finite degree, we see Ω(C ) is spanned by dx .

Thus, every differential on C is of the form ω = f dx for some
rational function f ∈ k(x), so div(ω) = div(f ) + div(dx).

To find div(dx), first observe that for all c ∈ k the function
x − c is a uniformizer at [c : 1], so
ord[c:1](dx) = ord[c:1](x − c)− 1 = 0 by our results in (4).

Also, at the point at infinity [1 : 0], the function 1/x is a
uniformizer, so ord[1:0](x) = −1 and thus
ord[1:0](dx) = ord[1:0](x)− 1 = −2, again by (4).

Therefore, div(dx) = −2P[1:0].



Examples of Differentials, I

Example: On C = P1 with x = X/Y as usual, find div(dx).

First, since k(C ) = k(x), so rather trivially k(C )/k(x) is
separable and of finite degree, we see Ω(C ) is spanned by dx .

Thus, every differential on C is of the form ω = f dx for some
rational function f ∈ k(x), so div(ω) = div(f ) + div(dx).

To find div(dx), first observe that for all c ∈ k the function
x − c is a uniformizer at [c : 1], so
ord[c:1](dx) = ord[c:1](x − c)− 1 = 0 by our results in (4).

Also, at the point at infinity [1 : 0], the function 1/x is a
uniformizer, so ord[1:0](x) = −1 and thus
ord[1:0](dx) = ord[1:0](x)− 1 = −2, again by (4).

Therefore, div(dx) = −2P[1:0].



Examples of Differentials, II

Example: Show that there are no nonzero holomorphic differentials
on C = P1: in other words, that P1 has genus 0.

Now, since div(dx) = −2P[1:0], the canonical class is the
image of −2P[1:0] in Pic(C ).

In particular, the degree of any differential must be −2. But
since the degree of a holomorphic differential is nonnegative,
we see immediately that there are no nonzero holomorphic
differentials.

Hence we see that the genus of P1 is 0 – as it should be, of
course, given the results of our earlier calculations for genus-0
curves using Riemann-Roch.



Examples of Differentials, II

Example: Show that there are no nonzero holomorphic differentials
on C = P1: in other words, that P1 has genus 0.

Now, since div(dx) = −2P[1:0], the canonical class is the
image of −2P[1:0] in Pic(C ).

In particular, the degree of any differential must be −2. But
since the degree of a holomorphic differential is nonnegative,
we see immediately that there are no nonzero holomorphic
differentials.

Hence we see that the genus of P1 is 0 – as it should be, of
course, given the results of our earlier calculations for genus-0
curves using Riemann-Roch.



Examples of Differentials, III

Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

We have previously shown
div(y) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0].

To find div(dx) we need to compute its zeroes and poles.

Recall that when g(P) = 0 property (4) says
ordP(dg) = ordP(g)− 1 when char(k) - ordP(g).

Since dx = d(x − c) for any c ∈ k we can compute the zero
orders by looking for points P where x − x(P) = 0.

Since x − x(P) is only zero at x = 0, i ,−i , we can start with
computing div(x).



Examples of Differentials, III

Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

We have previously shown
div(y) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0].

To find div(dx) we need to compute its zeroes and poles.

Recall that when g(P) = 0 property (4) says
ordP(dg) = ordP(g)− 1 when char(k) - ordP(g).

Since dx = d(x − c) for any c ∈ k we can compute the zero
orders by looking for points P where x − x(P) = 0.

Since x − x(P) is only zero at x = 0, i ,−i , we can start with
computing div(x).



Examples of Differentials, IV

Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

Since x is only zero at [0 : 0 : 1] and since y is a local
uniformizer there, to check the zero order we observe that
x/y2 = XZ/Y 2 = Z 2/(X 2 + Z 2) = 1 is defined and nonzero,
so ord[0:0:1]x = 2. Then since the only pole of x is at [0 : 1 : 0]
the pole also has order 2, and so div(x) = 2P[0:0:1] − 2P[0:1:0].

In the same way we can show that
div(x − i) = 2P[i :0:1] − 2P[0:1:0] and
div(x + i) = 2P[−i :0:1] − 2P[0:1:0].

Then since x − x(P) is only zero at x = 0, i ,−i , by property
(4) we deduce that the zeroes of dx occur only at [0 : 0 : 1],
[−i : 0 : 1], and [i : 0 : 1] and the zero order there is 2− 1 = 1
in each case.



Examples of Differentials, IV

Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

Since x is only zero at [0 : 0 : 1] and since y is a local
uniformizer there, to check the zero order we observe that
x/y2 = XZ/Y 2 = Z 2/(X 2 + Z 2) = 1 is defined and nonzero,
so ord[0:0:1]x = 2. Then since the only pole of x is at [0 : 1 : 0]
the pole also has order 2, and so div(x) = 2P[0:0:1] − 2P[0:1:0].

In the same way we can show that
div(x − i) = 2P[i :0:1] − 2P[0:1:0] and
div(x + i) = 2P[−i :0:1] − 2P[0:1:0].

Then since x − x(P) is only zero at x = 0, i ,−i , by property
(4) we deduce that the zeroes of dx occur only at [0 : 0 : 1],
[−i : 0 : 1], and [i : 0 : 1] and the zero order there is 2− 1 = 1
in each case.



Examples of Differentials, V

Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

The zeroes of dx occur only at [0 : 0 : 1], [−i : 0 : 1], and
[i : 0 : 1], and the zero order there is 2− 1 = 1 in each case.

Likewise, since the only pole of dx is at [0 : 1 : 0], by (4)
again we see the pole order is −2− 1 = −3. (Here is where
we need the fact that the characteristic is not 2.)

Putting all of this together shows that
div(dx) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0]. But this is
precisely div(y), and so that means div(dx/y) = 0 whence
dx/y is holomorphic and also nonvanishing.
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Example: On C = V (Y 2Z − X 3 − XZ 2) with x = X/Z and
y = Y /Z as usual, show that dx/y is a nonvanishing holomorphic
differential, when the characteristic of k is not 2.

The zeroes of dx occur only at [0 : 0 : 1], [−i : 0 : 1], and
[i : 0 : 1], and the zero order there is 2− 1 = 1 in each case.

Likewise, since the only pole of dx is at [0 : 1 : 0], by (4)
again we see the pole order is −2− 1 = −3. (Here is where
we need the fact that the characteristic is not 2.)

Putting all of this together shows that
div(dx) = P[0:0:1] + P[i :0:1] + P[−i :0:1] − 3P[0:1:0]. But this is
precisely div(y), and so that means div(dx/y) = 0 whence
dx/y is holomorphic and also nonvanishing.



Differentials on Elliptic Curves, I

Let us now generalize the last example to complete the proof that
smooth projective curves of genus 1 having a rational point (per
our highbrow definition of elliptic curves) are the same as
nonsingular cubic curves in Weierstrass form (per our original
definition).



Differentials on Elliptic Curves, II

Proposition (Differentials on Elliptic Curves)

Let C/k be a smooth projective curve with affine Weierstrass
equation y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. Then

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

2. The space of holomorphic differentials on C is a 1-dimensional
k-vector space, whence C has genus 1.

3. Every smooth projective genus-1 curve has a nonsingular
Weierstrass equation, and conversely every nonsingular
Weierstrass equation gives a smooth projective genus-1 curve.

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.



Differentials on Elliptic Curves, III

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 1):

Let f = y2 + a1xy + a3y − (x3 + a2x2 + a4x + a6): then by

the chain rule we see that
dx

fy (x , y)
= − dy

fx(x , y)
, showing that

the two expressions are equal.

For any finite point P = (x0, y0) we also have

ω =
d(x − x0)

fy (x , y)
= −d(y − y0)

fx(x , y)
since translating by a constant

does not affect differentials.

In particular we see that P cannot be a pole of ω since this
would require fx(P) = fy (P) = 0, but that cannot occur
because C is smooth at P. So ω could only possibly have a
pole at ∞.
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1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 1):

Let f = y2 + a1xy + a3y − (x3 + a2x2 + a4x + a6): then by

the chain rule we see that
dx

fy (x , y)
= − dy

fx(x , y)
, showing that

the two expressions are equal.

For any finite point P = (x0, y0) we also have

ω =
d(x − x0)

fy (x , y)
= −d(y − y0)

fx(x , y)
since translating by a constant

does not affect differentials.

In particular we see that P cannot be a pole of ω since this
would require fx(P) = fy (P) = 0, but that cannot occur
because C is smooth at P. So ω could only possibly have a
pole at ∞.



Differentials on Elliptic Curves, IV

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 2):

For zeroes of ω we observe that the map ϕ : C → P1 with
[X : Y : Z ] 7→ [X : Z ] has degree 2.

Therefore we have ordP(x − x0) ≤ 2 with equality if and only
if f (x0, y) has a double root in y at y = y0, which occurs if
and only if fy (x0, y0) = 0.

Therefore by property (4) we see that ordP(ω) =
ordP(dx)− ordP(fy ) = ordP(x − x0)− ordP(fy )− 1 = 0 in
both the situation when ordP(x − x0) = 1 and in the situation
when ordP(x − x0) = 2.

So ω has order 0 at all finite points. Now for ∞.
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1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 2):

For zeroes of ω we observe that the map ϕ : C → P1 with
[X : Y : Z ] 7→ [X : Z ] has degree 2.

Therefore we have ordP(x − x0) ≤ 2 with equality if and only
if f (x0, y) has a double root in y at y = y0, which occurs if
and only if fy (x0, y0) = 0.

Therefore by property (4) we see that ordP(ω) =
ordP(dx)− ordP(fy ) = ordP(x − x0)− ordP(fy )− 1 = 0 in
both the situation when ordP(x − x0) = 1 and in the situation
when ordP(x − x0) = 2.

So ω has order 0 at all finite points. Now for ∞.



Differentials on Elliptic Curves, V

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 3):

Let t be a uniformizer at ∞: then because ord∞(x) = −2
and ord∞(y) = −3 we have x = t−2u and y = t−3w for
some u,w ∈ k(C ) that are defined and nonzero at ∞.

Then
ω

dt
=

dx/dt

fy (x , y)
=
−2t−3u + t−2(du/dt)

2t−3w + a1t−2u + a3
dt

=
−2u + t(du/dt)

2w + a1tu + a3t3
dt.

When the characteristic of k is not equal to 2, we can then
evaluate this last function at ∞ (note that t = 0 at ∞) to
obtain −u(∞)/w(∞) which is defined and nonzero.



Differentials on Elliptic Curves, V

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Proof (part 3):

Let t be a uniformizer at ∞: then because ord∞(x) = −2
and ord∞(y) = −3 we have x = t−2u and y = t−3w for
some u,w ∈ k(C ) that are defined and nonzero at ∞.

Then
ω

dt
=

dx/dt

fy (x , y)
=
−2t−3u + t−2(du/dt)

2t−3w + a1t−2u + a3
dt

=
−2u + t(du/dt)

2w + a1tu + a3t3
dt.

When the characteristic of k is not equal to 2, we can then
evaluate this last function at ∞ (note that t = 0 at ∞) to
obtain −u(∞)/w(∞) which is defined and nonzero.



Differentials on Elliptic Curves, VI

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Exercise: When the characteristic of k does equal 2, show that the

equivalent formula ω = − dy

fx(x , y)
evaluates to a quantity that is

defined and nonzero at ∞.

Proof (part 4):

By the calculation on the last slide (when char(k) 6= 2) and
the exercise above (when char(k) 6= 3) we deduce that in all
cases, ord∞(ω) = 0.

Putting everything together, we obtain div(ω) = 0, whence ω
is holomorphic and nonvanishing as claimed.



Differentials on Elliptic Curves, VI

1. The differential ω =
dx

2y + a1x + a3
= − dy

3x2 + 2a2x + a4
is

holomorphic and nonvanishing on C .

Exercise: When the characteristic of k does equal 2, show that the

equivalent formula ω = − dy

fx(x , y)
evaluates to a quantity that is

defined and nonzero at ∞.

Proof (part 4):

By the calculation on the last slide (when char(k) 6= 2) and
the exercise above (when char(k) 6= 3) we deduce that in all
cases, ord∞(ω) = 0.

Putting everything together, we obtain div(ω) = 0, whence ω
is holomorphic and nonvanishing as claimed.



Differentials on Elliptic Curves, VII

2. The space of holomorphic differentials on C is a 1-dimensional
k-vector space, whence C has genus 1.

Proof:

Take ω as in (1): then div(ω) = 0.

From our properties of differentials, any other differential ζ is
of the form f ω for some f ∈ k(C ).

But then div(ζ) = div(f ) + div(ω) = div(f ), so in order for ζ
to be holomorphic we must have div(f ) ≥ 0, meaning that f
is a rational function with no poles.

But the only such (projective) functions are constants, whence
ζ is a k-scalar multiple of ω.

Thus, the space of holomorphic differentials on C is a
1-dimensional k-vector space, so C has genus 1 as claimed.
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2. The space of holomorphic differentials on C is a 1-dimensional
k-vector space, whence C has genus 1.

Proof:

Take ω as in (1): then div(ω) = 0.

From our properties of differentials, any other differential ζ is
of the form f ω for some f ∈ k(C ).

But then div(ζ) = div(f ) + div(ω) = div(f ), so in order for ζ
to be holomorphic we must have div(f ) ≥ 0, meaning that f
is a rational function with no poles.

But the only such (projective) functions are constants, whence
ζ is a k-scalar multiple of ω.

Thus, the space of holomorphic differentials on C is a
1-dimensional k-vector space, so C has genus 1 as claimed.



Differentials on Elliptic Curves, VIII

3. Every smooth projective genus-1 curve has a nonsingular
Weierstrass equation, and conversely every nonsingular
Weierstrass equation gives a smooth projective genus-1 curve.

Proof:

We showed the first part earlier using Riemann-Roch.

The second part is simply (2).



Differentials on Elliptic Curves, IX

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

We could in principle show this result just using the point
addition formulas, since they give explicit expressions for x̃
and ỹ in terms of x , y , and the coordinates of Q.

We will give a less tedious argument.

Because of this result, we call ω the invariant differential of E .
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4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

We could in principle show this result just using the point
addition formulas, since they give explicit expressions for x̃
and ỹ in terms of x , y , and the coordinates of Q.

We will give a less tedious argument.

Because of this result, we call ω the invariant differential of E .



Differentials on Elliptic Curves, X

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 1):

Since ω̃ is obtained by adding Q to all points on C , for any P
on C we see that ordP(ω̃) = ordP−Q(ω) = 0, and so ω̃ is also
a nonvanishing holomorphic differential.

By (2) since the space of holomorphic differentials is
1-dimensional, that means ω̃ = cQω for some scalar cQ ∈ k
that (a priori) depends on Q.

Now consider the map ϕ : E → P1 sending Q 7→ [cQ : 1] for
each point Q.
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4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 1):

Since ω̃ is obtained by adding Q to all points on C , for any P
on C we see that ordP(ω̃) = ordP−Q(ω) = 0, and so ω̃ is also
a nonvanishing holomorphic differential.

By (2) since the space of holomorphic differentials is
1-dimensional, that means ω̃ = cQω for some scalar cQ ∈ k
that (a priori) depends on Q.

Now consider the map ϕ : E → P1 sending Q 7→ [cQ : 1] for
each point Q.



Differentials on Elliptic Curves, XI

4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 2):

Now consider ϕ : E → P1 sending Q 7→ [cQ : 1].

This map is necessarily rational (since after all the expressions
for x̃ and ỹ are rational functions, so the ratio ω̃/ω is some
rational function), but it clearly omits [1 : 0] since cQ is
defined for all Q.

Thus ϕ is not surjective, meaning that it must be constant
since nonconstant rational maps of curves are surjective.

Finally, setting Q to be the identity O on E shows ω̃O = ω, so
the constant must be 1. We conclude that ω̃ = ω for all Q.
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4. The differential ω from (1) is translation-invariant, meaning
that for any point Q on E , if (x , y) + Q = (x̃ , ỹ), then

ω =
dx̃

2ỹ + a1x̃ + a3
as well.

Proof (part 2):

Now consider ϕ : E → P1 sending Q 7→ [cQ : 1].

This map is necessarily rational (since after all the expressions
for x̃ and ỹ are rational functions, so the ratio ω̃/ω is some
rational function), but it clearly omits [1 : 0] since cQ is
defined for all Q.

Thus ϕ is not surjective, meaning that it must be constant
since nonconstant rational maps of curves are surjective.

Finally, setting Q to be the identity O on E shows ω̃O = ω, so
the constant must be 1. We conclude that ω̃ = ω for all Q.



Wrap-Up

Now that we have defined differentials, the canonical class, and the
genus of C , we can return to our discussion of Riemann-Roch.

Since it won’t take too long, I will start next lecture with an
outline of the proof of Riemann-Roch.

Then we will talk about how morphisms interact with divisors
and differentials. This will lead us naturally into our next
main topic: isogenies, which are morphisms from one elliptic
curve to another.



Summary

We defined the space of differentials on an algebraic curve C and
established some of their basic properties and gave some examples.

We constructed the invariant differential on an elliptic curve and
used it to show curves with a Weierstrass equation have genus 1.

Next lecture: Riemann-Roch proof outline, interactions of
morphisms with divisors and differentials


