Math 7359 (Elliptic Curves and Modular Forms)

Lecture $\#10$ of 24 \sim October 12, 2023

Riemann-Roch and Applications

- $L(D)$ and $I(D)$
- Riemann-Roch and Consequences
- Elliptic Curves via Riemann-Roch

Definition

If a divisor $D = \sum_P n_P P$ on a curve C/k has $n_P \geq 0$ at all points P, we say D is effective and we write $D > 0$. We extend this notion to a partial ordering on divisors by writing $D_1 \leq D_2$ if and only if $D_2 - D_1$ is effective.

Definition

If D is a divisor on a curve C/k , the Riemann-Roch space associated to D is the set $L(D) = \{ \alpha \in k(C)^{\times} : \operatorname{div}(\alpha) \geq -D \} \cup \{0\}.$

As the last examples suggest, the dimension of the Riemann-Roch space $L(D)$ carries important information:

Definition

If D is a divisor on a curve C/k , we define $\ell(D) = \dim_k L(D)$.

Examples: From our earlier calculations,

- For $C = \mathbb{A}^1(\mathbb{C})$ we have $I(P_0) = 2$, $I(3P_\infty) = 4$, and $l(-P_0) = 0.$
- For $C = \mathbb{A}^1(\mathbb{C})$ we have $I_{\mathbb{C}}(P_\infty P_i) = 1$ and $l_{\mathbb{C}}(2P_{\infty}-P_i-P_{-i})=1.$
- For an arbitrary C, we have $\ell(0) = 1$, since $L(0) = k$.

Riemann-Roch Dimensions, II

Let's establish some properties of $I(D)$:

Proposition (Properties of $I(D)$)

Let C/k be a curve and D be a divisor of C. Then

- 1. If $D_1 \leq D_2$, then $\ell(D_1) \leq \ell(D_2)$.
- 2. If $D_1 \sim D_2$, then $L(D_1) \cong L(D_2)$ and so $\ell(D_1) = \ell(D_2)$.
- 3. If deg(D) \leq 0, then $L(D) = \{0\}$ and $I(D) = 0$ except when $D = \text{div}(\alpha)$ is principal, in which case $L(D) = \text{span}(\alpha)$ and $I(D) = 1.$
- 4. If D_1 and D_2 are divisors with $D_1 \leq D_2$, then $\dim_k (L(D_2)/L(D_1)) \leq \deg(D_2) - \deg(D_1).$
- 5. For any effective divisor D, we have $\ell(D) \leq deg(D) + 1$. In fact, this inequality holds for any divisor D of degree > 0 .
- 6. For any divisor D, the quantity $\ell(D)$ is finite.

1. If $D_1 \leq D_2$, then $\ell(D_1) \leq \ell(D_2)$.

Proof:

• This follows immediately from the definition, since $D_1 \leq D_2$ clearly implies that $L(D_1)$ is a subspace of $L(D_2)$.

1. If $D_1 \leq D_2$, then $\ell(D_1) \leq \ell(D_2)$.

Proof:

• This follows immediately from the definition, since $D_1 \leq D_2$ clearly implies that $L(D_1)$ is a subspace of $L(D_2)$.

2. If
$$
D_1 \sim D_2
$$
, then $L(D_1) \cong L(D_2)$ and so $\ell(D_1) = \ell(D_2)$.

- Suppose $D_1 = D_2 + \text{div}(g)$.
- Then the map from $L(D_1)$ to $L(D_2)$ sending $f \mapsto fg$ is an isomorphism of vector spaces since it has an inverse map $h \mapsto h/g$.

3. If deg(D) \leq 0, then $L(D) = \{0\}$ and $I(D) = 0$ except when $D = \text{div}(\alpha)$ is principal, in which case $L(D) = \text{span}(\alpha)$ and $I(D) = 1.$

- Suppose $f \in L(D)$ and $f \neq 0$. Then $0 = \deg(\text{div}(f)) > \deg(-D) = -\deg(D).$
- Furthermore, equality can hold only if $D = -\text{div}(f)$ for some $f \in k(C)^{\times}$, in which case D is principal.
- If D is principal, then $\ell(D) = \ell(0) = 1$ by (2), and $L(D) = \text{span}(\alpha)$ by the same calculation.

4. If D_1 and D_2 are divisors with $D_1 \leq D_2$, then $\dim_k (L(D_2)/L(D_1)) \leq \deg(D_2) - \deg(D_1).$

Proof (part 1):

- Induct on the sum of the coefficients of the points in the effective divisor $B - A$. The base case $B - A = 0$ is trivial.
- For the inductive step, suppose that $D_2 = D_1 + P$ for some point P, and choose $x \in k(C)$ such that $v_P(x) = v_P(D_2) = v_P(D_1) + 1.$
- Then for any $y \in L(D_2)$, we have $v_P(xy) = v_P(x) + v_P(y) > v_P(D_2) - v_P(D_2) > 0$, so $xy \in \mathcal{O}_P$, the local ring at P.
- \bullet By composing with the evaluation map at P, we obtain a k-linear transformation $\varphi : L(D_2) \to \mathcal{O}_P/m_P \cong k$ with $\varphi(y) = (xy)(P).$

4. If D_1 and D_2 are divisors with $D_1 \leq D_2$, then $\dim_k (L(D_2)/L(D_1)) < \deg(D_2) - \deg(D_1).$

Proof (part 2):

- \bullet By composing with the evaluation map at P, we obtain a k-linear transformation $\varphi : L(D_2) \to \mathcal{O}_P/m_P \cong k$ with $\varphi(y) = (xy)(P).$
- Then $y \in \text{ker}(\varphi)$ if and only if $(xy)(P) = 0$ if and only if $v_P(xy) \ge 1$ if and only if $v_P(y) \ge 1 - v_P(D_2) = -v_P(D_1)$, and this last statement is equivalent to $y \in L(D_1)$.
- Thus, by the first isomorphism theorem, we have an injection from $L(D_2)/L(D_1)$ to \mathcal{O}_P/m_P .
- Take dimensions: $\dim_k(L(D_2)/L(D_1)) \leq \dim_k(\mathcal{O}_P/m_P) = 1$. This establishes the inductive step. Done.

5. For any effective divisor D, we have $\ell(D) \leq deg(D) + 1$. In fact, this inequality holds for any divisor D of degree ≥ 0 .

- For effective divisors, this follows immediately by induction on the degree of D using (4) , starting with the base case $l(0) = 1.$
- For general divisors, the result is trivial if $\ell(D) = 0$, so suppose otherwise that $\ell(D) \geq 1$ and let $\alpha \in L(D)$ be nonzero.
- Then $\mathrm{div}(\alpha) \geq -D$ which is equivalent to $D \mathrm{div}(\alpha^{-1}) \geq 0.$
- Then for $D'=D-{\rm div}(\alpha^{-1}),$ we see that D is equivalent to the effective divisor D' , and so by (2) we have $\ell(D) = \ell(D') \leq \deg(D') + 1 = \deg(D) + 1$, as required.

6. For any divisor D, the quantity $\ell(D)$ is finite.

Proof:

• If deg(D) < 0 then (3) gives $\ell(D) = 0$, while if deg(D) ≥ 0 then (5) gives $\ell(D) \leq deg(D) + 1$.

What we would like to be able to do now is to calculate the actual dimension $\ell(D)$ for arbitrary divisors D. Rather than delaying the point, let me just state the main result:

Theorem (Riemann-Roch)

For any algebraic curve C/k , there exists an integer $g \geq 0$ called the genus of C , and a divisor class C , called the canonical class of C, such that for any divisor $C \in \mathcal{C}$ and any divisor $A \in \text{Div}(K)$, we have $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$.

Remark: The divisor class C , as I will explain later in our discussion of differentials, is the divisor class associated with the meromorphic differentials of C.

I don't intend to give the full proof of the Riemann-Roch theorem, since it would take us a little far afield of the actual intended path.

- But I may have time later to give a sketch of the argument in concert with our discussion of differentials, or possibly much later when we talk about elliptic curves over C.
- The main obstacle is that we would need to discuss how to define the residue of a function at a pole in the algebraic case, which turns out to be a bit convoluted.
- But in the situation of $k = \mathbb{C}$, the residue of a meromorphic function at a pole is something easily understood in terms of power series.

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, III

So let's prove some consequences of Riemann-Roch:

Proposition (Corollaries of Riemann-Roch)

Let C/k be an algebraic curve.

- 1. For any divisor A with deg(A) \geq 0, we have $deg(A) - g + 1 \leq \ell(A) \leq deg(A) + 1.$
- 2. For $C \in \mathcal{C}$ we have $\ell(C) = g$ and $deg(C) = 2g 2$.
- 3. If deg(A) $\geq 2g 2$, then $\ell(A) = \deg(A) g + 1$ except when $A \in \mathcal{C}$ (in which case $\ell(A) = g$).
- 4. The genus g is unique, as is the equivalence class \mathcal{C} .

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, IV

1. For any divisor A with deg(A) \geq 0, we have $deg(A) - g + 1 \leq \ell(A) \leq deg(A) + 1.$

- We showed the upper bound earlier using an inductive argument.
- **•** The lower bound follows immediately from Riemann-Roch since $\ell(C - A) > 0$.

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, V

2. For $C \in \mathcal{C}$ we have $\ell(C) = g$ and $deg(C) = 2g - 2$. Proof:

- First set $A = 0$ in Riemann-Roch: this yields $\ell(0) = \deg(0) - g + 1 + \ell(C)$, so since $\ell(0) = 1$ and $deg(0) = 0$, we get $\ell(C) = g$.
- Now set $A = C$ in Riemann-Roch: this yields $\ell(C) = \deg(C) - g + 1 + \ell(0)$, and so $deg(C) = \ell(C) + g - 1 - \ell(0) = 2g - 2.$

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, VI

3. If deg(A) > 2g – 2, then $\ell(A) = \deg(A) - g + 1$ except when $A \in \mathcal{C}$ (in which case $\ell(A) = g$).

- If deg(A) $\geq 2g 2$, then deg(C A) ≤ 0 .
- \bullet Hence by our earlier results, this says $\ell(C A) = 0$ except when $C - A$ is principal (i.e., when $A \in \mathcal{C}$).
- When $\ell(C A) = 0$ Riemann-Roch immediately gives $\ell(A) = \deg(A) - g + 1$, and when $A \in \mathcal{C}$ we have $\ell(A) = g$ by (2).

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, VII

4. The genus g is unique, as is the equivalence class \mathcal{C} .

- Pick A of sufficiently large degree: then $deg(A) - \ell(A) + 1 = g$ by (3), so g is uniquely determined.
- For uniqueness of \mathcal{C} , if $\ell(A) = \deg(A) - g + 1 + \ell(C - A) = \deg(A) - g + 1 + \ell(D - A)$ for some other divisor D, then $\ell(C - A) = \ell(D - A)$ for all A.
- Setting $A = C$ yields $\ell(D C) = 1$ and setting $A = D$ yields $\ell(C - D) = 1$, and these are contradictory unless $D - C$ is principal, which is to say, $D \sim C$.

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, IX

Our main highlight is that we can use Riemann-Roch to study smooth projective curves of small genus over an arbitrary field F with algebraic closure k.

- We start with the simplest genus $g = 0$ to illustrate the ideas.
- Then we will move on to genus $g = 1$, which (as you will see) corresponds precisely to the situation of elliptic curves.

Riemann-Roch: $\ell(A) = \deg(A) - g + 1 + \ell(C - A)$, X

So suppose that C is a curve of genus 0 over the field F , and let $K = F(C)$ be its function field.

- \bullet By Riemann-Roch, we have $\ell(A) = \deg(A) + 1 + \ell(C A)$ for any divisor A, and also deg(C) = -2.
- Also, by (3), if deg(A) > -1 then $\ell(A) = \deg(A) + 1$. In particular, since deg($-C$) = 2, we have $\ell(-C) = 3$.
- Now, for any point P, we have $\ell(P) < deg(P) + 1$. So, if P is any point with $P \leq C$ (there must be at least one since $deg(-C)$ is positive), we see $\ell(P) < \ell(-C) = 3$.
- Thus, deg(P) must be either 1 or 2. (Remember here that F is not algebraically closed, so points can have a degree larger than 1, if their coordinates don't lie in F itself.)

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XI

First suppose that there is a point P of degree 1.

- Then $\ell(P) = 2$.
- Since F is a subspace of $L(P)$, there is a basis of $L(P)$ of the form $\{1, x\}$ for some $x \notin F$.
- Then since deg(div(x) + P) = 1 and div(x) + P \geq 0, we must have $div(x) + P = Q$ for some point Q (necessarily of degree 1).
- Then $\text{div}(x) = P Q$, and so $[K : F(x)] = deg(\text{div}_{+}(x)) = deg(P) = 1$, which means $K = F(x)$.
- Thus, we obtain an isomorphism $x: C \to \mathbb{P}^1$.

Reformulation: A smooth projective curve of genus 0 having a rational point is isomorphic to $\mathbb{P}^1.$

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XII

Now suppose that there are no points of degree 1: per earlier, we must have a point $P \leq C$ of degree 2.

- Then $\ell(P) = 3$, so again since $L(P)$ contains k, we may take a basis for $L(P)$ of the form $\{1, x, y\}$ for some F-linearly independent $x, y \notin F$.
- In the same way as before, we see that $div(x) = P Q$ and $div(y) = P - R$ for some (necessarily distinct) points Q and R of degree 2.
- Then $[K : F(x)] = deg(\text{div}_{+}(x)) = 2$ and $[K : F(y)] = deg(\text{div}_{+}(y)) = 2$ also.
- Since $F(x) \neq F(y)$ (by linear independence and the fact that K is a degree-2 extension of both), we see $K = F(x, y)$.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XIII

So, we know that $K = F(x, y)$ for some rational functions x, y. Since C is a curve, these functions x and y must satisfy some algebraic relation.

We can use Riemann-Roch to identify this relation.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XIII

So, we know that $K = F(x, y)$ for some rational functions x, y. Since C is a curve, these functions x and y must satisfy some algebraic relation.

- We can use Riemann-Roch to identify this relation.
- Explicitly, observe that $\ell(2P) = 1 + \text{deg}(2P) = 5$, but we can find six different elements in $L(2P)$, namely $\{1, x, y, x^2, xy, y^2\}.$
- They must therefore be F -linearly dependent, so we see that x and y satisfy some quadratic relation $ax^{2} + bxy + cy^{2} + dx + ey = f$, where at least one of the quadratic terms is nonzero.

Reformulation: A smooth projective curve of genus 0 having no F-rational point is isomorphic to a conic.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XIV

Now suppose C is a curve of genus 1 over F , again with function field K.

- In this case, for $g = 1$ Riemann-Roch and its corollaries say that $\ell(A) = \deg(A) + \ell(C - A)$, that deg(C) = 0 and $\ell(C) = 1$, and that if deg(A) > 1 then $\ell(A) =$ deg(A).
- Unlike the case $g = 0$, we are not necessarily guaranteed to have a point of any given degree any more, since we cannot use C to construct a point of small degree.
- Indeed, since deg(C) = 0 and $\ell(C) = 1$, in fact C is principal (and $C \sim 0$).
- \bullet So let us instead merely suppose that we do have a point P of degree 1.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XV

So: C has genus 1, and P is a point of degree 1. Let's look at the spaces $L(nP)$ like in the genus-0 case.

- From Riemann-Roch, we have $\ell(nP) = n$.
- $\ell(2P) = 2$. Choose a basis $\{1, x\}$ for $L(2P)$, where we necessarily must have $v_P(x) = 2$ since $x \notin L(P)$.
- $(3P) = 3$. Since 1, $x \in L(3P)$ we can extend these to a basis $\{1, x, y\}$ for $L(3P)$, where necessarily $v_P(y) = 3$ since $v \notin L(2P)$.
- Now we observe that $[K : F(x)] = deg(\text{div}_{+}(x)) = 2$ and $[K : F(y)] = deg(\text{div}_{+}(y)) = 3$, so since 2 and 3 are relatively prime, we see $K = F(x, y)$.
- \bullet Our task again is to find an algebraic relation between x and y.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XV

So: C has genus 1, P is a point of degree 1, and we have $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$.

- Since the various monomials $x^i y^j$ will all only have poles at P, we can (hope to) find a relation by considering more spaces $L(nP)$.
- We have $\ell(4P) = 4$, but we can only identify 4 elements that must lie in this space: $\{1, x, y, x^2\}$. In fact, they are all linearly independent since they all have different valuations at P.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XV

So: C has genus 1, P is a point of degree 1, and we have $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$.

- Since the various monomials $x^i y^j$ will all only have poles at P, we can (hope to) find a relation by considering more spaces $L(nP)$.
- We have $\ell(4P) = 4$, but we can only identify 4 elements that must lie in this space: $\{1, x, y, x^2\}$. In fact, they are all linearly independent since they all have different valuations at P.
- Likewise, $\ell(5P) = 5$, but we only have 5 elements in this space: $\{1, x, y, x^2, xy\}$. Again, these elements are all linearly independent since they have different valuations at P.

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XVI

So: C has genus 1, P is a point of degree 1, and we have $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$.

• But with $\ell(6P) = 6$ we hit paydirt, because here are 7 elements in this space: $\{1, x, y, x^2, xy, x^3, y^2\}.$

Riemann-Roch: $\ell(A) = \deg(A) + 1 + \ell(C - A)$, XVI

So: C has genus 1, P is a point of degree 1, and we have $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$.

- But with $\ell(6P) = 6$ we hit paydirt, because here are 7 elements in this space: $\{1, x, y, x^2, xy, x^3, y^2\}.$
- Thus, we must have a linear dependence among these elements, and in fact since x^3 and y^2 are the only elements with valuation 6 at P , they both have nonzero coefficients.
- Then by rescaling x, y appropriately, we obtain an algebraic relation of the form $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ for some $a_1, a_2, a_3, a_4, a_6 \in E$.
- In other words, C has an equation in Weierstrass form!
- Also, here I can mention why the a_i are so labeled: they are giving the "missing" pole valuation at P for the corresponding monomial term.

This proves the following theorem:

Theorem (Genus-1 Curves)

Suppose C is a smooth curve of genus 1 defined over the field F that has a rational point $P \in F$. Then there exist $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$ and $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ for some $a_1, a_2, a_3, a_4, a_6 \in F$.

This proves the following theorem:

Theorem (Genus-1 Curves)

Suppose C is a smooth curve of genus 1 defined over the field F that has a rational point $P \in F$. Then there exist $x, y \in F(C)$ with $v_P(x) = 2$ and $v_P(y) = 3$ such that $F(C) = F(x, y)$ and $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ for some $a_1, a_2, a_3, a_4, a_6 \in F$.

We can now adopt the more highbrow definition of elliptic curves:

Definition (Elliptic Curves, Properly)

Let F be a field. An elliptic curve E over F is a smooth projective curve defined over F with genus 1 that has an F -rational point O.

Note that the specific choice of F -rational point O is part of the definition of an elliptic curve.

- If we take the same projective curve but choose different selections for O, we view the resulting elliptic curves as distinct.
- As we will see, however, they will be isomorphic, so the distinction is not of great importance.

Let's use the highbrow approach to show that elliptic curves have a group law:

- In the discussion that follows, we will need to keep separate the notion of P as a divisor and P as a point on the curve.
- If you're wondering why, it's because we have a group operation on divisors (namely, addition of divisors) and also a group operation on points (namely, addition on the elliptic curve).
- As you can probably imagine, we will be using the group operation on divisors to construct the group operation on points.

So, in this discussion, the divisor of a point P will always be denoted $[P]$.

Elliptic Curves But Properly, IV

Theorem (The Group Law, Again)

Let F be a field and E be an elliptic curve defined over F with an F -rational point O.

- 1. If P and Q are F-rational points such that $[P] \sim [Q]$ as divisors, then $P = Q$.
- 2. For every degree-zero divisor D, there exists a unique point $P \in E$ such that $D \sim [P] - [O]$.
- 3. If $\sigma: {\rm Div}^0(E)\rightarrow E$ denotes the map in (2), then σ induces a bijection $\tilde{\sigma} : \mathrm{Pic}^0(E) \to E$.
- 4. With $\tilde{\sigma}$ as in (3), the group operation on E induced from $\operatorname{Pic}^0(E)$ via $\tilde{\sigma}$ is the same as the geometric group law on E. (In other words, if we think of E as a group with the geometric law, then E is isomorphic to ${\rm Pic}^0(E)$ via $\tilde{\sigma}.$)

Theorem (The Group Law, Again, Continued)

Let F be a field and E be an elliptic curve defined over F with an F -rational point O.

- 5. The group law defines morphisms $+ : E \times E \rightarrow E$ mapping $(P, Q) \mapsto P + Q$ and $- : E \to E$ mapping $P \mapsto -P$.
- 6. For any divisor $D \in \text{Div}(E)$, D is principal if and only if $deg(D) = 0$ and the formal sum representing D evaluates to O when viewed as a sum of points using the group law.

1. If P and Q are F-rational points such that $[P] \sim [Q]$ as divisors, then $P = Q$.

- Suppose that $[P] \sim [Q]$, so that $[P] [Q] = \text{div}(f)$ for some $f_{.}$
- Then in particular, $f \in L([Q])$.
- But Riemann-Roch on E says that $I([Q]) = 1$, so since the constants all lie in $L([Q])$, f must be constant.
- Then $div(f) = 0$ and hence $P = Q$, as claimed.

2. For every degree-zero divisor D , there exists a unique point $P \in E$ such that $D \sim [P] - [O]$.

- For existence, since deg($D + [O]$) = 1, our consequences of Riemann-Roch imply that $I(D + [O]) = 1$.
- Let f span $L(D + [O])$: then $div(f) > -D [O]$ and $deg(\text{div}(f)) = 0.$
- So since $-D [O]$ has degree -1 , we must have $div(f) = -D - [O] + [P]$ for some degree-1 point P, whence $D \sim [P] - [O].$
- Finally, the uniqueness of Q then follows immediately from (1), since if $[P] - [O] \sim D \sim [Q] - [O]$ then $P = Q$.

3. If $\sigma: {\rm Div}^0(E)\rightarrow E$ denotes the map with $D\sim [\sigma(D)]-[O],$ then σ induces a bijection $\tilde{\sigma}:\operatorname{Pic}^0(E)\rightarrow E.$

- First observe that $\sigma([P] [O]) = P$ so σ is certainly surjective from $\operatorname{Div}^0(E)$ to $E.$
- Also, by the definition of σ for any divisors D_1 and D_2 we have $\sigma(D_1) - \sigma(D_2) \sim D_1 - D_2$, so $D_1 \sim D_2$ if and only if $\sigma(D_1) = \sigma(D_2)$.
- This shows that σ descends to a bijection $\tilde{\sigma}$ from $\operatorname{Pic}^0(E)$ to E.

4. With $\tilde{\sigma}:\mathrm{Pic}^0(E)\rightarrow E$ with $\tilde{\sigma}(D)=\sim [\sigma(D)]-[O],$ the group operation on E induced from ${\rm Pic}^0(E)$ via $\tilde{\sigma}$ is the same as the geometric group law on E.

Proof (preamble):

- The inverse map of $\tilde{\sigma}$ is $\tau : P \rightarrow [P] [O]$.
- We want to see that $\tau(P+Q)=\tau(P)+\tau(Q)$, where the addition on the left is the geometric group law, and the addition on the right is the addition of divisor classes in the Picard group.
- Equivalently, we want to see that $[P + Q] - [P] - [Q] + [O] \sim 0$, where again $P + Q$ represents addition via the geometric group law.

4. With $\tilde{\sigma}:\mathrm{Pic}^0(E)\rightarrow E$ with $\tilde{\sigma}(D)\sim [\sigma(D)]-[O],$ the group operation on E induced from ${\rm Pic}^0(E)$ via $\tilde{\sigma}$ is the same as the geometric group law on E.

- To show: $[P + Q] [P] [Q] + [O] \sim 0$.
- Let f be the line through P and Q, let R be the third intersection point of E with this line, and let g be the line through R and O. Then since the line $Z = 0$ intersects E at O with multiplicity 3, we have $div(f/Z) = [P] + [Q] + [R] - 3[O]$ and $\mathrm{div}(g/Z) = [R] + [P + Q] - 2[O].$
- Therefore, $[P + Q] [P] [Q] + [O] = \text{div}(f/g) \sim 0$, as required. This means τ is a group homomorphism and thus a group isomorphism, as desired.

Elliptic Curves But Properly, X

5. The group law defines morphisms $+ : E \times E \rightarrow E$ mapping $(P, Q) \mapsto P + Q$ and $- : E \to E$ mapping $P \mapsto -P$.

Proof (outline):

- The actual details involve various special cases, but it suffices to show that the maps are rational, since rational maps from a smooth curve to a variety are automatically morphisms.
- But the addition map and the additive-inverse map are both rational on almost all points, as we have already seen via the explicit formulas.
- The only possible exceptions involve adding a point to itself or a point to O.
- One may check explicitly in these cases that the maps still yield morphisms by rearranging the formulas using projective equivalences like the ones we did a few weeks ago.

6. For any divisor $D \in Div(E)$, D is principal if and only if $deg(D) = 0$ and the formal sum representing D evaluates to O when viewed as a sum of points using the group law.

- As we have previously noted, the degree of any principal divisor is 0, so certainly we must have $deg(D) = 0$.
- Now if $D\in {\rm Div}^{0}(E)$ is $D=\sum_{P} n_{P}[P]$ we have $D\sim 0$ if and only if $\sigma(D) = O$.
- But $\sigma(D) = \sigma(\sum_P n_P[P]) = \sum_P n_P \sigma([P]) =$ \sum_{P} n $_{P}(P - O) = \sum_{P}$ n $_{P}P$ by definition of σ and the equivalence of the group operations in (4).
- So we see $\sigma(D)=O$ if and only if $\sum_{P} n_P P = O$ when viewed as a sum of points using the group law.

Some of these results can be packaged together via an exact sequence:

Exercise: Show that we have an exact sequence

$$
1 \to k^* \to k(E)^* \stackrel{\text{div}}{\to} \text{Div}^0(E) \stackrel{(6)}{\to} E \to 0
$$

where div represents the divisor map $f \mapsto \text{div}(f)$ and (6) represents the map discussed in (6) that takes a divisor $\sum_{P} n_P[P]$ and evaluates it as a sum of points on E.

We discussed Riemann-Roch spaces $L(D)$ and properties of their dimensions $I(D)$.

We stated the Riemann-Roch theorem and discussed a number of its consequences.

We constructed Weierstrass equations and the group law on genus-1 curves using Riemann-Roch.

Next lecture: Differentials.