
Math 7359 (Elliptic Curves and Modular
Forms)

Lecture #10 of 24 ∼ October 12, 2023

Riemann-Roch and Applications

L(D) and l(D)

Riemann-Roch and Consequences
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Recall

Definition

If a divisor D =
∑

P nPP on a curve C/k has nP ≥ 0 at all points
P, we say D is effective and we write D ≥ 0. We extend this
notion to a partial ordering on divisors by writing D1 ≤ D2 if and
only if D2 − D1 is effective.

Definition

If D is a divisor on a curve C/k, the Riemann-Roch space
associated to D is the set
L(D) = {α ∈ k(C )× : div(α) ≥ −D} ∪ {0}.



Riemann-Roch Dimensions, I

As the last examples suggest, the dimension of the Riemann-Roch
space L(D) carries important information:

Definition

If D is a divisor on a curve C/k, we define `(D) = dimk L(D).

Examples: From our earlier calculations,

For C = A1(C) we have l(P0) = 2, l(3P∞) = 4, and
l(−P0) = 0.

For C = A1(C) we have lC(P∞ − Pi ) = 1 and
lC(2P∞ − Pi − P−i ) = 1.

For an arbitrary C , we have `(0) = 1, since L(0) = k .



Riemann-Roch Dimensions, II

Let’s establish some properties of l(D):

Proposition (Properties of l(D))

Let C/k be a curve and D be a divisor of C . Then

1. If D1 ≤ D2, then `(D1) ≤ `(D2).

2. If D1 ∼ D2, then L(D1) ∼= L(D2) and so `(D1) = `(D2).

3. If deg(D) ≤ 0, then L(D) = {0} and l(D) = 0 except when
D = div(α) is principal, in which case L(D) = span(α) and
l(D) = 1.

4. If D1 and D2 are divisors with D1 ≤ D2, then
dimk(L(D2)/L(D1)) ≤ deg(D2)− deg(D1).

5. For any effective divisor D, we have `(D) ≤ deg(D) + 1. In
fact, this inequality holds for any divisor D of degree ≥ 0.

6. For any divisor D, the quantity `(D) is finite.



Riemann-Roch Dimensions, III

1. If D1 ≤ D2, then `(D1) ≤ `(D2).

Proof:

This follows immediately from the definition, since D1 ≤ D2

clearly implies that L(D1) is a subspace of L(D2).

2. If D1 ∼ D2, then L(D1) ∼= L(D2) and so `(D1) = `(D2).

Proof:

Suppose D1 = D2 + div(g).

Then the map from L(D1) to L(D2) sending f 7→ fg is an
isomorphism of vector spaces since it has an inverse map
h 7→ h/g .
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Riemann-Roch Dimensions, IV

3. If deg(D) ≤ 0, then L(D) = {0} and l(D) = 0 except when
D = div(α) is principal, in which case L(D) = span(α) and
l(D) = 1.

Proof:

Suppose f ∈ L(D) and f 6= 0. Then
0 = deg(div(f )) ≥ deg(−D) = − deg(D).

Furthermore, equality can hold only if D = −div(f ) for some
f ∈ k(C )×, in which case D is principal.

If D is principal, then `(D) = `(0) = 1 by (2), and
L(D) = span(α) by the same calculation.



Riemann-Roch Dimensions, V

4. If D1 and D2 are divisors with D1 ≤ D2, then
dimk(L(D2)/L(D1)) ≤ deg(D2)− deg(D1).

Proof (part 1):

Induct on the sum of the coefficients of the points in the
effective divisor B − A. The base case B − A = 0 is trivial.

For the inductive step, suppose that D2 = D1 + P for some
point P, and choose x ∈ k(C ) such that
vP(x) = vP(D2) = vP(D1) + 1.

Then for any y ∈ L(D2), we have
vP(xy) = vP(x) + vP(y) ≥ vP(D2)− vP(D2) ≥ 0, so
xy ∈ OP , the local ring at P.

By composing with the evaluation map at P, we obtain a
k-linear transformation ϕ : L(D2)→ OP/mP

∼= k with
ϕ(y) = (xy)(P).



Riemann-Roch Dimensions, VI

4. If D1 and D2 are divisors with D1 ≤ D2, then
dimk(L(D2)/L(D1)) ≤ deg(D2)− deg(D1).

Proof (part 2):

By composing with the evaluation map at P, we obtain a
k-linear transformation ϕ : L(D2)→ OP/mP

∼= k with
ϕ(y) = (xy)(P).

Then y ∈ ker(ϕ) if and only if (xy)(P) = 0 if and only if
vP(xy) ≥ 1 if and only if vP(y) ≥ 1− vP(D2) = −vP(D1),
and this last statement is equivalent to y ∈ L(D1).

Thus, by the first isomorphism theorem, we have an injection
from L(D2)/L(D1) to OP/mP .

Take dimensions: dimk(L(D2)/L(D1)) ≤ dimk(OP/mP) = 1.
This establishes the inductive step. Done.



Riemann-Roch Dimensions, VII

5. For any effective divisor D, we have `(D) ≤ deg(D) + 1. In
fact, this inequality holds for any divisor D of degree ≥ 0.

Proof:

For effective divisors, this follows immediately by induction on
the degree of D using (4), starting with the base case
l(0) = 1.

For general divisors, the result is trivial if `(D) = 0, so suppose
otherwise that `(D) ≥ 1 and let α ∈ L(D) be nonzero.

Then div(α) ≥ −D which is equivalent to D − div(α−1) ≥ 0.

Then for D ′ = D − div(α−1), we see that D is equivalent to
the effective divisor D ′, and so by (2) we have
`(D) = `(D ′) ≤ deg(D ′) + 1 = deg(D) + 1, as required.



Riemann-Roch Dimensions, VIII

6. For any divisor D, the quantity `(D) is finite.

Proof:

If deg(D) < 0 then (3) gives `(D) = 0, while if deg(D) ≥ 0
then (5) gives `(D) ≤ deg(D) + 1.



Riemann-Roch, I

What we would like to be able to do now is to calculate the actual
dimension `(D) for arbitrary divisors D. Rather than delaying the
point, let me just state the main result:

Theorem (Riemann-Roch)

For any algebraic curve C/k, there exists an integer g ≥ 0 called
the genus of C , and a divisor class C, called the canonical class of
C , such that for any divisor C ∈ C and any divisor A ∈ Div(K ), we
have `(A) = deg(A)− g + 1 + `(C − A).

Remark: The divisor class C, as I will explain later in our discussion
of differentials, is the divisor class associated with the meromorphic
differentials of C .



Riemann-Roch, II

I don’t intend to give the full proof of the Riemann-Roch theorem,
since it would take us a little far afield of the actual intended path.

But I may have time later to give a sketch of the argument in
concert with our discussion of differentials, or possibly much
later when we talk about elliptic curves over C.

The main obstacle is that we would need to discuss how to
define the residue of a function at a pole in the algebraic case,
which turns out to be a bit convoluted.

But in the situation of k = C, the residue of a meromorphic
function at a pole is something easily understood in terms of
power series.



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), III

So let’s prove some consequences of Riemann-Roch:

Proposition (Corollaries of Riemann-Roch)

Let C/k be an algebraic curve.

1. For any divisor A with deg(A) ≥ 0, we have
deg(A)− g + 1 ≤ `(A) ≤ deg(A) + 1.

2. For C ∈ C we have `(C ) = g and deg(C ) = 2g − 2.

3. If deg(A) ≥ 2g − 2, then `(A) = deg(A)− g + 1 except when
A ∈ C (in which case `(A) = g).

4. The genus g is unique, as is the equivalence class C.



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), IV

1. For any divisor A with deg(A) ≥ 0, we have
deg(A)− g + 1 ≤ `(A) ≤ deg(A) + 1.

Proof:

We showed the upper bound earlier using an inductive
argument.

The lower bound follows immediately from Riemann-Roch
since `(C − A) ≥ 0.



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), V

2. For C ∈ C we have `(C ) = g and deg(C ) = 2g − 2.

Proof:

First set A = 0 in Riemann-Roch: this yields
`(0) = deg(0)− g + 1 + `(C ), so since `(0) = 1 and
deg(0) = 0, we get `(C ) = g .

Now set A = C in Riemann-Roch: this yields
`(C ) = deg(C )− g + 1 + `(0), and so
deg(C ) = `(C ) + g − 1− `(0) = 2g − 2.



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), VI

3. If deg(A) ≥ 2g − 2, then `(A) = deg(A)− g + 1 except when
A ∈ C (in which case `(A) = g).

Proof:

If deg(A) ≥ 2g − 2, then deg(C − A) ≤ 0.

Hence by our earlier results, this says `(C − A) = 0 except
when C − A is principal (i.e., when A ∈ C).

When `(C − A) = 0 Riemann-Roch immediately gives
`(A) = deg(A)− g + 1, and when A ∈ C we have `(A) = g by
(2).



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), VII

4. The genus g is unique, as is the equivalence class C.

Proof:

Pick A of sufficiently large degree: then
deg(A)− `(A) + 1 = g by (3), so g is uniquely determined.

For uniqueness of C, if
`(A) = deg(A)−g + 1 +`(C −A) = deg(A)−g + 1 +`(D−A)
for some other divisor D, then `(C − A) = `(D − A) for all A.

Setting A = C yields `(D − C ) = 1 and setting A = D yields
`(C − D) = 1, and these are contradictory unless D − C is
principal, which is to say, D ∼ C .



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), IX

Our main highlight is that we can use Riemann-Roch to study
smooth projective curves of small genus over an arbitrary field F
with algebraic closure k .

We start with the simplest genus g = 0 to illustrate the ideas.

Then we will move on to genus g = 1, which (as you will see)
corresponds precisely to the situation of elliptic curves.



Riemann-Roch: `(A) = deg(A)− g + 1 + `(C − A), X

So suppose that C is a curve of genus 0 over the field F , and let
K = F (C ) be its function field.

By Riemann-Roch, we have `(A) = deg(A) + 1 + `(C − A) for
any divisor A, and also deg(C ) = −2.

Also, by (3), if deg(A) ≥ −1 then `(A) = deg(A) + 1. In
particular, since deg(−C ) = 2, we have `(−C ) = 3.

Now, for any point P, we have `(P) ≤ deg(P) + 1. So, if P is
any point with P ≤ C (there must be at least one since
deg(−C ) is positive), we see `(P) ≤ `(−C ) = 3.

Thus, deg(P) must be either 1 or 2. (Remember here that F
is not algebraically closed, so points can have a degree larger
than 1, if their coordinates don’t lie in F itself.)



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XI

First suppose that there is a point P of degree 1.

Then `(P) = 2.

Since F is a subspace of L(P), there is a basis of L(P) of the
form {1, x} for some x 6∈ F .

Then since deg(div(x) + P) = 1 and div(x) + P ≥ 0, we
must have div(x) + P = Q for some point Q (necessarily of
degree 1).

Then div(x) = P − Q, and so
[K : F (x)] = deg(div+(x)) = deg(P) = 1, which means
K = F (x).

Thus, we obtain an isomorphism x : C → P1.

Reformulation: A smooth projective curve of genus 0 having a
rational point is isomorphic to P1.



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XII

Now suppose that there are no points of degree 1: per earlier, we
must have a point P ≤ C of degree 2.

Then `(P) = 3, so again since L(P) contains k , we may take
a basis for L(P) of the form {1, x , y} for some F -linearly
independent x , y 6∈ F .

In the same way as before, we see that div(x) = P − Q and
div(y) = P − R for some (necessarily distinct) points Q and
R of degree 2.

Then [K : F (x)] = deg(div+(x)) = 2 and
[K : F (y)] = deg(div+(y)) = 2 also.

Since F (x) 6= F (y) (by linear independence and the fact that
K is a degree-2 extension of both), we see K = F (x , y).



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XIII

So, we know that K = F (x , y) for some rational functions x , y .
Since C is a curve, these functions x and y must satisfy some
algebraic relation.

We can use Riemann-Roch to identify this relation.

Explicitly, observe that `(2P) = 1 + deg(2P) = 5, but we can
find six different elements in L(2P), namely
{1, x , y , x2, xy , y2}.
They must therefore be F -linearly dependent, so we see that x
and y satisfy some quadratic relation
ax2 + bxy + cy2 + dx + ey = f , where at least one of the
quadratic terms is nonzero.

Reformulation: A smooth projective curve of genus 0 having no
F -rational point is isomorphic to a conic.
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Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XIV

Now suppose C is a curve of genus 1 over F , again with function
field K .

In this case, for g = 1 Riemann-Roch and its corollaries say
that `(A) = deg(A) + `(C − A), that deg(C ) = 0 and
`(C ) = 1, and that if deg(A) ≥ 1 then `(A) = deg(A).

Unlike the case g = 0, we are not necessarily guaranteed to
have a point of any given degree any more, since we cannot
use C to construct a point of small degree.

Indeed, since deg(C ) = 0 and `(C ) = 1, in fact C is principal
(and C ∼ 0).

So let us instead merely suppose that we do have a point P of
degree 1.



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XV

So: C has genus 1, and P is a point of degree 1. Let’s look at the
spaces L(nP) like in the genus-0 case.

From Riemann-Roch, we have `(nP) = n.

`(2P) = 2. Choose a basis {1, x} for L(2P), where we
necessarily must have vP(x) = 2 since x 6∈ L(P).

`(3P) = 3. Since 1, x ∈ L(3P) we can extend these to a basis
{1, x , y} for L(3P), where necessarily vP(y) = 3 since
y 6∈ L(2P).

Now we observe that [K : F (x)] = deg(div+(x)) = 2 and
[K : F (y)] = deg(div+(y)) = 3, so since 2 and 3 are relatively
prime, we see K = F (x , y).

Our task again is to find an algebraic relation between x and
y .



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XV

So: C has genus 1, P is a point of degree 1, and we have
x , y ∈ F (C ) with vP(x) = 2 and vP(y) = 3 such that
F (C ) = F (x , y).

Since the various monomials x iy j will all only have poles at P,
we can (hope to) find a relation by considering more spaces
L(nP).

We have `(4P) = 4, but we can only identify 4 elements that
must lie in this space: {1, x , y , x2}. In fact, they are all
linearly independent since they all have different valuations at
P.

Likewise, `(5P) = 5, but we only have 5 elements in this
space: {1, x , y , x2, xy}. Again, these elements are all linearly
independent since they have different valuations at P.



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XV
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Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XVI

So: C has genus 1, P is a point of degree 1, and we have
x , y ∈ F (C ) with vP(x) = 2 and vP(y) = 3 such that
F (C ) = F (x , y).

But with `(6P) = 6 we hit paydirt, because here are 7
elements in this space: {1, x , y , x2, xy , x3, y2}.

Thus, we must have a linear dependence among these
elements, and in fact since x3 and y2 are the only elements
with valuation 6 at P, they both have nonzero coefficients.

Then by rescaling x , y appropriately, we obtain an algebraic
relation of the form y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
for some a1, a2, a3, a4, a6 ∈ E .

In other words, C has an equation in Weierstrass form!

Also, here I can mention why the ai are so labeled: they are
giving the “missing” pole valuation at P for the corresponding
monomial term.



Riemann-Roch: `(A) = deg(A) + 1 + `(C − A), XVI

So: C has genus 1, P is a point of degree 1, and we have
x , y ∈ F (C ) with vP(x) = 2 and vP(y) = 3 such that
F (C ) = F (x , y).

But with `(6P) = 6 we hit paydirt, because here are 7
elements in this space: {1, x , y , x2, xy , x3, y2}.
Thus, we must have a linear dependence among these
elements, and in fact since x3 and y2 are the only elements
with valuation 6 at P, they both have nonzero coefficients.

Then by rescaling x , y appropriately, we obtain an algebraic
relation of the form y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
for some a1, a2, a3, a4, a6 ∈ E .

In other words, C has an equation in Weierstrass form!

Also, here I can mention why the ai are so labeled: they are
giving the “missing” pole valuation at P for the corresponding
monomial term.



Elliptic Curves But Properly, I

This proves the following theorem:

Theorem (Genus-1 Curves)

Suppose C is a smooth curve of genus 1 defined over the field F
that has a rational point P ∈ F . Then there exist x , y ∈ F (C )
with vP(x) = 2 and vP(y) = 3 such that F (C ) = F (x , y) and
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 for some
a1, a2, a3, a4, a6 ∈ F .



Elliptic Curves But Properly, I
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Elliptic Curves But Properly, II

We can now adopt the more highbrow definition of elliptic curves:

Definition (Elliptic Curves, Properly)

Let F be a field. An elliptic curve E over F is a smooth projective
curve defined over F with genus 1 that has an F -rational point O.

Note that the specific choice of F -rational point O is part of the
definition of an elliptic curve.

If we take the same projective curve but choose different
selections for O, we view the resulting elliptic curves as
distinct.

As we will see, however, they will be isomorphic, so the
distinction is not of great importance.



Elliptic Curves But Properly, III

Let’s use the highbrow approach to show that elliptic curves have a
group law:

In the discussion that follows, we will need to keep separate
the notion of P as a divisor and P as a point on the curve.

If you’re wondering why, it’s because we have a group
operation on divisors (namely, addition of divisors) and also a
group operation on points (namely, addition on the elliptic
curve).

As you can probably imagine, we will be using the group
operation on divisors to construct the group operation on
points.

So, in this discussion, the divisor of a point P will always be
denoted [P].



Elliptic Curves But Properly, IV

Theorem (The Group Law, Again)

Let F be a field and E be an elliptic curve defined over F with an
F -rational point O.

1. If P and Q are F -rational points such that [P] ∼ [Q] as
divisors, then P = Q.

2. For every degree-zero divisor D, there exists a unique point
P ∈ E such that D ∼ [P]− [O].

3. If σ : Div0(E )→ E denotes the map in (2), then σ induces a
bijection σ̃ : Pic0(E )→ E .

4. With σ̃ as in (3), the group operation on E induced from
Pic0(E ) via σ̃ is the same as the geometric group law on E .
(In other words, if we think of E as a group with the
geometric law, then E is isomorphic to Pic0(E ) via σ̃.)



Elliptic Curves But Properly, V

Theorem (The Group Law, Again, Continued)

Let F be a field and E be an elliptic curve defined over F with an
F -rational point O.

5. The group law defines morphisms + : E × E → E mapping
(P,Q) 7→ P + Q and − : E → E mapping P 7→ −P.

6. For any divisor D ∈ Div(E ), D is principal if and only if
deg(D) = 0 and the formal sum representing D evaluates to
O when viewed as a sum of points using the group law.



Elliptic Curves But Properly, VI

1. If P and Q are F -rational points such that [P] ∼ [Q] as
divisors, then P = Q.

Proof:

Suppose that [P] ∼ [Q], so that [P]− [Q] = div(f ) for some
f .

Then in particular, f ∈ L([Q]).

But Riemann-Roch on E says that l([Q]) = 1, so since the
constants all lie in L([Q]), f must be constant.

Then div(f ) = 0 and hence P = Q, as claimed.



Elliptic Curves But Properly, VII

2. For every degree-zero divisor D, there exists a unique point
P ∈ E such that D ∼ [P]− [O].

Proof:

For existence, since deg(D + [O]) = 1, our consequences of
Riemann-Roch imply that l(D + [O]) = 1.

Let f span L(D + [O]): then div(f ) ≥ −D − [O] and
deg(div(f )) = 0.

So since −D − [O] has degree −1, we must have
div(f ) = −D − [O] + [P] for some degree-1 point P, whence
D ∼ [P]− [O].

Finally, the uniqueness of Q then follows immediately from
(1), since if [P]− [O] ∼ D ∼ [Q]− [O] then P = Q.



Elliptic Curves But Properly, VIII

3. If σ : Div0(E )→ E denotes the map with D ∼ [σ(D)]− [O],
then σ induces a bijection σ̃ : Pic0(E )→ E .

Proof:

First observe that σ([P]− [O]) = P so σ is certainly surjective
from Div0(E ) to E .

Also, by the definition of σ for any divisors D1 and D2 we
have σ(D1)− σ(D2) ∼ D1 − D2, so D1 ∼ D2 if and only if
σ(D1) = σ(D2).

This shows that σ descends to a bijection σ̃ from Pic0(E ) to
E .



Elliptic Curves But Properly, IX

4. With σ̃ : Pic0(E )→ E with σ̃(D) =∼ [σ(D)]− [O], the group
operation on E induced from Pic0(E ) via σ̃ is the same as the
geometric group law on E .

Proof (preamble):

The inverse map of σ̃ is τ : P → [P]− [O].

We want to see that τ(P + Q) = τ(P) + τ(Q), where the
addition on the left is the geometric group law, and the
addition on the right is the addition of divisor classes in the
Picard group.

Equivalently, we want to see that
[P + Q]− [P]− [Q] + [O] ∼ 0, where again P + Q represents
addition via the geometric group law.



Elliptic Curves But Properly, IX

4. With σ̃ : Pic0(E )→ E with σ̃(D) ∼ [σ(D)]− [O], the group
operation on E induced from Pic0(E ) via σ̃ is the same as the
geometric group law on E .

Proof:

To show: [P + Q]− [P]− [Q] + [O] ∼ 0.

Let f be the line through P and Q, let R be the third
intersection point of E with this line, and let g be the line
through R and O. Then since the line Z = 0 intersects E at
O with multiplicity 3, we have
div(f /Z ) = [P] + [Q] + [R]− 3[O] and
div(g/Z ) = [R] + [P + Q]− 2[O].

Therefore, [P + Q]− [P]− [Q] + [O] = div(f /g) ∼ 0, as
required. This means τ is a group homomorphism and thus a
group isomorphism, as desired.
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5. The group law defines morphisms + : E × E → E mapping
(P,Q) 7→ P + Q and − : E → E mapping P 7→ −P.

Proof (outline):

The actual details involve various special cases, but it suffices
to show that the maps are rational, since rational maps from a
smooth curve to a variety are automatically morphisms.

But the addition map and the additive-inverse map are both
rational on almost all points, as we have already seen via the
explicit formulas.

The only possible exceptions involve adding a point to itself or
a point to O.

One may check explicitly in these cases that the maps still
yield morphisms by rearranging the formulas using projective
equivalences like the ones we did a few weeks ago.
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6. For any divisor D ∈ Div(E ), D is principal if and only if
deg(D) = 0 and the formal sum representing D evaluates to
O when viewed as a sum of points using the group law.

Proof:

As we have previously noted, the degree of any principal
divisor is 0, so certainly we must have deg(D) = 0.

Now if D ∈ Div0(E ) is D =
∑

P nP [P] we have D ∼ 0 if and
only if σ(D) = O.

But σ(D) = σ(
∑

P nP [P]) =
∑

P nPσ([P]) =∑
P nP(P − O) =

∑
P nPP by definition of σ and the

equivalence of the group operations in (4).

So we see σ(D) = O if and only if
∑

P nPP = O when viewed
as a sum of points using the group law.



Elliptic Curves But Properly, XII

Some of these results can be packaged together via an exact
sequence:

Exercise: Show that we have an exact sequence

1→ k∗ → k(E )∗
div→ Div0(E )

(6)→ E → 0

where div represents the divisor map f 7→ div(f ) and (6)
represents the map discussed in (6) that takes a divisor

∑
P nP [P]

and evaluates it as a sum of points on E .



Summary

We discussed Riemann-Roch spaces L(D) and properties of their
dimensions l(D).

We stated the Riemann-Roch theorem and discussed a number of
its consequences.

We constructed Weierstrass equations and the group law on
genus-1 curves using Riemann-Roch.

Next lecture: Differentials.


