
E. Dummit's Math 7359 ∼ Elliptic Curves and Modular Forms, Fall 2023 ∼ Homework 3, due Fri Nov 3rd.

Problems are worth points as indicated. Solve whichever problems you haven't seen before that interest you the
most (suggestion: between 15 and 25 points' worth). Starred problems are especially recommended. Submit your
assignments via Gradescope.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 12)

1. [2pts] Show that we have an exact sequence 1→ k∗ → k(E)∗
div→ Div0(E)

(6)→ E → 0 where div represents the
divisor map f 7→ div(f) and (6) represents the map discussed in property (6) that takes a divisor

∑
P nP [P ]

and evaluates it as a sum of points on E.

0.1.2 Exercises from (Oct 16)

• Recall that the space Ω(C) of meromorphic di�erential 1-forms on C is the k-vector space consisting of symbols
of the form dx for x ∈ k(C), subject to the following three relations:

1. The additivity relation d(x+ y) = dx+ dy for all x, y ∈ k(C)

2. The Leibniz rule d(xy) = x dy + y dx for all x, y ∈ k(V )

3. Derivatives of constants are zero: da = 0 for all a ∈ k.

1. [2pts*] Show that the relations (1)-(3) also imply the power rule d(xn) = nxn−1dx and the quotient rule

d(
x

y
) =

x dy − y dx
y2

.

2. [2pts] Suppose C/k is a curve and x1, x2, . . . , xn ∈ k(C). For any rational function f ∈ k(x1, . . . , xn), show
the �chain rule�: that df = fx1

dx1 + · · ·+ fxn
dxn, where fxi

denotes the usual partial derivative. [Hint: First
show the result for polynomials f , then use the quotient rule.]

3. [2pts] Let char(k) 6= 3. On the elliptic curve y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, let t be a uniformizer

at ∞. Show that the ratio
ω

dt
= − dy/dt

3x2 + 2a2x+ a4
evaluates to a quantity that is de�ned and nonzero at ∞.

0.1.3 Exercises from (Oct 19)

1. [2pts] Show Ω(D) is a vector space, and that Ω(D) is isomorphic to L(C −D) where C is any element of the
canonical class of C. [Hint: Fix a di�erential ω and let f ∈ L(C − D) and consider f 7→ fω. The proof of
property (7) of di�erentials on Oct 16 is the special case D = 0.]

2. [2pts] IfD ≥ 0, show that Riemann-Roch is equivalent to the statement that dimk(L(D)/L(0))+dimk(Ω(D)/Ω(0)) =
deg(D).

3. [2pts*] Compute the rami�cation index eϕ(P ) for all points P ∈ P1 for the map ϕ : P1(C) → P1(C) with
ϕ(x) = x3.

4. [3pts*] Let f ∈ k(x) be a nonconstant rational function. Show that a �nite point P ∈ k is rami�ed for the
map f : P1(k)→ P1(k) if and only if f ′(P ) = 0. Deduce that f has only �nitely many rami�ed points. Under
what conditions on f will ∞ be rami�ed?

5. [2pts*] Suppose k is a(n algebraically closed) �eld of characteristic p and let the Frobenius morphism Frob :
P1(k)→ P1(k) be given by Frob(x) = xp. Verify that #Frob−1(Q) = 1 for all Q ∈ P1, and show that Frob is
rami�ed at every point. Deduce that the hypothesis that ϕ be separable is necessary to ensure there are only
�nitely many rami�ed points.
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0.1.4 Exercises from (Oct 23)

1. [2pts] Let ϕ : C1 → C2 be a nonconstant map of (smooth projective) curves. For any nonzero f ∈ k(C2) and
any P ∈ C1, show that ordP (ϕ∗f) = eϕ(P )ordϕ(P )(f).

2. [2pts*] Show that the degree map is multiplicative on isogenies: deg(ϕ ◦ ψ) = (degϕ)(degψ).

3. [1pt] Let E1 and E2 be elliptic curves and de�ne Hom(E1, E2) to be the collection of all isogenies from E1 to
E2. Show that Hom(E1, E2) is an abelian group under the addition operation (ϕ + ψ)P = ϕ(P ) + ψ(P ) for
all P ∈ E1 (where the addition on the right is the sum under the group law on E2) for ϕ,ψ ∈ Hom(E1, E2).

4. [2pts] Let E be an elliptic curve and de�ne End(E) = Hom(E,E) to be the collection of all isogenies from E
to itself. Show that E is a ring with 1 having no zero divisors, with addition given as in the exercise above
and multiplication given by composition. [Hint: For the lack of zero divisors, consider degrees.]

5. [1pt] Suppose that ϕ : G → H is a surjective group homomorphism. Show that for any h ∈ H there is a
bijection between ϕ−1(h) and kerϕ.

6. [2pts*] Use Riemann-Hurwitz to prove directly that if ϕ : E1 → E2 is a nonconstant separable morphism of
elliptic curves then ϕ is everywhere unrami�ed.

0.2 Additional Exercises

1. [5pts] The goal of this problem is to study the group structure on a singular elliptic curve E. By an appropriate
translation we may assume that the singular point is at (0, 0).

(a) Show that the resulting a�ne Weierstrass equation of E is of the form y2+a1xy = x3+a2x
2. (Remember

that for E = V (f), both partial derivatives of f vanish at the singular point.)

(b) Show that the rational map ϕ : E → P1 with ϕ(x, y) = [X : Y ] is de�ned at all points of E other than
the singular point.

(c) Construct an inverse map ψ : P1 → E\{(0, 0)} for the map ϕ in part (b). [Hint: Let t = y/x and use the
Weierstrass equation to write x and y in terms of t.]

(d) Deduce that E is birational to P1. Why is E not isomorphic to P1?

2. [5pts] The goal of this problem is to study curves of genus 2. So let C be a smooth projective curve of genus
2 and let C be the canonical class.

(a) Show that l(C) = 2 and deduce that L(C) contains an e�ective divisor D = P + Q for some points
P,Q ∈ C (which may be equal).

(b) Continuing (a), let x ∈ l(C) be nonconstant: then x has at most two poles, (potentially) located at P
and Q. Show that x cannot have only one pole of order 1. [Hint: If so, then x ∈ L(P ); show this would
imply C is isomorphic to P1.]

(c) Continuing (b), deduce that deg(div−x) = 2 and thus that the extension degree [k(C) : k(x)] = 2 has
degree 2. Conclude that C is a hyperelliptic curve: a curve with an a�ne equation of the form y2 = p(x)
for some (squarefree) polynomial p(x).

(d) Continuing (c), show that p(x) has degree 5 or 6. [Hint: Apply Riemann-Hurwitz to ϕ : C → P1 with
ϕ(x, y) = [1 : x]. Note ∞ is rami�ed only when deg p is odd.]

3. [5pts*] The goal of this problem is to prove a result known as the Weierstrass gap theorem. Let C be a smooth
projective curve of genus g, and suppose P ∈ C. The main task is to investigate the spaces L(nP ) for various
n: we say that an integer n is a pole number for P if there exists α ∈ k(C) such that div−(α) = −nP , and
otherwise (if there is no such α) we say n is a gap number for P .

(a) Show that the set of pole numbers for P is an additive semigroup (i.e., it is closed under addition and
contains 0).

(b) Show that if n ≥ 2g, then L((n − 1)P ) < L(nP ). Deduce that there exists an element α ∈ k(C) such
that div−(α) = −nP and conclude that each n ≥ 2g is a pole number.

(c) Show that there are exactly g gap numbers i1 < i2 < · · · < ig for P , and that i1 = 1 and ig ≤ 2g − 1.
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