E. Dummit's Math $7359 \sim$ Elliptic Curves and Modular Forms, Fall $2023 \sim$ Homework 3, due Fri Nov 3rd.

Problems are worth points as indicated. Solve whichever problems you haven't seen before that interest you the most (suggestion: between 15 and 25 points' worth). Starred problems are especially recommended. Submit your assignments via Gradescope.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 12)

1. [2pts] Show that we have an exact sequence $1 \to k^* \to k(E)^* \stackrel{\text{div}}{\to} \text{Div}^0(E) \stackrel{(6)}{\to} E \to 0$ where div represents the divisor map $f \mapsto \text{div}(f)$ and (6) represents the map discussed in property (6) that takes a divisor $\sum_P n_P[P]$ and evaluates it as a sum of points on E.

0.1.2 Exercises from (Oct 16)

- Recall that the space $\Omega(C)$ of <u>meromorphic differential 1-forms</u> on C is the k-vector space consisting of symbols of the form dx for $x \in k(C)$, subject to the following three relations:
 - 1. The additivity relation d(x+y) = dx + dy for all $x, y \in k(C)$
 - 2. The Leibniz rule $d(xy) = x \, dy + y \, dx$ for all $x, y \in k(V)$
 - 3. Derivatives of constants are zero: da = 0 for all $a \in k$.
- 1. [2pts*] Show that the relations (1)-(3) also imply the power rule $d(x^n) = nx^{n-1}dx$ and the quotient rule $d(\frac{x}{y}) = \frac{x \, dy y \, dx}{y^2}$.
- 2. [2pts] Suppose C/k is a curve and $x_1, x_2, \ldots, x_n \in k(C)$. For any rational function $f \in k(x_1, \ldots, x_n)$, show the "chain rule": that $df = f_{x_1} dx_1 + \cdots + f_{x_n} dx_n$, where f_{x_i} denotes the usual partial derivative. [Hint: First show the result for polynomials f, then use the quotient rule.]
- 3. [2pts] Let char(k) \neq 3. On the elliptic curve $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, let t be a uniformizer at ∞ . Show that the ratio $\frac{\omega}{dt} = -\frac{dy/dt}{3x^2 + 2a_2x + a_4}$ evaluates to a quantity that is defined and nonzero at ∞ .

0.1.3 Exercises from (Oct 19)

- 1. [2pts] Show $\Omega(D)$ is a vector space, and that $\Omega(D)$ is isomorphic to $L(\mathcal{C} D)$ where \mathcal{C} is any element of the canonical class of C. [Hint: Fix a differential ω and let $f \in L(\mathcal{C} D)$ and consider $f \mapsto f\omega$. The proof of property (7) of differentials on Oct 16 is the special case D = 0.]
- 2. [2pts] If $D \ge 0$, show that Riemann-Roch is equivalent to the statement that $\dim_k(L(D)/L(0)) + \dim_k(\Omega(D)/\Omega(0)) = \deg(D)$.
- 3. [2pts*] Compute the ramification index $e_{\varphi}(P)$ for all points $P \in \mathbb{P}^1$ for the map $\varphi : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ with $\varphi(x) = x^3$.
- 4. [3pts*] Let $f \in k(x)$ be a nonconstant rational function. Show that a finite point $P \in k$ is ramified for the map $f : \mathbb{P}^1(k) \to \mathbb{P}^1(k)$ if and only if f'(P) = 0. Deduce that f has only finitely many ramified points. Under what conditions on f will ∞ be ramified?
- 5. [2pts*] Suppose k is a(n algebraically closed) field of characteristic p and let the Frobenius morphism Frob : $\mathbb{P}^1(k) \to \mathbb{P}^1(k)$ be given by $\operatorname{Frob}(x) = x^p$. Verify that $\#\operatorname{Frob}^{-1}(Q) = 1$ for all $Q \in \mathbb{P}^1$, and show that Frob is ramified at every point. Deduce that the hypothesis that φ be separable is necessary to ensure there are only finitely many ramified points.

0.1.4 Exercises from (Oct 23)

- 1. [2pts] Let $\varphi : C_1 \to C_2$ be a nonconstant map of (smooth projective) curves. For any nonzero $f \in k(C_2)$ and any $P \in C_1$, show that $\operatorname{ord}_P(\varphi^* f) = e_{\varphi}(P) \operatorname{ord}_{\varphi(P)}(f)$.
- 2. [2pts*] Show that the degree map is multiplicative on isogenies: $\deg(\varphi \circ \psi) = (\deg \varphi)(\deg \psi)$.
- 3. [1pt] Let E_1 and E_2 be elliptic curves and define $\operatorname{Hom}(E_1, E_2)$ to be the collection of all isogenies from E_1 to E_2 . Show that $\operatorname{Hom}(E_1, E_2)$ is an abelian group under the addition operation $(\varphi + \psi)P = \varphi(P) + \psi(P)$ for all $P \in E_1$ (where the addition on the right is the sum under the group law on E_2) for $\varphi, \psi \in \operatorname{Hom}(E_1, E_2)$.
- 4. [2pts] Let E be an elliptic curve and define $\operatorname{End}(E) = \operatorname{Hom}(E, E)$ to be the collection of all isogenies from E to itself. Show that E is a ring with 1 having no zero divisors, with addition given as in the exercise above and multiplication given by composition. [Hint: For the lack of zero divisors, consider degrees.]
- 5. [1pt] Suppose that $\varphi : G \to H$ is a surjective group homomorphism. Show that for any $h \in H$ there is a bijection between $\varphi^{-1}(h)$ and ker φ .
- 6. [2pts*] Use Riemann-Hurwitz to prove directly that if $\varphi : E_1 \to E_2$ is a nonconstant separable morphism of elliptic curves then φ is everywhere unramified.

0.2 Additional Exercises

- 1. [5pts] The goal of this problem is to study the group structure on a singular elliptic curve E. By an appropriate translation we may assume that the singular point is at (0,0).
 - (a) Show that the resulting affine Weierstrass equation of E is of the form $y^2 + a_1 xy = x^3 + a_2 x^2$. (Remember that for E = V(f), both partial derivatives of f vanish at the singular point.)
 - (b) Show that the rational map $\varphi : E \to \mathbb{P}^1$ with $\varphi(x, y) = [X : Y]$ is defined at all points of E other than the singular point.
 - (c) Construct an inverse map $\psi : \mathbb{P}^1 \to E \setminus \{(0,0)\}$ for the map φ in part (b). [Hint: Let t = y/x and use the Weierstrass equation to write x and y in terms of t.]
 - (d) Deduce that E is birational to \mathbb{P}^1 . Why is E not isomorphic to \mathbb{P}^1 ?
- 2. [5pts] The goal of this problem is to study curves of genus 2. So let C be a smooth projective curve of genus 2 and let C be the canonical class.
 - (a) Show that $l(\mathcal{C}) = 2$ and deduce that $L(\mathcal{C})$ contains an effective divisor D = P + Q for some points $P, Q \in C$ (which may be equal).
 - (b) Continuing (a), let $x \in l(\mathcal{C})$ be nonconstant: then x has at most two poles, (potentially) located at P and Q. Show that x cannot have only one pole of order 1. [Hint: If so, then $x \in L(P)$; show this would imply C is isomorphic to \mathbb{P}^1 .]
 - (c) Continuing (b), deduce that $\deg(\operatorname{div}_x) = 2$ and thus that the extension degree [k(C) : k(x)] = 2 has degree 2. Conclude that C is a <u>hyperelliptic curve</u>: a curve with an affine equation of the form $y^2 = p(x)$ for some (squarefree) polynomial p(x).
 - (d) Continuing (c), show that p(x) has degree 5 or 6. [Hint: Apply Riemann-Hurwitz to $\varphi : C \to \mathbb{P}^1$ with $\varphi(x, y) = [1 : x]$. Note ∞ is ramified only when deg p is odd.]
- 3. [5pts*] The goal of this problem is to prove a result known as the Weierstrass gap theorem. Let C be a smooth projective curve of genus g, and suppose $P \in C$. The main task is to investigate the spaces L(nP) for various n: we say that an integer n is a pole number for P if there exists $\alpha \in k(C)$ such that $\operatorname{div}_{-}(\alpha) = -nP$, and otherwise (if there is no such α) we say n is a gap number for P.
 - (a) Show that the set of pole numbers for P is an additive semigroup (i.e., it is closed under addition and contains 0).
 - (b) Show that if $n \ge 2g$, then L((n-1)P) < L(nP). Deduce that there exists an element $\alpha \in k(C)$ such that $\operatorname{div}_{-}(\alpha) = -nP$ and conclude that each $n \ge 2g$ is a pole number.
 - (c) Show that there are exactly g gap numbers $i_1 < i_2 < \cdots < i_g$ for P, and that $i_1 = 1$ and $i_g \leq 2g 1$.