E. Dummit's Math 7359 ∼ Elliptic Curves and Modular Forms, Fall 2023 ∼ Homework 1, due Fri Sep 29th.

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 20 and 35 points' worth). Starred problems are especially recommended. Submit your assignments via Gradescope.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Sep 7)

- 1. [3pts] Show that graph of $y^2 = x^3 + Ax + B$ over R will have two components when the polynomial $x^3 + Ax + B$ has three distinct real roots, and will have one component otherwise.
- 2. [1pt] (Tedious) Suppose E is an elliptic curve with a Weierstrass equation $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ with $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ on E. Show that the additive inverse is given by $-P_1 = (x_0, -y_0$ $a_1x_0 - a_3$), and the sum $P_1 + P_2$ is given by ∞ when $x_1 = x_2$ and $y_1 = -y_2 - a_1x_2 - a_3$ and by (x_3, y_3) where $x_3 = m^2 + a_1 m - a_2 - x_1 - x_2$ and $y_3 = -(m + a_1)x_3 - b - a_3$ where $y = mx + b$ is the line joining P_1 and P_2 (or the tangent line when $P_1 = P_2$), which explicitly has $m = \frac{y_2 - y_1}{x_2 - x_2}$ $rac{y_2-y_1}{x_2-x_1}$, $b = \frac{x_2y_1-x_1y_2}{x_2-x_1}$ $\frac{y_1 - x_1y_2}{x_2 - x_1}$ when $P_1 \neq P_2$ and has $m = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2}$ $\frac{+2a_2x_1+a_4-a_1y_1}{2y_1+a_1x_1+a_3}$ and $b = \frac{-x_1^3+a_4x_1+2a_6-a_3y_1}{2y_1+a_1x_1+a_3}$ $\frac{2y_1 + a_1x_1 + 2a_0 - a_3y_1}{2y_1 + a_1x_1 + a_3}$ when $P_1 = P_2$.

0.1.2 Exercises from (Sep 11)

- 1. [3pts*] Pick an elliptic curve in Weierstrass form (e.g., $y^2 = x^3 + 4x + 1$) and after checking whether it is nonsingular, find all of its points over \mathbb{F}_3 , \mathbb{F}_5 , \mathbb{F}_7 , \mathbb{F}_{11} , and \mathbb{F}_{13} , and identify the group structure explicitly in each case.
- 2. [2pts] Show that by making an appropriate change of variables, any rational Weierstrass form can be converted into one with A, B integers. Illustrate by finding a Weierstrass form with integer coefficients for $y^2 = x^3 + y^2$ $\frac{3}{2}x + \frac{2}{5}$.
- 3. [3pts] (Tedious) Let E be an elliptic curve and $P = (x, y)$ be a point on E. Define the polynomials $\varphi_0 = 0$, $\varphi_1 = 1, \, \varphi_2 = 2y, \, \varphi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2, \, \varphi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3),$ and in general $\varphi_{2n+1} = \varphi_{n+2} \cdot \varphi_n^3 - \varphi_{n-1}\varphi_{n+1}$ and $\varphi_{2n} = \frac{\varphi_n}{2n}$ $\frac{\varphi_n}{2y} \cdot (\varphi_{n+2}\varphi_{n-1}^3 - \varphi_{n-2}\varphi_{n+1}^2)$ for $n \geq 2$.
	- (a) With $y^2 = x^3 + Ax + B$, show that φ_n can be written as a polynomial in $\mathbb{Z}[x, A, B]$ when n is odd and can be written as y times a polynomial in $\mathbb{Z}[x, A, B]$ when n is even.
	- (b) Show that φ_n^2 is a polynomial of degree n^2-1 in x with leading coefficient n^2 while $x\varphi_n^2-\varphi_{n-1}\varphi_{n+1}$ is a polynomial of degree n^2 in x with leading coefficient 1.

(c) Show that the coordinates of
$$
[n]P
$$
 are (x_n, y_n) where $x_n = \frac{x\varphi_n^2 - \varphi_{n-1}\varphi_{n+1}}{\varphi_n^2}$ and $y_n = \frac{\varphi_{n+2}\varphi_{n-1}^2 - \varphi_{n-2}\varphi_{n+1}^2}{4y\varphi_n^3}$

.

0.1.3 Exercises from (Sep 18)

- 1. [2pts*] Draw $V(x)$, $V(x^2)$, $V(y-x)$, $V(y-x^2)$, $V(xy)$, $V(x, y)$, and $V(y^2 x^3 x)$ in $\mathbb{A}^2(\mathbb{R})$.
- 2. [3pts] Identify $I(S)$ in $\mathbb{R}[x, y]$ for $S = \{(t, 0) : t \in \mathbb{R}\}, \{(t^2, t) : t \in \mathbb{R}\}, \{(1, 1)\}, \{(0, 0), (1, 1)\}, \{(cos t, sin t) :$ $t \in \mathbb{R}$, and $\{(t, \sin t) : t \in \mathbb{R}\}.$
- 3. [2pts] Prove that for any subset S of $k[x_1, \ldots, x_n]$, $S \subseteq I(V(S))$ and $V(S) = V(I(V(S)))$.
- 4. [2pts] Prove that for any subset X of $\mathbb{A}^n(k)$, $X \subseteq V(I(X))$ and $I(X) = I(V(I(X)))$.
- 5. [1pt] If k is finite, show that the irreducible affine algebraic sets in $\mathbb{A}^n(k)$ are Ø and single points.
- 6. [3pts*] If k is infinite, show that the irreducible affine algebraic sets in $\mathbb{A}^2(k)$ are \emptyset , $\mathbb{A}^2(k)$, single points, and curves of the form $V(f)$ for a monic irreducible polynomial $f \in k[x, y]$. [Hint: Show that if $f, g \in k[x, y]$ are relatively prime, then (f, g) contains a nonzero polynomial in $k[x]$ and a nonzero polynomial in $k[y]$.

0.2 Additional Exercises

- 1. [4pts*] Find an elliptic curve in Weierstrass form that has a rational point of order 4. (You may construct this curve in any manner you like, other than looking one up.)
- 2. [5pts*] Find generators and the group structure for the group of rational torsion points on each curve. (You can check your answers with Sage, but you should use Nagell-Lutz to identify the candidate torsion points themselves first.)

(a)
$$
y^2 = x^3 + 1
$$
.
\n(b) $y^2 = x^3 - 48$.
\n(c) $y^2 = x^3 - 7x + 6$.
\n(d) $y^2 = x^3 - 4x^2 + 16$.
\n(e) $y^2 = x^3 - 14x^2 + 81x$.

- 3. [5pts*] The L-Functions and Modular Forms Database (LMFDB, to its friends) contains data on many other algebraic objects of interest, including elliptic curves. Using the database, find an example of a Weierstrass form of an elliptic curve E with the given properties:
	- (a) $E(\mathbb{Q})_{\text{tor}}$ is isomorphic to $\mathbb{Z}/9\mathbb{Z}$.
	- (b) $E(\mathbb{Q})$ contains a point of order 10.
	- (c) $E(\mathbb{Q})$ is isomorphic to $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
	- (d) $E(\mathbb{O}(i))$ is isomorphic to $\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
	- (e) $E(\mathbb{Q}(\sqrt{2}))$ is isomorphic to $\mathbb{Z}/11\mathbb{Z}$.
- 4. [3pts] The algebra package Sage can, for reasonably nice elliptic curves E and number fields K , compute generators for the group $E(K)$. For each of the curves you found from the LMFDB in problem (3) above, use Sage to compute generators for the group of torsion points and the group of torsion-free points over the field requested (i.e., $\mathbb Q$ for (a)-(c), $\mathbb Q(i)$ for (d), $\mathbb Q(\sqrt{2})$ for (e)).
- 5. [6pts] Recall that a discrete valuation on a field F is a surjective function $v : F^{\times} \to \mathbb{Z}$ with $v(0) = \infty$, $v(ab) = v(a) + v(b)$ for all $a, b \in F$, and $v(a + b) \ge \min(v(a), v(b))$ for all $a, b \in F$. The valuation ring R is the set of elements $r \in F$ with $v(r) \geq 0$. Show the following, where $t \in R$ is a uniformizer (i.e., an element with $v(t) = 1$:
	- (a) For any $r \in F^{\times}$, either r or $1/r$ is in R.
	- (b) An element $u \in R$ is a unit of R if and only if $v(u) = 0$. In particular, if $\zeta \in F$ is any root of unity, then $v(\zeta)=0.$
	- (c) If $r \in R$ is nonzero and $v(r) = n$, then r can be written uniquely in the form $r = ut^n$ for some unit $u \in R$.
	- (d) Every nonzero ideal of R is of the form (t^n) for some $n \geq 0$.
	- (e) The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.
	- (f) The ring S is a DVR if and only if it is a PID and a local ring but not a field.